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Abstract. In many parallel processingapplications,task times have relatively
little variability. Accordingly, many nodeswill completea taskat approximately
thesametime. If theapplicationis run on an Ethernet,thenear-simultaneityof
the taskcompletiontimesimplies that whenthe tasksattemptto communicate
with somecentraltaskmanager, they will bumpinto eachother. This in turncan
causea majorslowdown in communication,astheEthernethardwaregenerates
unnecessarily long backoff times.The work herewill analyzea solutionto this
problem.
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1 Intr oduction

On anEthernet,1, if duringa transmissiononeor morenodesproduceframesto send
andtestthe line, they thenattemptto sendassoonasthecurrenttransmissionends.If
morethanonenodeis involved,thenodescollide,generatearandombackoff time,and
thentry sendingagain.

Now supposewehave a parallelprocessingapplicationrunningona homogeneous
set of workstationsconnectedby an Ethernet,and considertask rendezvous frames
senton it. For example,in a message-passingparadigm,we might have root-finding
program[2]. Here,a functionis known to have a singleroot in a giveninterval, which
the programfinds (to the desiredlevel of accuracy) in a parallel iterative procedure.2

In any giveniteration,thecurrentinterval to besearchedis dividedinto n subintervals,
wheren is the total numberof machines.Each“worker” nodeinspectsits assigned
subinterval, and then reportsto a “manager”nodewhetherthe given function hasa
sign changein that subinterval. Only one of thesesubintervals will experiencesuch
a change,and it will then becomethe new interval. The managerwill broadcastthe
valuesof theendpointsof thenew interval to theworkers,sothatthey candivideit into

1 The material here will also apply to other carrier sensemultiple access/collisiondetect
(CSMA/CD) localareanetworks,but for simplicity weconcentratehereon Ethernets.

2 Weassumeherethattheevaluationof thefunctionis lengthyenoughto makeaparallelsearch
worthwhile.For instance,thefunctionmayitself beevaluatedthrougha time-consumingnu-
mericalsolutionof adifferentialequation.



new subintervals,andsoon.Undera sharedmemoryparadigm(in thiscasedistributed
sharedmemory),barrieroperationswouldproducea similarpattern.

A problemwhich ariseshere is that in many applicationstask times (including
communicationdelays)have smalldegreesof variability [1]. For instance,in theroot-
finding exampleabove, thefunction-evaluationtimesshouldbefairly uniform.As an-
otherexample,the meanrun time for a Heapsortof r items is O(r log r), while the
standarddeviation is only O(

� �
) [5]; the larger theproblem,thesmallerthestandard

deviation is relative to themean.
In applicationsin which thetasksat severalnodesfinish approximatelysimultane-

ously, thetaskrendezvousoperationswill causecollisionsontheEthernet.Therandom
backoffs which resultwill thenslow down the application.In this context the random
backoffs producedby the Ethernethardwarearetypically muchlongerthanneedbe.
In [4], an approachto solving this problemwasproposed,calledprogrammedback-
off. Supposen nodesarecurrentlyprocessingtasks,with thetaskatnodek completing
at time ��� . At that time, the softwarerunningat nodek will produceits own back-
off, delaying ��� time beforesendingits rendezvousframeto the managernode.The
goalis thatby having thesoftwareproducea small,deterministicbackoff wecanavoid
unnecessarilylongbackoff timesproducedby theEthernethardware.

Undertheprogrammedbackoff procedure,collisionsarestill possible.At thatpoint,
theEthernethardwarewill takeoveranyway. But hopefullythiswill bearelatively rare
event.

In the work here,we presentsometheoreticalmodelsof the effectivenessof pro-
grammedbackoff. We areparticularlyinterestedin theeffectsof varyingtheinternode
backoff spacing� , for differenttaskdistributions.

