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1 The Importance of Err or Detection

A transmittedbit canbe received in error, dueto “noise” on the transmissionchannel. If we aredealing
with voiceor videodata,theoccurrenceof errorsin asmallpercentageof bits is quitetolerable,but in many
othercasesit is crucialthatall bitsbereceivedintact. If for examplewe aredownloadingabinaryprogram
file, theprogrammaybeunexecutableif evenonebit is incorrect.If thedestinationor sourceaddressof a
packethasonebit wrong,communicationis impossible.

Therearemany methodswhichhavebeendevelopedto detecterrors,appliedatdifferentlevelsof theseven-
layermodel.Of course,nomethodcandetectall errors,but anumberof methodsin usetodayareamazingly
effective. Theonewewill discusshereis thefamousCRCcodingform.

2 The CRC Err or-Detection Method

TheCyclic Redundancy Checking(CRC)appendsa few (typically 16or 32)bits to theendof thebit string
for a messageandsendsout the extendedstring. Thereceiver thenperformsa computationwhich would
yield 0 if nobitsof themessagehadbeenin error;if theresultis not0, thenthereceiverknowsthattherehas
beenanerrorin oneor morebits. (But if theresultis 0, thisdoesnot necesarilymeantherewasnoerror.)

CRC cannotdetectall possibleerrors,but the rangeof errorswhich it can detectis impressively broad.
As networkstextbook authorsLarry PetersonandBruceDavie have pointedout, it is quite remarkable,
for instance,thata mere32 bits of CRCaresufficient to provide adequateprotectionagainsterrorsin the
12,000-bitmessageswhichEthernetcansend.

1



3 HOW CRCWORKS

3 How CRC Works

Let M bethemessagewe wish to send,m bits long. Let C bea divisor string,c bits long. C will befixed
(sayhardwiredinto aserialI/O chip),while M (andm) will vary. Wemusthave that:

���������
	 .
������	 .
� Thefirst andlastbits in C are1s.

OurCRCfield will consistof a stringR, c-1bits long. Hereis how to generateR, andsendthemessage:

1. Appendc-1 0s to the right endof M. Theseareplaceholdersfor wherethe CRC will go. Call this
extendedstringM’.

2. DivideM’ by C, usingmod-2arithmetic.Note carefully: This is mod-2, not base-2. These quantities
are NOT numbers in the usual sense.

Call theremainderR. Sincewearedividing by ac-bit quantity, R will bec-1bits long.

3. Replacethec-1 appended0sin M’ by R. Call thisnew stringW.

4. SendW to thereceiver.

For example,sayC = 1011andM = 1001101.Thenwedivideasfollows:

1011
1010011


1001101000
1011

1010
1011

1100
1011
1110
1011
101

We first divide1011into 1001(seeabove),with a quotientof 1. Yes,that’s right! As long asthedividend
hasat leastasmany digits asthedivisor–bothhave 4 digits here–thenthedivisordoesindeed“go into” the
dividendwith a quotientof at least1. If they have the samenumberof digits,1 thequotientis 1, which is
placedasthefirst digit in theoverall quotientabove thedivision sign. Our remainderis 0010(remember,
ourarithmetichereis mod2, bitwise,i.e. exclusive-OR),whichwewrite as10.

1Thenumberof digits is countedbeginningwith thefirst 1 digit, sofor example0011is consideredonly a 2-digit quantity, not
a4-digit one.
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4 WHY IT WORKS

Next weextendthat10by bringingdown thenext digit in thedividend,a1, forming101,thatis 0101.1011
goesinto 01010 times,soweplacethis0 asthenext digit in theoverallquotientabove,andbringdown the
next digit of thedividend,a 0, making1010.Now 1011goesinto 10101 time,andsoon.

Thefinal remainderis 101,whichreplacesthe000thatwehadappendedto M to makeM’ (step3), andthe
transmitternow sendsthestring1001101101.

(You shouldcheckthat one can “multiply” back to get the original result, i.e. 1011*1010011+ 101 =
1001101000.Remember, though,thatthemultiplicationandadditionaredoneon a mod-2basis,i.e. XOR
with nocarries.)

