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1 ThelImportance of Err or Detection

A transmittedbit canbe recevedin error, dueto “noise” on the transmissiorchannel. If we aredealing
with voiceor videodata,theoccurrencef errorsin asmallpercentagef bitsis quitetolerable butin mary
othercasest is crucialthatall bits berecevedintact. If for examplewe aredownloadingabinary program
file, the programmay be unexecutabldf evenonebit is incorrect. If the destinatioror sourceaddresof a
packethasonebit wrong,communicatiorns impossible.

Therearemary methodsvhich have beendevelopedo detecterrors,appliedatdifferentlevelsof theseven-
layermodel.Of coursenomethodcandetectall errors butanumberof methodsn usetodayareamazingly
effective. Theonewe will discusshereis thefamousCRC codingform.

2 The CRC Err or-Detedion Method

The Cyclic Redundang Checking(CRC)appends few (typically 16 or 32) bits to the endof the bit string
for a messag@andsendsout the extendedstring. The recever then performsa computatiorwhich would
yield 0 if nobitsof themessagdadbeenin error;if theresultis not0, thenthereceverknowsthattherehas
beenanerrorin oneor morebits. (But if theresultis 0, this doesnot necesarilyneantherewasno error)

CRC cannotdetectall possibleerrors,but the rangeof errorswhich it can detectis impressvely broad.

As networkstextbook authorsLarry Petersorand Bruce Davie have pointedout, it is quite remarkable,
for instancethata mere32 bits of CRC are sufficient to provide adequatgrotectionagainsterrorsin the

12,000-bitmessagewhich Ethernettansend.



3 HOW CRCWORKS

3 How CRC Works

Let M bethe messageve wish to send,m bits long. Let C be a divisor string, ¢ bits long. C will befixed
(sayhardwiredinto aseriall/O chip),while M (andm) will vary. We musthave that:

e m>c—1.
e c> 1.

e Thefirstandlastbitsin C arels.
Our CRCfield will consistof astringR, c-1bitslong. Hereis how to generatedr, andsendthe message:

1. Appendc-1 Osto theright endof M. Theseareplaceholdergor wherethe CRC will go. Call this
extendedstringM’.

2. Divide M’ by C, usingmod-2arithmetic.Note carefully: Thisis mod-2, not base-2. These quantities
are NOT numbersin the usual sense.

CalltheremaindeR. Sincewe aredividing by a c-bit quantity R will bec-1bitslong.
3. Replacehec-1appendedsin M’ by R. Call this new stringW.

4. SendW to therecever.

For example,sayC = 1011andM = 1001101.Thenwe divide asfollows:

1010011
1011)1001101000
1011
1010
1011
~ 1100
1011
- 1110
1011
101

We first divide 1011into 1001 (seeabove), with a quotientof 1. Yes,that'sright! As longasthedividend
hasatleastasmary digits asthe divisor—bothhave 4 digits here—therthedivisor doesindeed'go into” the
dividendwith a quotientof atleastl. If they have the samenumberof digits,! the quotientis 1, which is
placedasthefirst digit in the overall quotientabore the division sign. Our remaindeiis 0010(remember
our arithmetichereis mod2, bitwise,i.e. exclusive-OR),whichwe write as10.

Thenumberof digitsis countedbeginningwith thefirst 1 digit, sofor example0011is considerednly a 2-digit quantity not
a4-digitone.
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Next we extendthat10 by bringingdown the next digit in thedividend,a 1, forming 101,thatis 0101.1011
goesinto 01010 times,sowe placethis 0 asthe next digit in the overall quotientabose, andbring down the
next digit of thedividend,a 0, making1010.Now 1011goesinto 10101 time,andsoon.

Thefinal remaindeiis 101,whichreplaceshe 000thatwe hadappendedo M to makeM’ (step3), andthe
transmittemow sendghe string1001101101.

(You shouldcheckthat one can“multiply” backto getthe original result,i.e. 1011*1010011+ 101 =
1001101000Rememberthough,thatthe multiplicationandadditionaredoneon amod-2basis,i.e. XOR
with no carries.)

