
PerlDSM: A Distributed Shared Memory System for Perl

Norman Matloff
University of California, Davis

matloff@cs.ucdavis.edu

Abstract

A suite of Perl utilities is presented for enabling Perl
language programming in a distributed shared memory
(DSM) setting. The suite allows clean, simple paral-
lelization of Perl scripts running on multiple network
nodes. A programming interface like that of the page-
based approach to DSM is achieved via a novel use of
Perl’s tie() function.

Keywords and phrases: Perl; parallel processing; dis-
tributed shared memory.

1 Introduction

The Perl scripting language has achieved tremen-
dous popularity, allowing rapid development of power-
ful software tools. It has evolved in reflection of general
trends in the software world, one of these being con-
currency, with recent versions of Perl featuring mul-
tithreading capabilities. Our interest here will be in
enabling Perl to perform more general parallel process-
ing functions, with the concurrency now being across
multiple machines connected via a network. A typical
setting is that of a subdividable, I/O-intensive task be-
ing performed by a network of workstations (NOWs).

For example, we may have a Web server written in
Perl1 which we would like to parallelize into a server
pool. Here a “manager” server would operate a task
farm of incoming requests, and “worker servers” at
other network nodes would obtain work from the man-
ager.

Or, we may have a Web search engine written in
Perl, which we wish to parallelize over various network
nodes, with each node searching a different portion of
Web space.

Perl applications of this type have been written, but
with the parallelization operations being handled on an

1Or possibly with the server consisting of a Perl driver which
runs C/C++ modules.

ad hoc basis in each case, i.e. without drawing upon a
general package of parallelization utilities.

One such package has been developed, PVM-Perl
[6]. This enables the Perl programmer to do message-
passing on a network of machines. However, many
in the parallel processing community believe that the
shared-memory paradigm allows for greater program-
ming clarity [7]. Accordingly, a number of software
packages have been developed which provide software
distributed shared memory (DSM) [5], which provides
the programmer with the illusion of shared memory
even though the platform consists of entirely separate
machines (and thus separate memories) connected via
a network.

Due to the clarity and ease of programming of the
shared-memory model, our focus here is on DSM sys-
tems. These have been designed mainly for C/C++,
and before now, DSM had not been developed for Perl.
This paper presents such a system, PerlDSM. This set
of Perl utilities enables the Perl programmer to do
shared-memory paradigm programming on a collection
of networked machines.

DSM itself is divided into two main approaches, the
page-based and object-based varieties. The page-based
approach is generally considered clearer and easier to
program in. However, its implementation for C/C++,
e.g. in Treadmarks [1], requires direct communication
with the operating system. This kind of solution does
not apply to interpreted languages like Perl. At first
glance, therefore, it would appear that implementation
of a page-based DSM in Perl would necessitate modifi-
cation of Perl’s internal mechanisms.2

Yet we have been able to design PerlDSM in a paged-
based manner (i.e. giving the programmer an interface
like those of paged-based systems) without resorting to
modification of Perl internals. This is due to a novel
use of Perl’s tie() construct.

The details of the PerlDSM system and its imple-
mentation are presented in Sections 3 and 4, followed

2Perl actually is designed to facilitate working at the internals
level, but still this would not be a simple project.

1

by an example in Section 5. In Section 6, we discuss
other issues, such as planned extensions.

2 Page- vs. Object-Based DSM Sys-
tems

In a page-based DSM system, C code which operates
on shared variables, say x and y, might look something
like this:

shared int x,y;
...
x = 21;
y = x + 5;

First x and y must be set up as shared variables.3

Then x and y are accessed in the normal C fashion; all
the operations for sharing with other network nodes
— e.g. fetching the latest copy of x from other nodes
— are done behind the scenes, transparent to the pro-
grammer.

By contrast, in object-based systems, the code

x = 21;
y = x + 5;

might look like this:

x = 21;
put_shared("x",x);
x = get_shared("x");
y = x + 5;
put_shared("y",y);

Here the programmer must bear the burden of ex-
plicitly invoking the sharing operations via calls to the
DSM system.

There are advantages and disadvantages to each of
the two approaches to DSM [1]. The object-based
DSM approach has certain performance advantages,
but the page-based approach is generally considered
clearer and more natural, as can be seen in the com-
parison above. Thus our goal was to develop some kind
of page-based DSM for Perl.4

3This is often accomplished by calls to a shared version of
malloc().

4An alternate world view which shares some characteristics
with the shared-memory paradigm is that of tuple spaces. This

3 Implementation of a Paged-Based
Programming Interface in PerlDSM

The page-based approach relies on UNIX system
calls which allow modification (actually replacement)
of the page-fault handler in the machine’s virtual mem-
ory system.5 Only the pages currently owned by the
given network node are marked as resident, and when
the program reaches a page it does not currently own,
a page fault occurs. The DSM has set up the new han-
dler to get the new page from whichever node currently
owns the page, rather than from disk as usual.