Thereceiver thenreceivesa stringY, which is hopefullythesameasW but might not be,dueto line noise.
The receiver dividesY by C; if the remainderis nonzero,the receiver decidesY hadoneor morebits in
error, while if theremainderis zero,thereceiver acceptsY ascorrect(thoughit still mightnot be).

4 Why It Works

Notethatthereplaceoperationin step3 above is equivalentto performing

� ���������
(1)

Moreover, becauseweareusingmod2 arithmetic,thatoperationis alsoequivalentto

� ��� � � � (2)

If onedivides,say, 63 by 5, thenonegetsa remainderof 3. Thatmeansthat if we subtractthatremainder
of 3 from thedividend63, theresult60will beevenlydivisibleby 5. Similarly, sinceR wasour remainder
from M’/C, M’-R is exactly divisibleby C. So,W is divisibleby C.

Let E denotetheerror vector, asymbolicwayto describewhichbits in W getcorruptedontheirwayto the
receiver. If for instancethei-th bit of E is a 1, this meansthat therewasanerror in thei-th bit of W. Then
thereceiver will receive Y = W + E, againkeepingin mind thatthis is mod-2,bitwiseaddition.

We hopeE consistsof all 0s,of course,but it mightnot. Thereceiver will divideY by C; sinceW is evenly
divisible by C, thenY will be too if E = 0. So, if thereceiver findsthatY/C hasa nonzeroremainder, the
receiver canbesurethattherewasanerror.

In otherwords, the CRC will detectall error patternsexcept thosefor which E is evenly divisible by C.
Cleverpeoplehave foundgoodstringsC for whicharemarkablysmallproportionof Esareevenlydivisible
by C. TheseCshave beenpublicizedandarein commonuse.

Note thatE is anm+(c-1)bit quantity, soit includesthebits correspondingto theR portionof W. So,the
systemhereis evencapableof detectingsomeerrorsin theCRCfield itself!
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5 WHAT KINDS OFERRORSWILL CRCDETECT?

By theway, whenwedivideM’, which is m+c-1bits long,by C, whichis c-1bits long,gettingaquotientQ
anda remainderR, thenQ will be(m+c-1)- c + 1 = m bits long.

5 What Kinds of Err ors Will CRC Detect?

5.1 Foundational Material

5.1.1 Notation

In CRCanalysis,it helpsto representbit stringsaspolynomials.Weusethebitsascoefficientsfor (fictitious)
powersof x. For instance,ourC above,1011,wouldbedenotedby

	������ ��� ���! � 	"���$# � 	�����%"&��'� � � � 	 (3)

Theword“denoted”hereis key; thepolynomialis justnotation,andthereis nophysicalvariablex. But this
notationturnsout to beanextremelypowerful tool for analyzingCRC.We will useC(x), E(x) andsoon to
referto thepolynomialversionsof thebit stringsC, E etc.

Thequestionat handis which typesof E stringsaredetectableby which C strings.Remember, we decide
whatstring to usefor C, saywhenwe designa serialI/O chip or Ethernetinterfacecard. So,we want to
chooseC in sucha way that the overwhelmingmajority of E stringsaredetectable,i.e. yield a nonzero
resultwhendividedby C.

RecallthatC has1sasits first andlastbits, �)(�* . Thatmeansthatthecorrespondingpolynomial,C(x), has�,+.- # asits leadingterm,and1 asits lastterm. This is illustratedin Equation(3) in thecaseof C = 1011,c
= 4.

5.1.2 The Prime Factorization Theorem

Below areexamplesof themany propertiesCRCtheoristshave proved. Beforepresentingthoseproofs,it
would beusefulto review somebasicfactsaboutprimefactorization.Let’s abandontheoddarithmeticin
CRCfor amoment,andconsiderordinaryintegersu, v andw, wherew = uv.

