UCRL-WEB-150152

pyMPI — An introduction to parallel Python
using MPT*

Patrick Miller
September 11, 2002

Abstract

The interpreted language, Python, provides a good framework for
building scripts and control frameworks. While Python has a (co-routining)
thread model, its basic design is not particularly appropriate for parallel
programming. The pyMPI extension set is designed to provide parallel
operations for Python on distributed, parallel machines using MPI.

1 Basic pyMPI

While pyMPI provides a more complete interface to MPI with communicators
and advanced functions, it also provides a simplified interface suitable for basic
programming. We will examine the unifying concepts that implement this basic
interface in the section on communicators below. One of the simplest ways
to use pyMPI is interactively, from the prompt. After starting up pyMPI in
the normal way for your system (mpirun, prun, poe, etc..) you get what
looks like the standard Python prompt (>>>). You are, however, running
multiple cooperating processes as in Figure 1. Note that the processes are
running asynchronously, so that the values printed from evaluating mpi.rank
can appear in any order.

The size and rank attributes of the mpi module indicate the number of
cooperating tasks and the unique identifier of the task respectively. When you

*DISCLAIMER: This document was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Gov-
ernment or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University
of California, and shall not be used for advertising or product endorsement purposes. This
work was performed under the auspices of the U. S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

% mpirun -np 3 pyMPI
>>> 3

3

3

3

>>> import mpi
>>> mpi.rank

0

2

1

>>>

Figure 1: Simple interactions with pyMPI

>>> print ’running on’,mpi.rank,’of’,mpi.size
running on 2 of 3

running on O of 3

running on 1 of 3

>>> fp = open(’fo00%02d.data’%mpi.rank)

>>> fp

<open file ’foo02.data’, mode ’r’ at 0x81d39a0>
<open file ’foo0l.data’, mode ’r’ at 0x81d5688>
<open file ’foo00.data’, mode ’r’ at 0x81d4e88>
>>>

Figure 2: SPMD in pyMPI

use the rank information, you can make the tasks perform different operations.
This is known as SPMD (Single Program, Multiple Data) style parallelism. In
Figure 1 we see how the tasks can open different data files.

2 Basic Broadcast and Barrier

To this point, the MPI tasks have not (overtly!) acted in a cooperative manner.
Parallel programming requires coordination of resources. The simplest way to
achieve this is through a barrier call that acts as a rendezvous. In Figure 2
we see how a barrier is used to make sure all tasks have finished work before
declaring the work “DONE.”

Work can be distributed among tasks using a broadcast scheme.

>>> 1lhs = mpi.bcast(rhs)

In pyMPI, the broadcast assures that the value of 1hs in all cooperating tasks
is the value that rhs had on the so-called root task. The root task is, by default,

IThe interactive input is coordinated with a broadcast and synchronizing operation

% cat barrier.py
import mpi
data = open(’foo0%02d.data’mpi.rank) .read()
print ’Work on’,mpi.rank
DATA = data.upper()
open(’£00%02d.DATA’ /mpi.rank, ’w’) .write (DATA)
mpi.barrier()
if mpi.rank == 0:
print ’DONE’
% mpirun -np 3 pyMPI barrier.py
Work on O
Work on 2
Work on 1
DONE
h

Figure 3: Using a barrier

the one with rank 0 though that can be overridden (e.g. mpi.bcast(rhs,3) would
set task 3 to be the root task). The value of rhs is ignored (and is optional) on
non-root tasks. Figure 2 illustrates this. The value of rhs can be any Python
type that is serializable (using the pickle module). This includes basic types,
tuples, lists, dictionaries, instances, and others.

Both mpi.barrier and mpi.bcast are synchronizing operations. Tasks will
block (wait) until every other task performs the operation.

3 Reductions

Bceast is used to send information out from one task to all others. The reverse
operation is a reduction which collects and processes data from many tasks.
MPT has the concept of reduce (collect to a single task) and allreduce (collect to
all processes). Like bcast, the reductions are synchronizing. Reductions require
a value to operate on and a function to apply. The single task reduce assumes
that the root (target) of a reduction is the rank 0 task if it is not provided as an
optional third argument. The non-root tasks receive the special Python value
None. MPI provides some built in operations (see Table 3) pyMPI also allows
user defined Python functions to be used.