This means that direct implementation of page-
based DSM in Perl, however, would not be possible,
as Perl is an interpreted language. True, the data for
the Perl program is also data for the Perl interpreter,
but reconciliation of all the correspondences would be
very difficult.

At first glance, then, it would seem that implementa-
tion of a page-based DSM for Perl would require work-
ing at the level of Perl internals. Actually, Perl does
expose quite a bit of this to the application program-
mer, but still such an implementation would be rather
complex.

However, it turns out that an interesting feature of
Perl, the tie() function, can be used to form an ex-
tremely elegant solution to this problem. This function
associates a scalar variable (or array or hash) with an
object.6 We say that the scalar is tied to the object.

The object is required to have three methods, named
TIESCALAR (TIEARRAY or TIEHASH in the case of
array or hash variables), FETCH and STORE. In Perl,
each time a scalar variable appears on the right-hand
side of an assignment statement (or in some other con-
text in which its value needs to be fetched), the FETCH
method is called and its return value used in place of
the scalar variable. Similarly, if the scalar appears on
the left-hand side of an assignment, the value on the
right-hand side is passed to STORE.

To see how PerlDSM uses tie(), consider our exam-
ple with x and y above,

shared int x,y;
...

was originally proposed in the Linda language [3], and currently
in use in JavaSpaces [4] and T-Spaces [8]. Perl versions of this
have been proposed. However, these are very similar in terms of
programmer interface to object-oriented DSM; the programmer
must insert function calls to get tuples from, and put tuples into,
the tuple space. We thus did not pursue the tuples approach.

5Hence the term “page” in “page-based DSM.”
6Here the word “object” is used in the sense of “object-

oriented programming,” not in the sense of “object-based DSM.”

x = 21;
y = x + 5;

In PerlDSM, this is written as

tie $x,’DSMScalar’,’$x’,$SvrSkt
tie $y,’DSMScalar’,’$y’,$SvrSkt
...
$x = 21;
$y = $x + 5;

(In Perl, all scalar variable names begin with a dollar
sign.)

The two tie statements do the association of scalars
to objects as mentioned above. DSMScalar is the name
of the PerlDSM built-in class for shared scalars, and
$SvrSkt is a socket to the PerlDSM variable server.

Then, just as the actual executable code in the
C/C++ version,

x = 21;
y = x + 5;

is written with no distracting and burdensome calls for
network fetch and store operations, the same is true for
PerlDSM. In other words, the interface afforded the
programmer by PerlDSM is similar to those of page-
based DSMs for C/C++.7

One of the network nodes runs the PerlDSM shared
variable server, DSMSvr.pl.8 The values of the shared
variables are maintained by the server.

The call to tie() for, say $x, triggers a call to TI-
ESCALAR. PerlDSM has TIESCALAR check in with
the server, registering this shared variable. The server
then adds an entry “$x” to a hash, @SharedVariables.
In Perl, a hash is an associative array, indexed by char-
acter strings; @SharedVariables{”$x”} will contain the
value of $x.

The statement

$x = 21;

triggers a call to STORE, with argument 21. STORE
then sends a message

7Even though there are no “pages” in PerlDSM.
8That same node could also be running the PerlDSM appli-

cation program.

write $x 21

to the server, which places 21 into @SharedVari-
ables{”$x”}.

Similarly, the appearance of $x on the right-hand
side of

$y = $x + 5;

will trigger a call to FETCH, which will get the current
value of $x from the server.9 Finally, the appearance
of $y on the left-hand side of the assignment triggers a
call to STORE, etc.

Both FETCH and STORE in DSMScalar.pm per-
form the necessary socket communications with the
server. But again, it must be emphasized that all of
this is transparent to the programmer. The program-
mer does not see the calls to FETCH and STORE, and
thus can concentrate on writing clear, natural code.

4 Other PerlDSM Concurrency Con-
structs

PerlDSM also includes calls to lock and unlock a
lock variable, and a two-phase barrier call. At present
there is only one lock variable, $LOCK, and only one
barrier variable, $BARR, but the server could easily be
altered to allow multiple lock and barrier variables.

Both locks and barriers are implemented internally
as reads and writes. A PerlDSM application performs
a lock operation as a read of the lock variable $LOCK,
and the unlock is done by a write, e.g.

$Lock = $LOCK;
... (critical section here)
$LOCK = 0;

Barriers are invoked in the same manner, e.g.

$Barr = $BARR;

Both $LOCK and $BARR must be tied by the ap-
plication program. Note also that the lock and barrier
operations are of course blocking, even though they
appear syntactically as reads.

9PerlDSM is also extensible, as discussed later, so that some
optimization could be done here to prevent an extra trip to the
server.

5 Example

Following is a sample complete PerlDSM applica-
tion, which finds the average load average among all
nodes, by running the UNIX w command at each node
and then averaging over all nodes. It is very simple,
for the sake of brevity, but illustrates all the PerlDSM
constructs.

