
Revisiting the Issue of Performance Enhancement
of Discrete Event Simulation Software 1

Alex Bahouth, Steven Crites, Norman Matloff and Todd
Williamson

Department of Computer Science
University of California at Davis

Davis, CA 95616 USA
matloff@cs.ucdavis.edu

1We wish to thank Victor Castillo and the Lawrence Livermore National
Laboratory for supporting this research.

This presentation is produced using C. Campani’s Beamer LATEX
class.
See http://heather.cs.ucdavis.edu/~matloff/beamer.html
for a quick tutorial.
Disclaimer: Our slides here won’t show off what Beamer can do.
Sorry. :-)

http://heather.cs.ucdavis.edu/~matloff/beamer.html

Issues Addressed in This Paper

Interpreted languages (Java, Python) now popular for DES

Interpreted languages are slow.

DES literature mainly algorithm-centric.

What can be done specifically for interpreted languages?

What can be done for systems considerations, e.g. VM?

Issues Addressed in This Paper

Interpreted languages (Java, Python) now popular for DES

Interpreted languages are slow.

DES literature mainly algorithm-centric.

What can be done specifically for interpreted languages?

What can be done for systems considerations, e.g. VM?

Issues Addressed in This Paper

Interpreted languages (Java, Python) now popular for DES

Interpreted languages are slow.

DES literature mainly algorithm-centric.

What can be done specifically for interpreted languages?

What can be done for systems considerations, e.g. VM?

Issues Addressed in This Paper

Interpreted languages (Java, Python) now popular for DES

Interpreted languages are slow.

DES literature mainly algorithm-centric.

What can be done specifically for interpreted languages?

What can be done for systems considerations, e.g. VM?

Issues Addressed in This Paper

Interpreted languages (Java, Python) now popular for DES

Interpreted languages are slow.

DES literature mainly algorithm-centric.

What can be done specifically for interpreted languages?

What can be done for systems considerations, e.g. VM?

Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.

About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.
Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.

heather.cs.ucdavis.edu/~matloff/simcourse.html

Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.
About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.
Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.

heather.cs.ucdavis.edu/~matloff/simcourse.html

Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.
About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.
Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.

heather.cs.ucdavis.edu/~matloff/simcourse.html

Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.
About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.
Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.

heather.cs.ucdavis.edu/~matloff/simcourse.html

Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.
About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.
Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.

heather.cs.ucdavis.edu/~matloff/simcourse.html

Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.
About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.

Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.

heather.cs.ucdavis.edu/~matloff/simcourse.html

Case Study: SimPy

Our investigation took the form of a case study: enhancing the
peformance of the SimPy DES language.
About SimPy:

Written by Klaus Muller and Tony Vignaux.

I have developed an online DES course based on SimPy,
available at
heather.cs.ucdavis.edu/~matloff/simcourse.html.

SimPy uses Python:

Lots of high-level Python constructs make programming much
easier.
Python generator construct used by SimPy to set up
coroutines, i.e. non-preemptive threads.

heather.cs.ucdavis.edu/~matloff/simcourse.html

Sample SimPy Code

Machine repair, several machines.

Have class MachineClass, with member variables such as
UpTime, etc.

Each class has a member function Run() which simulates one
machine.

Sample SimPy Code

Machine repair, several machines.

Have class MachineClass, with member variables such as
UpTime, etc.

Each class has a member function Run() which simulates one
machine.

Sample SimPy Code

Machine repair, several machines.

Have class MachineClass, with member variables such as
UpTime, etc.

Each class has a member function Run() which simulates one
machine.

Sample SimPy Code

Machine repair, several machines.

Have class MachineClass, with member variables such as
UpTime, etc.

Each class has a member function Run() which simulates one
machine.