With these rudimentary operations, we can begin to make more interesting
1
142

quarter unit circle in the upper right quadrant, so ﬁ has the same area as a
unit circle, i.e. 7). We can partition the space into a number of small rectangles
over which we sum the area.

Our strategy will be to have the master task (rank 0) broadcast the number
of rectangles to the other tasks. Each task will create a local sum of its areas.

programs. Consider a program to integrate fol ﬁ (Note that defines a

if mpi.rank ==
rhs = << some computation >

lhs
else:
1lhs

or

mpi.bcast (rhs)

mpi.bcast()

if mpi.rank = O:
rhs = << some computation >>

else:

rhs = None
lhs = mpi.bcast(rhs)

Figure 4: Two ways of using mpi.bcast

Table 1: Predefined reductions in (py)MPI

Name Operation Example

BAND Boolean AND y = mpi.reduce(x,mpi.BAND)

BOR Boolean OR y = mpi.reduce(x,mpi.BOR)

BXOR Boolean XOR y = mpi.reduce(x,mpi.LXOR)

LAND Logical AND y = mpi.reduce(x,mpi.LAND)

LOR Logical OR y = mpi.reduce(x,mpi.LOR)

LXOR Logical XOR y = mpi.reduce(x,mpi.LXOR)

MAX Maximum y = mpi.reduce(x,mpi. MAX)
MAXLOC | First maximum | y,rank = mpi.reduce(x,mpi. MAXLOC)
MIN Minimum y = mpi.reduce(x,mpi.MIN)
MINLOC | First minimum | y,rank = mpi.reduce(x,mpi. MINLOC)
PROD Product y = mpi.reduce(x,mpi.PROD)

SUM Sum y = mpi.reduce(x,mpi.SUM)

import mpi
import string
import sys

def f(x): return 4.0/(1.0+x*x)

if mpi.rank ==
n = string.atoi(sys.argv[1])
mpi.bcast(n)

else:
n = mpi.bcast()

h=1.0/n
local_sum = 0.0

for i in range(mpi.rank+l,n+1,mpi.size):
x = h*(i-0.5)
y = £(x)

local_sum +=y
global_sum = mpi.reduce(local_sum,mpi.SUM)

if mpi.rank ==
print ’PI is about’,h*global_sum

Figure 5: Computing 7 in parallel

Then all tasks will contribute their local sum to a global sum (which should
approximate).

We first write a small Python function that implements the function we are
trying to integrate:

def f(x): return 4.0/(1.0+x%*x)
We can have the master get the number of rectangles from the command line:
n = string.atoi(sys.argv[1])

where each rectangle will be h = % units wide. So the first rectangle’s base
runs from [0, h], the second from [h,2 - h], and so on up to the last rectangle
at [(n — 1)h,n - h]. If we choose to evaluate the function at the center of each
rectangle, we will be computing h - f(.5-h) + h- f(1.5-h) + ...+ or with a
bit of factoring h - >} f((i — .5) - h). We partition the rectangles so that the
rank 0 task gets i = 1,1+ p, 1+ 2p, ..., the rank 1 task gets 2,2+ p,2+ 2p,.. .,
etc. .. (where p is the number of tasks, or mpi.size).

In Figure 3 we bring all these components together to compute 7. We can do

Table 2: Send/Recv examples

TASK 0 TASK 3 Comments
mpi.send(msg,3) msg,status = mpi.recv() Any sender/tag
mpi.send(msg,3,tag=22) | msg,status = mpi.recv() Any sender/tag
mpi.send(msg,3,tag=22) | msg,status = mpi.recv(0) Any tag from task 0
mpi.send(msg,3,tag=22) | msg,status = mpi.recv(0,22) Only tag 22 from task 0
mpi.send(msg,3,tag=22) | msg,status = mpi.recv(tag=22) || Any tag 22 message

somewhat better if we, say, choose to iterate until the error drops to some specific
value. Consider Figure 3 in which the master starts with a small number of
rectangles (1) and keeps doubling the rectangle count until the computed value
stops changing by le-6 which happens about 512 rectangles. This version of the
program uses allreduce instead of reduce. This assures that the global_sum is
computed on each task. Reduce will return None on non-root tasks, so it can’t
be multiplied. Notice also that the tasks are synchronizing in each reduce, so a
barrier isn’t needed to make the printing deterministic.

