JIAJIA User’s Manual

(Version 2.1)

Weiwu Hu
Weisong Shi
Zhimin Tang

Rasit Eskicioglu®

Center of High Performance Computing
Institute of Computing Technology
Chinese Academy of Sciences

*Department of Computing Science
University of Alberta

May 1999

New Features of Version 2.1

Compared to last version (Version 2.0) of JIAJIA, this version includes the following new
features:

e A home migration scheme is implemented to migrate home pages adaptively according to
the application sharing pattern. In the scheme, pages that are written by only one proces-
sor between two barriers are migrated to the single writing processor. Migration messages
are piggybacked on barrier messages and no additional communication is required for the
migration. Though very simple, performance evaluation with SPLASH program suite and
NAS Parallel Benchmarks shows that home migration can reduce diffs dramatically and
improve performance significantly.

o A write vector technique is implemented to reduce message amount in home-based software
DSMs. Other than fetching a whole page on a page fault as in traditional home-based
software DSMs, the write vector technique divides a page into blocks and fetches only
those blocks that are modified since the faulting processor fetched the page last time.
Performance evaluation with some popularly accepted benchmarks shows that the write
vector technique can reduce message amounts dramatically and consequently improve
performance significantly in some benchmarks.

e An adaptive write detection scheme is implemented to reduce write faults on read-only
pages. It automatically recognizes single write to a shared page by its home host and
assumes the page will continue to be written by the home host in the future until the page
i1s written by remote hosts. During the period the page is assumed to be singly written
by its home host, no write detection of this home page is required and page faults caused
by home host write detection can be avoided. Evaluation with some well-known DSM
benchmarks reveals that the new write detection can reduce page faults dramatically and
improve performance significantly. Since the adaptive write detection scheme works well,
the cache-only write detection in Version 2.0 is removed.

e A new function call jia_config() is provided to turn home migration, write vector, adap-
tive write detection and other optimization methods on and off in the application program.

Contents

1 Introduction 1
2 Installation 1
2.1 Getting JIAJTA o e 1
2.2 JTAJIA Directory Hierarchy, 1
2.3 Compiling JTAJIA e 2
3 JIAJIA Running Environment 2
3.1 Configuration 2
3.2 Running Applications 4
4 Application Programming Interface of JIAJIA 4
4.1 JIAJIA Calls At a Glance 4
4.2 JIAJIA Program Structure L oo 6
4.3 Shared Memory Allocation and Distribution 6
4.4 Synchromization 10
4.5 Message-Passing Primitives 0oL 10
4.6 The jiaconfig() Call L 13
4.7 Load Balancing Primitives L oo 14
4.8 T/O . . . o 15
5 Tuning the Performance 15
5.1 Exploiting Locality 15
5.2 Using jiaconfig() Call oo 16
5.3 Trade Performance With Memory Space 19
6 Advanced Topics 20
6.1 Options and Values 20
6.2 Error Messages 21
6.3 The argc and argv Parameters in JIAJIA 21
6.4 FORTRAN Interface 21
7 Documentations 23
A Matrix Multiplication in C 25
B Matrix Multiplication in FORTRAN 27

C LU Factorization in C

D LU Factorization in FORTRAN

E 7 Calculation in C

F 7 Calculation in FORTRAN

11

29

32

36

38

1 Introduction

JIAJIA is a software DSM which supports scope consistency. It has two distinguishing features
compared to other recent software DSM systems such as TreadMarks. First, it takes the NUMA-
like architecture and combines physical memories of multiple computers to form a larger shared
space. Second, it implements the lock-based cache coherence protocol which totally eliminates
directory and maintains coherence through accessing write notices kept on the lock.

JIAJTA runs on UNIX-like operating systems. Current version of JIAJIA can be run on
Solaris 2.4, AIX4.1, and Linux 2.0. JIAJIA which runs on SUNOS 4.1 is also available but has
not been integrated into the released version. One can email to dsm@water.chpc.ict.ac.cn to
get source of SUNOS 4.1 version of JIAJIA.

The Windows NT version of JTAJIA can already work now. It will be released soon after
more test are done.

Although JTAJIA is designed with a C programming interface, it is easy to refine the interface
for FORTRANT7 programs if the FORTRAN compiler supports POINTER statement. We have
successfully implemented the JIAJTA-FORTRAN interface in both SPARCstations and SP2,
which provides more chances for JIAJIA to run real applications.