Sample Run() Function

def Run(self):
while 1:
self.StartUpTime = SimPy.Simulation.now()
hold for up time
UpTime = G.Rnd.expovariate(MachineClass.UpRate)
yield SimPy.Simulation.hold,self,UpTime
update up time total
MachineClass.TotalUpTime +=

SimPy.Simulation.now() - self.StartUpTime
RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
hold for repair time
yield SimPy.Simulation.hold,self,RepairTime

The yield actually does yield the processor. But yield is a coroutine
release—next time this function runs, it resumes after the yield.

Sample Run() Function

def Run(self):
while 1:
self.StartUpTime = SimPy.Simulation.now()
hold for up time
UpTime = G.Rnd.expovariate(MachineClass.UpRate)
yield SimPy.Simulation.hold,self,UpTime
update up time total
MachineClass.TotalUpTime +=

SimPy.Simulation.now() - self.StartUpTime
RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
hold for repair time
yield SimPy.Simulation.hold,self,RepairTime

The yield actually does yield the processor.

But yield is a coroutine
release—next time this function runs, it resumes after the yield.

Sample Run() Function

def Run(self):
while 1:
self.StartUpTime = SimPy.Simulation.now()
hold for up time
UpTime = G.Rnd.expovariate(MachineClass.UpRate)
yield SimPy.Simulation.hold,self,UpTime
update up time total
MachineClass.TotalUpTime +=

SimPy.Simulation.now() - self.StartUpTime
RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
hold for repair time
yield SimPy.Simulation.hold,self,RepairTime

The yield actually does yield the processor. But yield is a coroutine
release—next time this function runs, it resumes after the yield.

SimPy Data Structures

Assume for simplicity no tied event times.

The Python list timestamps stores all event times, in
ascending order. e.g. to determine the earliest scheduled
event.
A Python list is not an array! One may insert and delete
elements, with the corresponding overhead of shifting data.

The actual events are in a Python dictionary (associative
array) named events.
Python dictionaries are implemented as hash tables,
reasonably fast.

SimPy Data Structures

Assume for simplicity no tied event times.

The Python list timestamps stores all event times, in
ascending order. e.g. to determine the earliest scheduled
event.

A Python list is not an array! One may insert and delete
elements, with the corresponding overhead of shifting data.

The actual events are in a Python dictionary (associative
array) named events.
Python dictionaries are implemented as hash tables,
reasonably fast.

SimPy Data Structures

Assume for simplicity no tied event times.

The Python list timestamps stores all event times, in
ascending order. e.g. to determine the earliest scheduled
event.
A Python list is not an array! One may insert and delete
elements, with the corresponding overhead of shifting data.

The actual events are in a Python dictionary (associative
array) named events.
Python dictionaries are implemented as hash tables,
reasonably fast.

SimPy Data Structures

Assume for simplicity no tied event times.

The Python list timestamps stores all event times, in
ascending order. e.g. to determine the earliest scheduled
event.
A Python list is not an array! One may insert and delete
elements, with the corresponding overhead of shifting data.

The actual events are in a Python dictionary (associative
array) named events.
Python dictionaries are implemented as hash tables,
reasonably fast.

SimPy Queue Operations

When a new event is created at time t, then these operations
occur:

(i) add t to list timestamps

(ii) add event to dictionary events

Step (i) makes use of Python’s bisect() function, which performs
bisection sort.
That would appear to be O(log n) time, for an n-item event list.
Due to SimPy’s use of Python’s list structure, it is actually O(n),
due to right-shifting of the data.

SimPy Queue Operations

When a new event is created at time t, then these operations
occur:

(i) add t to list timestamps

(ii) add event to dictionary events

Step (i) makes use of Python’s bisect() function, which performs
bisection sort.
That would appear to be O(log n) time, for an n-item event list.
Due to SimPy’s use of Python’s list structure, it is actually O(n),
due to right-shifting of the data.

SimPy Queue Operations

When a new event is created at time t, then these operations
occur:

(i) add t to list timestamps

(ii) add event to dictionary events

Step (i) makes use of Python’s bisect() function, which performs
bisection sort.

That would appear to be O(log n) time, for an n-item event list.
Due to SimPy’s use of Python’s list structure, it is actually O(n),
due to right-shifting of the data.