4 Point-to-point communications

MPI provides explicit point-to-point messaging operations. Messages can be
blocking or non-blocking. The primitives are send, recv (receive), and sendrecv.
The simplest form of send specifies a value and a destination. It returns no
value.

mpi.send(msg,3)
On the receiving end, the receiver can specify:
msg, status = mpi.recv()

The status value is a structure holding the rank of the sending task and an
integer tag value which was defaulted to 0 in this example. You may choose
to specify the tag when you send. You can also choose to limit reception to
a particular sender or for messages with a particular tag. Table 4 shows some
examples of how Task 0 and Task 3 can choose to pass messages. In each case,
status.source will hold the sender’s rank id (here 0) and the tag (0 if it wasn’t
specified).

Care must be taken to prevent deadlock in sending and receiving messages.
Whether or not a particular message actually blocks is a function of the under-
lying MPI implementation and the size of the message. For instance, sending a
small loop back message (i.e. a message to oneself) may work if it is buffered
off:

>>> mpi.send("hi",0)
>>> msg,status = mpi.recv()

import mpi
import string
import sys

def f(x): return 4.0/(1.0+x*x)

def computePi(rectangles):
n = mpi.bcast(rectangles)

h=1.0/n
local_sum = 0.0

for i in range(mpi.rank+1,n+1,mpi.size):
x = h*(i-0.5)
y = £(x)
local_sum +=y

global_sum = mpi.allreduce(local_sum,mpi.SUM)
pi = h*global_sum

return pi
last_pi = 0
n=1
while 1:

if mpi.rank ==
print ’Try computing with’,n,’rectangles’
pi = computePi(n)
error = abs(last_pi - pi)
if mpi.rank ==
print ’Error is’,error
if error < le-6: break
last_pi = pi
n *x= 2

if mpi.rank ==
print ’Pi is’,pi

Figure 6: Error bounded m

>>> print msg
hi

If the string is sufficiently long, then the internal eager buffer will be too small
to hold it and pyMPI will block trying to finish the send.
Similarly, consider:

Task 0 ‘ Task 3

mpi.send('message 17,3) mpi.send('message 2’,0)

msg,status = mpi.recv(3) | msg,status = mpi.recv(0)
This may block trying to send messages to 3 or 0 since no receive is yet posted
for the associated message. Common techniques to fix this issue are to use the
MPT function sendrecv or to alternate the send/recv pattern.

Task 0 ‘ Task 3

msg,status = mpi.sendrecv(’message 1°,3) ‘ msg,status = mpi.sendrecv(’message 2’,0)
or

Task 0 ‘ Task 3

mpi.send('message 1’,3) msg,status = mpi.recv(0)

msg,status = mpi.recv(3) | mpi.send('message 2°,0)
Note that sendrecv allows the user to specify both the destination and
source in a call:

Send to n+l and receive from n-1
msg,status = mpi.sendrecv(’hi Mom’,destination=n-1,source=n+1)

5 Non-blocking send and recv

In some cases, a programmer may choose to post a receive well in advance of its
receipt (this gives the system a chance to preallocate buffers for instance). In
MPI, this is done with the MPI_Isend and MPI_Irecv calls. In pyMPI, these are
exposed as mpi.isend and mpi.irecv. These calls return a request object instead
of the normal None for send and message/status pair for recv. These request
objects are lazy in that they do not block until a message is actually requested.
Additionally, a programmer can test to see if a message has actually arrived
or wait which blocks until the message arrives. When a request object is used
in a boolean context (e.g. in an if-test), it returns 0 if the message has not
completed, and 1 if it does.