ThereceverthenrecevesastringY, whichis hopefullythe sameasW but might not be,dueto line noise.
Therecever dividesY by C; if the remaindelis nonzero the recever decidesY hadoneor morebits in
error, while if theremaindeiis zero,therecever acceptsy ascorrect(thoughit still mightnotbe).

4 Why It Works

Notethatthereplaceoperationin step3 above is equivalentto performing

W e M +R (1)

Moreover, becausave areusingmod 2 arithmetic thatoperationis alsoequivalentto

W M -R )

If onedivides,say 63 by 5, thenonegetsaremainderof 3. Thatmeanghatif we subtractthatremainder
of 3 from thedividend63, theresult60will beevenly divisible by 5. Similarly, sinceR wasour remainder
from M'/C, M'-R is exactly divisible by C. So,W is divisibleby C.

Let E denotetheerror vector, asymbolicwayto describevhichbitsin W getcorruptedontheirwayto the
recever. If for instancehei-th bit of E is a 1, this meanghattherewasanerrorin thei-th bit of W. Then
thereceverwill receve Y =W + E, againkeepingin mind thatthisis mod-2,bitwise addition.

We hopekE consistof all 0s,of course but it mightnot. Thereceverwill divideY by C; sinceW is evenly
divisible by C, thenY will betooif E = 0. So,if therecever findsthat Y/C hasa nonzeroremainderthe
recever canbe surethattherewasanerror.

In otherwords,the CRC will detectall error patternsexceptthosefor which E is evenly divisible by C.
Clever peoplehave foundgoodstringsC for whicharemarkablysmallproportionof Esareevenly divisible
by C. TheseCshave beenpublicizedandarein commonuse.

NotethatE is an m+(c-1) bit quantity soit includesthe bits correspondingo the R portion of W. So,the
systemhereis evencapableof detectingsomeerrorsin the CRCfield itself!
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5 WHAT KINDS OF ERRORSWILL CRCDETECT?

By theway, whenwe divide M’, whichis m+c-1bitslong, by C, whichis c-1bitslong, gettingaquotientQ
andaremaindeR, thenQ will be(m+c-1)- ¢+ 1 =m bitslong.

5 What Kinds of Err ors Will CRC Detect?

5.1 Foundational Material
5.1.1 Notation

In CRCanalysisijt helpsto represenbit stringsaspolynomials.We usethebitsascoeficientsfor (fictitious)
powersof x. For instancepur C abore, 1011,would bedenotedoy

1-2240-22+1-2'+1-2°=234+2+1 (3)

Theword“denoted’hereis key; the polynomialis justnotation,andthereis no physicalvariablex. But this
notationturnsout to beanextremelypowerful tool for analyzingCRC.We will useC(x), E(x) andsoonto
referto the polynomialversionsof thebit stringsC, E etc.

The questionat handis which typesof E stringsaredetectabléy which C strings. Remembermwe decide
whatstring to usefor C, saywhenwe designa seriall/O chip or Ethernetinterfacecard. So, we wantto

chooseC in sucha way that the overwhelmingmajority of E stringsare detectablej.e. yield a honzero
resultwhendividedby C.

RecallthatC haslsasits first andlastbits, ¢ > 2. Thatmeanghatthecorrespondingolynomial,C(x), has
z°~! asits leadingterm,and1 asits lastterm. This is illustratedin Equation(3) in the caseof C = 1011,c
=4,

5.1.2 The Prime Factorization Theorem

Below areexamplesof the mary propertiesSCRC theoristshave proved. Beforepresentinghoseproofs, it
would be usefulto review somebasicfactsaboutprimefactorization.Let’'s abandorthe odd arithmeticin
CRCfor amomentandconsiderrdinaryintegersu, v andw, wherew = uv.