SimPy Queue Operations

When a new event is created at time t, then these operations
occur:

(i) add t to list timestamps

(ii) add event to dictionary events

Step (i) makes use of Python’s bisect() function, which performs
bisection sort.
That would appear to be O(log n) time, for an n-item event list.
Due to SimPy’s use of Python’s list structure, it is actually O(n),
due to right-shifting of the data.

SimPy Dequeue Operations

When the next event is executed, these operations occur:

(iii) remove head of list timestamps, time t

(iv) reactivate (invoke Python iterator for) Run() function for
event of time t in dictionary events

Again, what would appear to be an O(1) event is actually O(n).

SimPy Dequeue Operations

When the next event is executed, these operations occur:

(iii) remove head of list timestamps, time t

(iv) reactivate (invoke Python iterator for) Run() function for
event of time t in dictionary events

Again, what would appear to be an O(1) event is actually O(n).

SimPy Dequeue Operations

When the next event is executed, these operations occur:

(iii) remove head of list timestamps, time t

(iv) reactivate (invoke Python iterator for) Run() function for
event of time t in dictionary events

Again, what would appear to be an O(1) event is actually O(n).

Summary of Sources of SimPy Slowness

Dictionary (smaller problem).

O(n) insert operation instead of O(log n) (big problem).

O(n) dequeue operation instead of O(1) (big problem).

Possible VM issues.

Summary of Sources of SimPy Slowness

Dictionary (smaller problem).

O(n) insert operation instead of O(log n) (big problem).

O(n) dequeue operation instead of O(1) (big problem).

Possible VM issues.

Summary of Sources of SimPy Slowness

Dictionary (smaller problem).

O(n) insert operation instead of O(log n) (big problem).

O(n) dequeue operation instead of O(1) (big problem).

Possible VM issues.

Summary of Sources of SimPy Slowness

Dictionary (smaller problem).

O(n) insert operation instead of O(log n) (big problem).

O(n) dequeue operation instead of O(1) (big problem).

Possible VM issues.

Summary of Sources of SimPy Slowness

Dictionary (smaller problem).

O(n) insert operation instead of O(log n) (big problem).

O(n) dequeue operation instead of O(1) (big problem).

Possible VM issues.

Our Solutions

Remove dictionary entirely.

Rewrite core event-list operations in C for speed.

SWIG forms the “glue.”

Rethink event-list algorithms.

Our Solutions

Remove dictionary entirely.

Rewrite core event-list operations in C for speed.

SWIG forms the “glue.”

Rethink event-list algorithms.

Our Solutions

Remove dictionary entirely.

Rewrite core event-list operations in C for speed.

SWIG forms the “glue.”

Rethink event-list algorithms.

Our Solutions

Remove dictionary entirely.

Rewrite core event-list operations in C for speed.

SWIG forms the “glue.”

Rethink event-list algorithms.

Our Solutions

Remove dictionary entirely.

Rewrite core event-list operations in C for speed.

SWIG forms the “glue.”

Rethink event-list algorithms.

Removal of Events Dictionary

Incorporate into the timestamps list, so list elements are now
of the form (time, event) instead of (time).

The bisect() operation still works!

Needed to overload Python’s < operator.

Removal of Events Dictionary

Incorporate into the timestamps list, so list elements are now
of the form (time, event) instead of (time).

The bisect() operation still works!

Needed to overload Python’s < operator.

Removal of Events Dictionary

Incorporate into the timestamps list, so list elements are now
of the form (time, event) instead of (time).

The bisect() operation still works!

Needed to overload Python’s < operator.

Removal of Events Dictionary

Incorporate into the timestamps list, so list elements are now
of the form (time, event) instead of (time).

The bisect() operation still works!

Needed to overload Python’s < operator.

Rewriting Event List Ops in C for Speed

“Best of both worlds”—core runs in C, but apps programmer
still writes in high-level Python.

