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Interpreted languages are slow.

DES literature mainly algorithm-centric.

What can be done specifically for interpreted languages?

What can be done for systems considerations, e.g. VM?
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Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.

About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.
Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.
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Sample SimPy Code

Machine repair, several machines.

Have class MachineClass, with member variables such as
UpTime, etc.

Each class has a member function Run() which simulates one
machine.
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Sample Run() Function

def Run(self):
while 1:
self.StartUpTime = SimPy.Simulation.now()
# hold for up time
UpTime = G.Rnd.expovariate(MachineClass.UpRate)
yield SimPy.Simulation.hold,self,UpTime
# update up time total
MachineClass.TotalUpTime +=

SimPy.Simulation.now() - self.StartUpTime
RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
# hold for repair time
yield SimPy.Simulation.hold,self,RepairTime

The yield actually does yield the processor. But yield is a coroutine
release—next time this function runs, it resumes after the yield.
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SimPy Data Structures

Assume for simplicity no tied event times.

The Python list timestamps stores all event times, in
ascending order. e.g. to determine the earliest scheduled
event.
A Python list is not an array! One may insert and delete
elements, with the corresponding overhead of shifting data.

The actual events are in a Python dictionary (associative
array) named events.
Python dictionaries are implemented as hash tables,
reasonably fast.
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SimPy Queue Operations

When a new event is created at time t, then these operations
occur:

(i) add t to list timestamps

(ii) add event to dictionary events

Step (i) makes use of Python’s bisect() function, which performs
bisection sort.
That would appear to be O(log n) time, for an n-item event list.
Due to SimPy’s use of Python’s list structure, it is actually O(n),
due to right-shifting of the data.
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SimPy Dequeue Operations

When the next event is executed, these operations occur:

(iii) remove head of list timestamps, time t

(iv) reactivate (invoke Python iterator for) Run() function for
event of time t in dictionary events

Again, what would appear to be an O(1) event is actually O(n).
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Dictionary (smaller problem).

O(n) insert operation instead of O(log n) (big problem).

O(n) dequeue operation instead of O(1) (big problem).

Possible VM issues.
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Rewrite core event-list operations in C for speed.

SWIG forms the “glue.”
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“Best of both worlds”—core runs in C, but apps programmer
still writes in high-level Python.

Used SWIG Python/C“glue” tool. (Available for Java etc.
too.)
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However, most algorithm-centric.

Typically “simulations of simulation,” not timing of actual
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Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.
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Scalability Issues

Even though CQ and PQArr were about equal in performance,
PQArr appears not to scale well to larger event sets:

struct user time sys. time event op. time

PQArr 79.47 4.50 57.87
CQ 33.24 3.95 12.69
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Discussion of VM Issues

CQ paging performance poor in our experiments, run on
32-bit PCs running Linux kernel 2.6.20.

Preliminary experiments on a 64-bit PC, same kernel, suggest
greater variability.

∴ CQ may do poorly on some systems.
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