As you know, eachintegerhasa primefactorizationge.g.120 = 2 x 2 x 2 x 3 x 5. Thus,eachof u, v and
w hasa primefactorizationsayu = p,1pu2---Purs» ¥ = Pu1Pu2---Pus, @NAWw = p1Pua...pur. But sincew =
uv, we know thata moredetailedrepresentationf the prime factorizationof W is py1...purpu1 ---Pus- EAch
of thep,,; andp,; is appearsomeavhereamongp,,i py2...pwt. 1N otherwords:

Prime Factorization Theorem

If w = uv, thenary primefactorof w mustbea primefactorof eitheru or v.
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This simplefactwill be usefulin our proofsbelow, eventhoughthe entitieswe areworking with arenow
polynomialsratherthanintegers.

Our proofsbelov will be by contradiction.We aretrying to shav that C(x) doesnot divide E(x), but will
supposehatit does,andruninto a contradiction.

5.1.3 SomeExample Categoriesof DetectableEs

Hereis a samplingof whatcanbe proved:

e Any single-biterror will be detected.

To seethis, notethat for suchan error pattern,E will consistof all Os exceptfor a single1 bit in
somepositionwithin the string. So, E(x) will be z* for somek. Notethatthis is alreadyin prime-
factorizationform, x beingthe primefactor (i.e. it cannotbe brokendown furtherinto otherfactors),
repeatedk times.

Firstconsiderthe casein whichk > 0. SupposeC(x) wereto evenly divide z*, i.e. z* = C(z) D(x)
for somepolynomialD(x). Thatwould imply that C(x) and D(x) both factorinto powersof x too,
from the PrimeFactorizationTheorem.Yet x couldnot be afactorof C(x) dueto the presencef the
constanterm1in C(x). (RecallthatC(x) is requiredto have theform zc=1 + ... + 1)

In thecasek = 0,i.e. E(x) = 1, thenthefactthatC(x) hasatleastoneothertermthan1 (namelyz°~1)
meangC(x) couldnotdivide E(x).

So,thisE(x) is guaranteedotto beevenlydivisible by C(x), andthusa single-biterrorwill becaught
by the CRC.
Any burst error, i.e. a setof consecutivebit errors, of length at mostc-1 will be detected.

For instace,in our worked-outexampleabore in which W = 1001101101if E is, say0000111000,
with consecutie errorsin thefifth, sixth andseventhbits of W, thensucha patternof errorswill be
detected.

To provethis,letw denotethelengthof W, whichis alsothelengthof E. Saythemostsignificantl in
E is in bit positionj, wheretheleastsignificantpositionis calledposition0 andthe mostsignificant
positionis numberedv-1. Denotethelengthof the burstby b. ThenE(x) will have theform

R e R N A (4)

which canbefactoredas

acj_b+1(acb_1 +..+1) (5)

SupposeC(x) wereto evenly divide this E(x), i.e. E(X) = C(x) D(x) for somepolynomialD(x). Note
againthateachx factorin z/—%+! is prime,andasin our previousdiscussiorx is NOT aprimefactor
of C(x). So,all of C(x)’s primefactorswould have to beamongthe primefactorsof z*~* 4 ...+ 1. In
otherwords,C(x) would have to evenly divide z°~! + ... + 1 Yetthatis impossible sinceb wasgiven
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6 DIGITAL IMPLEMENTATION

to beat mostc-1 andthusz®~' + ... + 1 hasdegreelessthanthatof C(x) (theformerhasdegreeb-1,
thelatterdegreec-1).

Sowe seeC(x) cannotevenly divide E(x), andour claimis proved.

This propertyof catchingburst errorsis quite important,asit is often the casethat line noisewill
indeedoccurin bursts.

As long aswe chooseC(x) to be a multiple of x+1, then any E having an odd number of 1swill
be detected.

FirstnotethatW(1) is equalto the numberof 1sin W, andwhenevaluatedmod-2,we seethat\W(1)
will beeitherl or 0, dependingon whetherW(x) hasan odd or even numberof 1s.. Let's seewhat
thisnumbemwill beif C(x) is amultiple of x+1. In thatsituationW(x) will alsobeamultiple of x+1,
i.e. W(x) = (x+1)z(x) for somez(x). Sincel+1=0,thatimpliesthatW(1) = (1+1) z(1) = 0. In other
words,if C(x) is divisible by x+1, thenW(x) is guaranteedo have an even numberof 1s,soary E
with anodd numberof 1swill bedetected.