2 Investigation

2.1 Analytical

Let f denotethe probability densityfunction of each ��� . As our first measureof the
effectivenessof programmedbackoff, let us determinethe expectednumberof first-
roundcollisions.To this end,let 	�

� equal1 if nodei andj collide in thefirst round,0
otherwise.Thenthetotal numberof first-roundcollisionsis

������ 
 ������
 	 

�
Let � denotethe time to transmita taskrendezvousframe.This typically will be

muchsmallerthantasktimes,sincetheframewill usuallycontainvery little data(such
asa 0-1 variablein theroot-findingexample,indicatingwhetherthis node’s subinter-
val producesa sign changefor the function).Let ��� denotethe actualtime at which
transmissionbeginsfor nodek, i.e.

� � � � ��� ���
andassumethe ��� (equivalently, the ��� ) to beindependent.Then
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Equation(1) suggeststhatE(N) is I �<JLK= in magnitude.Thissuggeststhatthebene-
fits of programmedbackoff grow rapidlywith thesystemsizen, speculationwhichwill
beconfirmedbelow.

Wecangeta lowerboundon thequantityin (2) asfollows.
Lemma:SupposeX andY arecontinuous3 independentrandomvariableswith the

samevarianceM K andwith EY = EX + d. Then

& �)( N *PO ($QSR� UTWV�M K � F�KR K (3)

Proof: FirstdefineZ to beX - (Y - d),andthuswrite
��X@�YN *ZO  KE[ as

�\X]��^ * F_ K3[ .
Thenthelatterquantitywill beequalto VHM K � F_K , sinceZ will havemean0 andvarianceV�M K . Thenletting g denotethedensityof X-Y, wehave

V�M K � F K �.��X@�`N *PO  KE[�a - 0 b�0 ��c�d Kfe � d  EF d a R K & �)( N *AO ($QSR� hg
yieldingtheresult.
Now takingX andY to be � 
 and � � , respectively, wehave that

& �)( ��
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where j K is thevarianceassociatedwith thedensityf.

2.2 Simulation

At thispointweturnto simulation.Takingasourcriteriontheexpectedtime l until all n
nodeshavesuccessfullytransmittedamessage,our interestwill centeronthefollowing
questions:

– How muchof an improvementcanprogrammedbackoff bring over simply letting
theEthernethardwaremanagetransmission?

– With all otherfactorsfixed,how doestheoptimalvalueof � vary with thesystem
sizen?

3 Actually, thisconditionis couldbedropped.



– Let c beascaleparameterfor a family of densityfunctionsfor thetasktimes.That
is 9��C?) "� 	mLn X m �@? *po  [
for somefunctionh andsomeconstantq. As c increases,we getdensitieswhich
have similar shapesbut aremoredisperse,and j will beproportionalto c.
It is of interestto investigatehow theoptimalvalueof � variesasc increases.

In thesimulationsthetasktimedistributionwasfirst takento betheuniformdensity
U(1-c,1+c).Thuswehave afamily of distributionscenteredaroundameanof 1.0,with
c playingtheroleof a scaleparameterasdescribedabove.

Frametransmissiontime, � , wasassumedto beconsiderablysmallerthan1.0, the
meantasktime. Specifically, in all the simulationspresentedhere, � wastakento be
0.1.This is a practicalassumption,sinceotherwisethecommunicationoverhead(even
without collisions)would be too high for effective speedupdue to parallelism.Note
alsothatin many applicationsof thetypewehave discussedhere,thetaskrendezvous
messageis very short.For example,in the root-findingapplicationcited earlier, the
messageinformationconsistsmerelyof 1 or 0, indicatedwhetheror not a signchange
wasfound in the node’s assignedsubinterval. (However, the minimum length of an
Ethernetframeis 64 bytes[6].) Ethernethardwarebackoff wasmodeledaccordingto
theusualbinaryexponentialscheme[6].