Used SWIG Python/C“glue” tool. (Available for Java etc.
too.)

SWIG very easy to learn, use.

We did have to be careful regarding reference counts.

Rewriting Event List Ops in C for Speed

“Best of both worlds”—core runs in C, but apps programmer
still writes in high-level Python.

Used SWIG Python/C“glue” tool. (Available for Java etc.
too.)

SWIG very easy to learn, use.

We did have to be careful regarding reference counts.

Rewriting Event List Ops in C for Speed

“Best of both worlds”—core runs in C, but apps programmer
still writes in high-level Python.

Used SWIG Python/C“glue” tool. (Available for Java etc.
too.)

SWIG very easy to learn, use.

We did have to be careful regarding reference counts.

Rewriting Event List Ops in C for Speed

“Best of both worlds”—core runs in C, but apps programmer
still writes in high-level Python.

Used SWIG Python/C“glue” tool. (Available for Java etc.
too.)

SWIG very easy to learn, use.

We did have to be careful regarding reference counts.

Rewriting Event List Ops in C for Speed

“Best of both worlds”—core runs in C, but apps programmer
still writes in high-level Python.

Used SWIG Python/C“glue” tool. (Available for Java etc.
too.)

SWIG very easy to learn, use.

We did have to be careful regarding reference counts.

Rethinking Event List Algorithms

Lots of work in the past.

However, most algorithm-centric.

Typically “simulations of simulation,” not timing of actual
programs.

No consideration of systems issues, e.g. VM.

Rethinking Event List Algorithms

Lots of work in the past.

However, most algorithm-centric.

Typically “simulations of simulation,” not timing of actual
programs.

No consideration of systems issues, e.g. VM.

Rethinking Event List Algorithms

Lots of work in the past.

However, most algorithm-centric.

Typically “simulations of simulation,” not timing of actual
programs.

No consideration of systems issues, e.g. VM.

Rethinking Event List Algorithms

Lots of work in the past.

However, most algorithm-centric.

Typically “simulations of simulation,” not timing of actual
programs.

No consideration of systems issues, e.g. VM.

Rethinking Event List Algorithms

Lots of work in the past.

However, most algorithm-centric.

Typically “simulations of simulation,” not timing of actual
programs.

No consideration of systems issues, e.g. VM.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Empirical Evaluation

Tested many different modifications of SimPy

original SimPy (SimPy)

SimPy with dictionary removed, but still all-Python
implementation (SimPyND)

SimPy with original event structures retained (though no
dictionary) but operations implemented in C (PQArr)

SimPy modified to use C-language calendar queue (CQ)

SimPy modified to use C-language splay tree (Splay)

Many others were tried but found to be noncompetitive.

Testbeds:

Call center application. Indexed by arrival rates.

Hold Model. Indexed by coeff. of var. of service times.

Results

Summary, from fastest to slowest:

CQ ≈ PQArr > SplayTree > SimPyND > SimPy

Results

Summary, from fastest to slowest:
CQ ≈

PQArr > SplayTree > SimPyND > SimPy

Results

Summary, from fastest to slowest:
CQ ≈ PQArr >

SplayTree > SimPyND > SimPy

Results

Summary, from fastest to slowest:
CQ ≈ PQArr > SplayTree >

SimPyND > SimPy

Results

Summary, from fastest to slowest:
CQ ≈ PQArr > SplayTree > SimPyND >

SimPy

Results

Summary, from fastest to slowest:
CQ ≈ PQArr > SplayTree > SimPyND > SimPy

Call Center Times Per Op, Lower Traffic

Call Center Times Per Op, Higher Traffic

Hold Model Times Per Op, Smaller COV

0 100 200 300 400 500 600 700 800 900

3

4

5

6

7

8

9

Length of event list

T
im

e
pe

r
op

er
at

io
n(

m
ic

ro
se

co
nd

s)