As youknow, eachintegerhasaprimefactorization,e.g. 	�* � &�*0/1*2/1*3/540/16 . Thus,eachof u , v and
w hasa primefactorization,say 7 &98�: # 8�:  <;=;=; 8�:�> , ? &98�@ # 8�@  <;A;=; 8�@CBED and F &
8'G # 8�G  <;=;=; 8�G!H . But sincew =
uv, we know thata moredetailedrepresentationof theprimefactorizationof w is 8�: #�;A;=; 8�:�>I8�@ #�;=;A; 8�@CB . Each
of the 8 :�J and8 @IK is appearssomewhereamong8 G # 8 G  ;=;=; 8 G,H . In otherwords:

Prime Factorization Theorem

If w = uv, thenany primefactorof w mustbea primefactorof eitheru or v.
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5.1 FoundationalMaterial

This simplefact will beusefulin our proofsbelow, even thoughtheentitieswe areworking with arenow
polynomialsratherthanintegers.

Our proofsbelow will beby contradiction.We aretrying to show thatC(x) doesnot divide E(x), but will
supposethatit does,andrun into a contradiction.

5.1.3 SomeExampleCategoriesof DetectableEs

Hereis a samplingof whatcanbeproved:

� Any single-bit error will bedetected.

To seethis, note that for suchan error pattern,E will consistof all 0s except for a single1 bit in
somepositionwithin thestring. So,E(x) will be �,L for somek. Note that this is alreadyin prime-
factorizationform, x beingtheprimefactor(i.e. it cannotbebrokendown furtherinto otherfactors),
repeatedk times.

First considerthecasein which k > 0. SupposeC(x) wereto evenly divide �,L , i.e. �!LM&ONQPR� 
TS PR� 

for somepolynomialD(x). That would imply that C(x) andD(x) both factor into powersof x too,
from thePrimeFactorizationTheorem.Yet x couldnot bea factorof C(x) dueto thepresenceof the
constantterm1 in C(x). (RecallthatC(x) is requiredto have theform � +.- # � ;=;=; � 	 )
In thecasek = 0, i.e. E(x) = 1, thenthefactthatC(x) hasat leastoneothertermthan1 (namely� +.- # )
meansC(x) couldnot divideE(x).

So,thisE(x) is guaranteednotto beevenlydivisibleby C(x), andthusasingle-biterrorwill becaught
by theCRC.

� Any burst error, i.e. a setof consecutivebit errors, of length at mostc-1 will bedetected.

For instace,in our worked-outexampleabove in which W = 1001101101,if E is, say0000111000,
with consecutiveerrorsin thefifth, sixth andseventhbits of W, thensucha patternof errorswill be
detected.

To prove this, let w denotethelengthof W, which is alsothelengthof E.Saythemostsignificant1 in
E is in bit positionj, wheretheleastsignificantpositionis calledposition0 andthemostsignificant
positionis numberedw-1. Denotethelengthof theburstby b. ThenE(x) will have theform

� K � � K - # � � K -  � ;=;=; � �
K -'URV # (4)

whichcanbefactoredas

� K -,URV # PR� U.- # � ;=;=; � 	



(5)

SupposeC(x) wereto evenlydivide thisE(x), i.e. E(x) = C(x) D(x) for somepolynomialD(x). Note
againthateachx factorin �

K -,URV # is prime,andasin ourpreviousdiscussionx is NOT aprimefactor
of C(x). So,all of C(x)’sprimefactorswouldhave to beamongtheprimefactorsof � U.- # � ;=;=; � 	 . In
otherwords,C(x) wouldhave to evenlydivide � U.- # � ;=;=; � 	 Yet thatis impossible,sinceb wasgiven
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6 DIGITAL IMPLEMENTATION

to beat mostc-1 andthus � U.- # � ;=;=; � 	 hasdegreelessthanthatof C(x) (theformerhasdegreeb-1,
thelatterdegreec-1).

SoweseeC(x) cannotevenlydivideE(x), andourclaim is proved.

This propertyof catchingburst errorsis quite important,as it is often the casethat line noisewill
indeedoccurin bursts.

� As long aswe chooseC(x) to be a multiple of x+1, then any E having an odd number of 1swill
bedetected.

First notethatW(1) is equalto thenumberof 1sin W, andwhenevaluatedmod-2,we seethatW(1)
will beeither1 or 0, dependingon whetherW(x) hasanoddor evennumberof 1s.. Let’s seewhat
thisnumberwill beif C(x) is amultiple of x+1. In thatsituationW(x) will alsobea multipleof x+1,
i.e. W(x) = (x+1)z(x) for somez(x). Since1+1=0,that impliesthatW(1) = (1+1) z(1) = 0. In other
words,if C(x) is divisible by x+1, thenW(x) is guaranteedto have anevennumberof 1s,soany E
with anoddnumberof 1swill bedetected.