If C(x) is chosento bea “primitive polynomial,” then all 2-bit errors will be detectedaslong as
m <2071 —¢.

A polynomialof degreed is saidto be primitive if it hasthe propertythatit doesnot divide z* + 1
forany k < 29 — 1.

Suppos@ur C(x) is primitive, sothatC(x) doesnot divide z* + 1 for ary k£ < 2°~' — 1. Suppose&
has2 errors.ThenF(z) = 2" (1 + z*) for somer ands,wherer,s < m + ¢ — 1.

If E werenondetectabld,e. if E(x) wereevenly divisible by C(x), thatwould meanthatC(x) would
divide1 + z* (we discoveredearlierthatno C(x) candivide z"). But this couldnt happeraslong as
s < 2°7! — 1. Sincesis lessthanm+c-1,thatmeanswe canassurehatthis kind of E(x) will notbe
divisible by C(x) by makingsurethatm + ¢ — 1 < 2°~! — 1, i.e. by keepingour messagéengthm
smallerthan2°=! — ¢.

ThefamousCRC-16polynomialis (z + 1) (z!% + z + 1), wherethelatterfactoris primitive.

6 Digital Implementation

As you cansee the CRCalgorithmscouldeasilybe encodedn software but thatmaybetoo slow. It would
bemuchfasterif implementedn digital logic hardwareandit turnsout thatthis canbe donequitesimply.

As before Jet c denotehenumberof bitsin thedivisorpolynomialC(x), sothatthedegreeof thepolynomial
is c-1. Thenwe setup a left-to-right shift registerwhich storesc-1 bits, which we will denote from left to
right, So, S1, ..., Se—2.. As with ary shift register, ateachclockimpulses; is replacedoy the valuewhich
hadbeenin S;_;, wherewe arecallingtheleft input“S_,.”

However, our shift registerwill differ from anordinaryonein thatat eachclock pulsethe valuewhich had
beenin S._; will bereg/cledandXOR-edwith someof theotherS;. Specifically if thereis atermz7 in
thedivisor polynomialC(x), thenthereis an XOR justto theleft of 5;.
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Themessagé/, with c-1 0sappende@sbefore,is fed into the inputto the shift register onebit perclock
cycle, startingwith M’s mostsignificant(i.e. leftmost)bit. After m+c-1 clock cycles, the shift register
containgheremaindef(i.e. the CRCfield), in reverseorder

Ourfigurehereshovsthe setupfor thecaseC (z) = z® + z + 1, i.e. C=1011,from our exampleabove.

message
D= so=~pH— s1 s2

Thetablehereshows a pulse-by-pulseccountof whatwill occurwith theinputM = 1001101(with three
Osappended):

| clk [input| SO| S1| S2]|
0 1 0] 0] O

ol N oM w N -
olo|o|r|o|r|r|lolo
R R olrlklkoloo|l-
olr|rrlolorlor|lo
Rlo|lrlolo|lrlolrlolo

end

For example,at the endof clock period 3, theregistercontains(0,0,1),with aninput of 1 comingin, say
nearthe end of the clock period,taking effect in the next period. Thenthe clock pulsestartingperiod4
comes.Whathappens?

e Thenew Sy will bethe XOR of 1 (from theold S;) and1 (from theinputshovn in row 3), whichis
0. Thusthenew Sy will beO.

e Thenew S; will betheXOR of 1 (from theold S;) andO (from theold 5;), i.e. 1.

e Thenew S; will beequaltotheold Sy, i.e. 0

So,thenew registerstatewill be (0,1,0),seenin row 4.
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The CRCfield is calculatedo be 101.

Thiswould occuratthetransmitterend,anda similar setupfor the CRCcheckwill be attherecever end.
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