CQ
SimPy
Splay

Hold Model Times Per Op, Larger COV

0 100 200 300 400 500 600 700 800 900

2

3

4

5

6

7

8

9

Length of event list

T
im

e
pe

r
op

er
at

io
n(

m
ic

ro
se

co
nd

s)

CQ
SimPy
Splay

Scalability Issues

Even though CQ and PQArr were about equal in performance,
PQArr appears not to scale well to larger event sets:

struct user time sys. time event op. time

PQArr 79.47 4.50 57.87
CQ 33.24 3.95 12.69

Scalability Issues

Even though CQ and PQArr were about equal in performance,
PQArr appears not to scale well to larger event sets:

struct user time sys. time event op. time

PQArr 79.47 4.50 57.87
CQ 33.24 3.95 12.69

Scalability Issues

Even though CQ and PQArr were about equal in performance,
PQArr appears not to scale well to larger event sets:

struct user time sys. time event op. time

PQArr 79.47 4.50 57.87

CQ 33.24 3.95 12.69

Scalability Issues

Even though CQ and PQArr were about equal in performance,
PQArr appears not to scale well to larger event sets:

struct user time sys. time event op. time

PQArr 79.47 4.50 57.87
CQ 33.24 3.95 12.69

Number of Page Faults, Call Center (lower traffic)

0 150 300 450 600 750 900 1200 1500

10207

15088

19969

24850

29731

34612

39493

44374

Length of event list

CQ
SimPy
Splay
PQArr
SimPyND

Number of Page Faults, Hold Model (medium COV)

0 100 200 300 400 500 600 700 800 900

1168.750

1753.125

2337.500

2921.875

3506.250

4090.625

4675.000

Length of event list

CQ
SimPy
Splay

Discussion of VM Issues

CQ paging performance poor in our experiments, run on
32-bit PCs running Linux kernel 2.6.20.

Preliminary experiments on a 64-bit PC, same kernel, suggest
greater variability.

∴ CQ may do poorly on some systems.

Discussion of VM Issues

CQ paging performance poor in our experiments, run on
32-bit PCs running Linux kernel 2.6.20.

Preliminary experiments on a 64-bit PC, same kernel, suggest
greater variability.

∴ CQ may do poorly on some systems.

Discussion of VM Issues

CQ paging performance poor in our experiments, run on
32-bit PCs running Linux kernel 2.6.20.

Preliminary experiments on a 64-bit PC, same kernel, suggest
greater variability.

∴ CQ may do poorly on some systems.

Discussion of VM Issues

CQ paging performance poor in our experiments, run on
32-bit PCs running Linux kernel 2.6.20.

Preliminary experiments on a 64-bit PC, same kernel, suggest
greater variability.

∴ CQ may do poorly on some systems.

Conclusions and Discussion

Hybrid interpreted/C approach “best of both
worlds”—transparent to apps programmer but with better
performance

Attention to non-algorithmic issues, e.g. paging, may be
worthwhile.

What about JIT? Tried Pyscho but with disappointing results.

Conclusions and Discussion

Hybrid interpreted/C approach “best of both
worlds”—transparent to apps programmer but with better
performance

Attention to non-algorithmic issues, e.g. paging, may be
worthwhile.

What about JIT? Tried Pyscho but with disappointing results.

Conclusions and Discussion

Hybrid interpreted/C approach “best of both
worlds”—transparent to apps programmer but with better
performance

Attention to non-algorithmic issues, e.g. paging, may be
worthwhile.

What about JIT? Tried Pyscho but with disappointing results.

Conclusions and Discussion

Hybrid interpreted/C approach “best of both
worlds”—transparent to apps programmer but with better
performance

Attention to non-algorithmic issues, e.g. paging, may be
worthwhile.

What about JIT?

Tried Pyscho but with disappointing results.

Conclusions and Discussion

Hybrid interpreted/C approach “best of both
worlds”—transparent to apps programmer but with better
performance

Attention to non-algorithmic issues, e.g. paging, may be
worthwhile.

What about JIT? Tried Pyscho but with disappointing results.