Suppose Task 0 has or will send a message to Task 3. Task 3 is expecting
messages from task 0 and task 1, so it posts early requests:

taskO_request = mpi.irecv(0)
taskl_request = mpi.irecv(1)

Now, Task 3 can test to see if a message has arrived and act accordingly.

if taskO_request:
do_zero(taskO_request.message)

if taskl_request:
do_one(taskl_request.message)

import mpi
import crypt

if mpi.rank ==

words = open(’/usr/dict/words’).read().split()
else:

words = []

local_words = mpi.scatter(words)

target = ’xxaGcwiAKoYgc’
for word in local_words:
if crypt.crypt(word,target[:2]) == target:
print ’the word is’,word
break

Figure 7: Cracking a password with scatter

The equivalent of MPI_Testany and MPI_Waitany are not wrapped in the cur-
rent version of pyMPI (1.2a7), but should be in the next release. In the mean-
time, the programmer can poll:

while not (taskO_request or taskl_request):
if taskO_request:
do_zero(taskO_request.message)
if taskl_request:
do_one(taskl_request.message)

Care must be taken when requests are destroyed (or go out of scope) before
a message is received/sent. Because an internal buffer has been given to MPI,
the objects cannot be destroyed until the operation completes or is canceled
(e.g. request.cancel()). Send operations cannot be portably canceled. If an
non-canceled or incomplete request object is destroyed, then pyMPI will block
until the operation completes.

6 Gather/Scatter

Another simple way to achieve parallelism is with gather/scatter parallelism. A
scatter operation will take a container, split it into equal (or nearly equal) parts
that are messaged to various slave tasks. A gather reverses that and collects
sub-containers together into one larger Python list.

We start with a simple example. Suppose we have a list of words we want
to use to try to crack a password. We can scatter the list across the tasks and
crack the password in parallel. Figure 6 shows one way to crack the password
that encodes as xxaGcwiAKoYgc. We have the master read in words from the

import mpi

if mpi.rank ==

words = open(’/usr/dict/words’).read().split()
else:

words = []
local_words = mpi.scatter(words)

target = ’xxaGcwiAKoYgc’
hits = []
for word in local_words:
for vowel in ’aeiou’:
if word.count(vowel) != 1: break
else:
hits.append(word)

all = mpi.gather(hits)
if mpi.rank ==
for word in all: print word

Figure 8: Search for words using aeiou exactly once

standard dictionary which are then scattered to all the tasks. Each word is tried
with the salt value of xx (the first two characters of the target are used in the
decryption). This program will print out “the word is snake.”

The gather operation reverses the scatter with each task providing a sublist
that is catenated into the full list. Gather is available as mpi.gather and
mpi.allgather where the former returns the result to the root task and the
later returns the value to all tasks. Consider searching the dictionary for words
with all five vowels exactly once. See Figure 6 for the code. We scatter the
dictionary words as in password cracking example. Here, however, each task
is likely to find some words that match the criteria. These are collected in
the variable, hits. After the search completes, the results are gathered back
to the master task which prints out the list which might include such words as
ambidextrous, aureomycin, bimolecular, businesswoman, cauliflower, colatitude,
communicable, communicate, and consanguine.

7 Basic console output control

pyMPI provides two mechanisms to control output to the console output devices
(stdout and stderr). The first is a convenience function that will print its output
in rank order. In the earlier examples, output is generated in unpredictable order
because the tasks are not synchronous. Examine Figure 7. In this example,
when the normal print is encountered, there is no predictable order that the

10

>>> print ’Rank’,mpi.rank,’x =’,mpi.rank*10
Rank 1 Rank 0 x = 10

x=0

Rank 3 x = 30 Rank 2

x =20

>>> mpi.synchronizedWrite (’Rank’ ,mpi.rank,’x =’,mpi.rank+*10,’\n’)
Rank 0 x = 0

Rank 1 x = 10

Rank 2 x = 20

Rank 3 x = 30

>>>

Figure 9: Using synchronizing write function

tasks will output results. Furthermore, there is no guarantee that the lines
will be atomically output on each task (hence the interspersed output). In the
second clause, the results are guaranteed to be output in rank order by task
0. The synchronizedWrite operation is synchronizing and blocking (hence the
name to alert the programmer that all tasks must call together). Each argument
to the function is converted to a string and joined, space separated. The user
is responsible for including a terminating newline if desired.

The second control that pyMPI provides allows the user to either queue or
discard input on slave tasks (task 0 always outputs to its console).

>>> mpi.synchronizeQueuedOutput(’/dev/null’)

This clause will cause output to be discarded except on task 0 (after the flushing
step explained below).

>>> mpi.synchronizeQueuedOutput (’foobar’)

This clause will cause output to be queued into the files ’foobar.out.1’ . .. foobar.out.size-
1;’ (again, after the flushing step explained below). This keeps the output
clutter low (important if running on hundreds or thousands of processors).