#!/usr/bin/perl

example PerlDSM application; finds the
average load average among all nodes

"use" is like C’s "#include"
use DSMScalar;
use DSMUtils;

package main;

globals:
$SvrSkt; # socket to server
$NumNodes; # total number of nodes
$MyNode; # number of this node
$SumAvgs; # sum of all the load averages

check in with server
($SvrSkt,$NumNodes,$MyNode) =

DSMUtils::DSMCheckIn();
print "total of ", $NumNodes,

" nodes, of which I am number ",
$MyNode, "\n";

tie shared variables
tie $BARR,’DSMScalar’,’$BARR’,$SvrSkt;
tie $SumAvgs,’DSMScalar’,’$SumAvgs’,$SvrSkt;
tie $LOCK,’DSMScalar’,’$LOCK’,$SvrSkt;

initialize sum to 0 if I am node 1
if ($MyNode == 1) {

$SumAvgs = 0.0;
}

barrier
$Barr = $BARR;

get load average at this node, by running
UNIX w command, and parsing the output
system ’w > tmpout’;
open TMP,"tmpout";
$Line = <TMP>;
close TMP;
@Tokens = split(" ",$Line);

$MyAvg = $Tokens[9];

add to total of all load averages
$Lock = $LOCK; # lock
$SumAvgs = $SumAvgs + $MyAvg;
$LOCK = 0; # unlock

wait for everyone to finish,
then print answer if I am node 1
$Barr = $BARR;
if ($MyNode == 1) {

print $SumAvgs/$NumNodes, "\n";
}

DSMUtils::DSMCloseSocket($SvrSkt);

exit;

6 Summary and Future Work

In developing PerlDSM, we have attained our goal of
enabling Perl programming with a parallel DSM world
view, with the simplicity and clarity of page-based
C/C++ DSM systems. We have made PerlDSM avail-
able at http://heather.cs.ucdavis.edu/~matloff/
perldsm.html.

One question which arises is that of efficiency. It is
somewhat less of an issue in the context of an inter-
preted scripting language like Perl than for C/C++.
Parallelizable applications of Perl tend to be I/O-
intensive rather than compute-bound, so computa-
tional efficiency is less of a concern. However, network
efficiency can be important.

Consider for example an atomic increment opera-
tion, say on a variable $n:

tie $n,’DSMScalar’,’$n’,$SvrSkt;
...
$Lock = $LOCK;
$m = $n;
$n = $m + 1;
$LOCK = 0;

This requires sending a total of four requests to
the server, i.e. eight network communications. Yet it
would be easy to implement such an operation within
the PerlDSM infrastructure, entailing only one request
to the server and thus only two network communica-
tions.

A more complex performance enhancement would

be to allow multiple servers. A number of other en-
hancements are being considered.

A key element of the implementation of PerlDSM
was use of Perl’s tie() function. This raises the question
of whether our approach here could be extended to
other languages.

In C++, for example, one could try overloading the
operators for assignment, addition, and so on. That
would work to some extent, but not in the clean, ele-
gant fashion that Perl’s tie() has afforded us here. We
could for example easily implement

y = x;

but could not directly implement

y = x + 5;

or

printf("%d\n",y);

In this sense, it is remarkable that Perl’s tie() func-
tion allowed us to implement DSM in such an simple,
elegant manner, enabling us to avoid working at the
level of Perl internals. Indeed, Rice University’s team,
in developing a DSM package for another interpreted
language, Java/DSM [9], needed to resort to modifica-
tion of the Java Virtual Machine interpreter.

References

[1] C. Amza et al. Treadmarks: Shared Memory Com-
puting on Networks of Workstations, IEEE Com-
puter, January 1995.

[2] M. Bouchard. MetaRuby. http://www.
ruby-lang.org/en/raa-list.rhtml?name=
MetaRuby.

[3] Nicholas Carriero and David Gelernter. How to
Write Parallel Programs: a First Course, MIT
Press, 1990.

[4] Eric Freeman et al. JavaSpaces(TM) Principles,
Patterns and Practice, Addison-Wesley, 1999.

[5] Peter Kelleher. Distributed Shared Memory Home
Pages, http://www.csm.ornl.gov/pvm/perl-pvm.
html.

[6] Edward Walker. PVM-Perl (software package),
http://www.csm.ornl.gov/pvm/perl-pvm.html.

[7] Barry Wilkinson and Michael Allen. Parallel Pro-
gramming: Techniques and Applications Using Net-
worked Workstations and Parallel Computers, Pren-
tice Hall, 1999.

[8] P. Wyckoff. T Spaces. IBM Systems Journal,
November 3, 1998.

[9] Weimin Yu and Alan Cox. Java/DSM: a Platform
for Heterogeneous Computing, Proceedings of the
ACM 1997 Workshop on Java for Science and En-
gineering Computation, June 1997.