Intuitively thequantity(2) will typically beadecreasingfunctionof � . On theother
hand,as � increaseswe areaddingmoredelay“at thefront end,” addinganincreasing
componentto l . Thuswemightexpectthatthegraphof l asa functionof � is roughly
U-shaped,andthiswill beseento bethecase.

We begin with a simulationfor a small valueof c, 0.1, presentedin Figure1 for
systemsizes32, 64 and128.Herewe have the near-simulataneityin tasktime com-
pletionwhich formedthe fundamentalmotivationfor our work, so it is not surprising
that programmedbackoff is shown to be capableof strongspeedupsin the task ren-
dezvousprocess,of sizes292%,439%and619%respectively. Notetoo that thelarger
thesystem,thegreaterthebenefitobtainablefrom programmedbackoff.

Theoptimalvalueof � is seento be relatively constantasa functionof n (though
showingaslightdecreasingtrend).Thenear-constancy makessomesensewhenviewed
in thefollowing context: If thetasktimeswerecompletelyconstant,theoptimalvalue
of � would be � ; this valuewould result in a scheduleunderwhich the (i+1)st node
startedtransmittingimmediatelyafterth i-th.

This reasoningwould not applyto thecasec = 0.8,shown in Figure2. Herethere
is muchmorevariationin task times,andaccordinglythe speedupsin this case,are
somewhatmoremoderate:158%,324%and507%.Yet it is interestingto find that the
optimalvaluesof � aresimilar to thosein thepreviouscase.

As notedabove, if thetasktimeswerecompletelyconstant,theoptimalvalueof �
wouldbe � . Thuswewould expecttheoptimal � to bejust slightly morethan � in set-
tingswith nearly-constanttasktimes.Preliminarysimulationsconductedby theauthor
for valuesof � smallerthan0.1(notincludedhere)seemto confirmthis.Moreover, typ-
ically theusercanfind thevalueof � a priori , sinceit is a known functionof Ethernet
parametersandtheuser’s messagelength.



However, evenwith c = 0.8thetask-timedistributionhasafairly smallstandardde-
viation,sonext weturnedto thefamily of exponentialdistributions,with theparameter
c beingthemeanof thedistribution.4 Figures3 and4 correspondto c = 0.1andc = 0.8,
respectively. The resultsaresimilar to thoseof Figures1 and2. However, the results
for c = 10.0,shown in Figure5, arequitedifferent.Heretasktimeshave enoughvari-
ationthatprogrammedbackoff simply producessuperfluousdelayover whatis needed
to avoid backoffs producedby theEthernetcards.

3 Discussionand Conclusions

Wehave constructedatheoreticalmodelof theeffectsof smallvariability in tasktimes
in parallelprocessingon Ethernets.The modelsuggeststhat overall taskrendezvous
time will be on the order I �<JLK= , and we have derived a lower boundbasedon the
standarddeviationof thetasktimes.

As a potentialsolutionto this problem,we have found that programmedbackoff
canproducevery largespeedupsin casesin whichthetasktimedistributionhasasmall
standarddeviation.In addition,theoptimalvalueof � in suchcasesappearsto berather
insensitiveto typeof distribution,andappearsto betypically about10-20%largerthan
thetransmissiontime for a task-rendezvousmessage.

A numberof otherapproachesto the Ethernetbackoff problemmay be effective.
A tree-basedbarrier[7, p. 247] imposesa partial orderingamongthenodesregarding
thesequencein which they sendbarriermessages,thuspreventingmostcollisions.It
hasrecentlycometo the author’s attentionthat the GenoaActive MessageMachine
(GAMMA) [3] hasnow takenthis ideaastepfurther, imposinga linearorderingamong
the nodes.Note,howeer, that thesemethodsareeasiestto implementin applications
in which thereis only onesetof nodeswhich will be involvedin barriers,andthatset
is fixed throughoutthe program.It may not be possibleto implementsuch“ordered
barrieraccesssequence”methodsin full generality.
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