Using mpi.synchronizeQueuedOutput (None) will restore the original con-
sole output stream.

If output had already been queued to a local file (the ’foobar’ option above)
when synchronizeQueuedOutput is invoked, then any output that had been
stored in local files is sent to the master task and output. The temporary files
where data were queued are deleted and then the new mode takes effect.

This feature is commonly used to force non-task 0 output (or error stream
output) to files for postmortem viewing of errors. synchronizeQueuedOutput
takes an optional second argument for controlling the stderr stream. The op-
eration is synchronizing and so all tasks must call together. It is not, however,
necessary that all tasks use the same options. So, one could have the even tasks
output to the console and the odd tasks output to files with

11

>>> if mpi.rank % 2:
mpi.synchronizeQueuedOutput (’odd_file’)
. else:
mpi.synchronizeQueuedOutput (None)

>>>
8 Communicators

In MPI, communicators are handles (opaque labels) that refer to a collection of
cooperating MPI tasks. Typical MPI calls in C or FORTRAN pass the handle
to an MPI function to perform a task on or across that collection. In pyMPI, on
the other hand, communicators are objects which define attributes and methods
(actions). The most important communicator is the WORLD communicator
found at mpi.WORLD. Since many simple MPI programs use only the world
communicator, the methods of the WORLD communicator are exposed as if
they were functions. That is, mpi.send is really just mpi.WORLD.send. This
way simple programs can ignore the communicators. Note that WORLD is not
the same as MPI_.COMM_WORLD to keep Python operations from interfering
with MPI messaging in MPI parallel extension code. The COMM_WORLD (i.e.
mpi.COMM_WORLD) maps onto the standard world communicator.

Communicators have an integer representation that can be passed to C and
FORTRAN extensions and used as a MPI_Comm handle. For example, MPICH
defines MPI_.COMM_WORLD as the integer 91.

>>> print int(mpi.COMM_WORLD)
91
>>>

Communicators also act like container objects that hold the rank ids of all
the tasks. For instance, to send a point-to-point message from task 0 to all odd
tasks:

for rank in mpi.WORLD:
if rank % 2: mpi.send(msg,rank)

You can create sub-communicators using the comm_create method. For in-
stance, build a communicator of size 10 on the first 10 tasks of the world com-
municator:

first_ten = mpi.WORLD.comm_create(mpi.WORLD[:10])

Comm _create can be invoked with any sequence object that delivers integers.
For example

odd_tasks = mpi.WORLD.comm_create(range(l,mpi.size,2))

12

-- roundtrip --
1le+06 T T T T

PyMPI —+—
100000 -
10000 F
(8]
<]
&
1%}
c
S 1000 %
3] s
®©
@ K
9 +
100 F K\x*
—_
0l -
-
1 ' I I I I
0 200000 400000 600000 800000 1e+06 1240

Message Size

Figure 10: Ping-pong test in C MPI and pyMPI

Do note that creating communicators is a synchronizing operation, so all tasks
on a particular communicator must participate (regardless of whether or not
they will participate in the new communicator). The comm_create task returns
None on tasks where the new communicator is not active.

9 Efficiency

pyMPI messages are quite a bit more heavy weight than traditional C or FOR-
TRAN messages. Part of this overhead is due to the need for Python to serialized
(pickle) every message before sending it. This requires a heap allocation, a copy,
and additional processing. However, the pyMPI programmer never needs to ex-
plicitly define MPI types! Additionally, since pyMPI cannot preallocate buffers
(since the size of messages are not predetermined), it sometimes has to send
two messages. pyMPI uses a small initial message size intended to be within
the MPI eager limit so that small messages can go through without blocking.
For large messages, the pyMPI internal buffers are cut into two parts: one in-
side the eager limit which encodes the size of the message that follows and a
second carrying the rest of the message. As Figure 9 shows, pyMPI is about
two orders of magnitude slower in sending messages. This is, however, about
the same degree of slowness experienced in Python scripts in general.

13

10 Parting words

pyMPI is still under heavy development. The next generation will encode the
remaining MPI-1 functions that make sense to Python and some MPI-2 and
MPI-IO features as well. The latest release of the source code is available as

open source through

http://pympi.sourceforge.net

14

	UCRL-WEB-150152: UCRL-WEB-150152