� If C(x) is chosento bea “primitive polynomial,” then all 2-bit errors will be detectedaslong asW XZY,[]\_^a`Ob .

A polynomialof degreed is saidto beprimitive if it hasthepropertythat it doesnot divide �,L � 	
for any cQd *�e���	 .
SupposeourC(x) is primitive,sothatC(x) doesnot divide �!L � 	 for any cfd * +.- # ��	 . SupposeE
has2 errors.Then g PR� 
 &�� > PI	 � � B 
 for somer ands,whereh Dji d � � ���
	 .
If E werenondetectable,i.e. if E(x) wereevenlydivisibleby C(x), thatwould meanthatC(x) would
divide 	 � �

B
(we discoveredearlierthatno C(x) candivide �

>
). But this couldn’t happenaslong asi d *�+.- # �
	 . Sinces is lessthanm+c-1,thatmeanswe canassurethatthis kind of E(x) will not be

divisibleby C(x) by makingsurethat � � ����	 d * +.- # ��	 , i.e. by keepingour messagelengthm
smallerthan * +.- # �k� .
ThefamousCRC-16polynomialis PR� � 	 
 PR� #ml � � � 	 
 , wherethelatterfactoris primitive.

6 Digital Implementation

As youcansee,theCRCalgorithmscouldeasilybeencodedin software,but thatmaybetooslow. It would
bemuchfasterif implementedin digital logic hardware,andit turnsout thatthiscanbedonequitesimply.

As before,letc denotethenumberof bitsin thedivisorpolynomialC(x),sothatthedegreeof thepolynomial
is c-1. Thenwe setup a left-to-rightshift registerwhich storesc-1 bits,which we will denote,from left to
right, n % D n # D ;=;=; D n +.-  �; . As with any shift register, at eachclock impulse n J is replacedby thevaluewhich
hadbeenin n J - # , wherewearecalling theleft input “ n - # .”
However, our shift registerwill differ from anordinaryonein thatat eachclock pulsethevaluewhich had
beenin n +.- # will berecycled andXOR-edwith someof theother n J . Specifically, if thereis a term � K in
thedivisorpolynomialC(x), thenthereis anXOR just to theleft of n J .

CRC:6



6 DIGITAL IMPLEMENTATION

ThemessageM, with c-1 0sappendedasbefore,is fed into theinput to theshift register, onebit perclock
cycle, startingwith M’s mostsignificant(i.e. leftmost)bit. After m+c-1 clock cycles, the shift register
containstheremainder(i.e. theCRCfield), in reverseorder.

Ourfigurehereshowsthesetupfor thecaseNQPR� 
 &�� � � � � 	 , i.e. C = 1011,from ourexampleabove.

message

S1S0 S2

Thetablehereshowsa pulse-by-pulseaccountof whatwill occurwith theinput M = 1001101(with three
0sappended):

clk input S0 S1 S2

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 1 0 0 1
4 1 0 1 0
5 0 1 0 1
6 1 1 0 0
7 0 1 1 0
8 0 0 1 1
9 0 1 1 0

end 1 0 1

For example,at theendof clock period3, theregistercontains(0,0,1),with an input of 1 comingin, say,
nearthe endof the clock period,taking effect in the next period. Thenthe clock pulsestartingperiod4
comes.Whathappens?

� Thenew n % will betheXOR of 1 (from theold n  ) and1 (from theinput shown in row 3), which is
0. Thusthenew n % will be0.

� Thenew n # will betheXOR of 1 (from theold n  ) and0 (from theold n # ), i.e. 1.

� Thenew n  will beequalto theold n # , i.e. 0

So,thenew registerstatewill be(0,1,0),seenin row 4.
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6 DIGITAL IMPLEMENTATION

TheCRCfield is calculatedto be101.

Thiswouldoccurat thetransmitterend,andasimilar setupfor theCRCcheckwill beat thereceiver end.
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