JTAJTA can be used both on networks of stand-alone workstations or workstations with NFS.
The UDP/IP communication is used in the first release. Future versions might use other network
interfaces to improve performance.

Currently, JTAJIA is an alpha software. It will be constantly maintained and improved to
get better performance, to provide more functions, to be more user-friendly, and to support
more platform. You can email to dsm@water.chpc.ict.ac.cn for being informed whenever a
new version JIAJIA is released.

2 Installation

2.1 Getting JTAJTA

One can get JIAJIA sources through sending an message to dsm@water.chpc.ict.ac.cn, or
through visiting the Center of High Performance Computing (CHPC) web pages. You can reach
CHPC at www.ict.ac.cn/chpc/index. html.

2.2 JIAJIA Directory Hierarchy

When untarred JIAJTA creates a directory called JTA. This main directory includes the source
directory src/, the library directory 1ib/, the documentation directory docs/, the applications
directory apps/, and a README file. Figure 1 shows the general directory hierarchy of JTAJIA.
The 1ib/ and each application directory under apps/ contain a subdirectory for each plat-
form. Currently, JIAJIA runs on Sun Sparc workstations running Solaris 2.4 or above and

1

IBM SP-2 or Dawning 1000A nodes running AiX 4.1 and use UDP/IP protocol stack on both

platforms.

2.3 Compiling JTAJIA

Running the Makefile in the corresponding platform directory of 1ib/ (e.g. 1ib/solaris/ or
lib/aix41/) will create the 1ibjia.a library for the given platform.

Running the Makefile in corresponding platform directory of the specified application di-
rectory (e.g. apps/sor/solaris/ or apps/sor/aix41/) will build the application for the given
platform.

We use gee version 2.7.2 and gmake 3.7.4 on all platforms. One can use other C compliers
as wanted.

Although JTAJIA is designed with a C programming interface, it is easy to refine the interface
for FORTRANT77 programs if the FORTRAN compiler supports POINTER statement. We
have successfully implemented the JIAJTA-FORTRAN interface in SPARCstations, SP2, and
Dawning 1000A, which provides more chances for JIAJIA to run real applications.

3 JIAJIA Running Environment

3.1 Configuration

JIAJIA can be used both on networks of stand-alone workstations or workstations with NFS. If
you're using JIAJIA in a NFS environment, you must define an NFS flag in file src/global.h
or in 1ib/Makefile.

In a stand-alone environment (i.e., when the NFS flag is not defined), the master should copy
the executable program to remote hosts. Hence, each machine should be configured to make
rcp from master to slaves possible. This can be done by adding slaves into file /etc/hosts of
the master and adding the master into the file .rhosts of each slave.

JIAJIA looks for a configuration file called . jiahosts in the directory where the application
runs. This file contains a list of hosts to run the applications, one per line. Each line contains
3 entries: the name of the host, the user name, and the password. Each host is identified by
the combination of the host name and the user name. Multiple copies of the same program can
run by different users on the same machine. The first line of . jiahosts should be the master
on which the program is started. An # in . jiahosts starts an annotation line.

For example, suppose we want to run JTAJIA application on four hosts named dsm@host1,
dsmi@host1, dsm@host2, and dsm@host3, and we indicate that dsm@host1 is the master. Then,
.jiahosts file would look like this:

sTC —————— comm.c, comm.h /*communication module*/
—— init.c, init.h /*initialization modulex*/
—— mem.c, mem.h /*memory manage module*/
—— syn.c, syn.h /*synchronization module*/
—— msg.c, msg.h /*message-passing module*/
—— load.c, load.h /*load balancing modulex*/
—— get.c, finit.f /*FORTRAN interfacex/

— exit.c

JIA —

—— tools.c
—— global.h

—— jia.h, jiaf.h /*API of C and FORTRAN*/
L—— other source files

—— 1lib —— 1 Makefile.common
—— solaris—T—— Makefile
—— libjia.a
—— .o files
—— aix ———1—— Makefile
—— libjia.a
. —— .o files
other platforms
—— apps "7 sor ————— Makefile.common
—— src¢ —————— sor.c
: —— solaris—71—— Makefile
other applications —— sor
L .jiahosts
—— aix ———71—— Makefile
——— sor
: L .jiahosts
other platforms

—— docs "— manual2l.ps.gz

other papers

—— README

Figure 1: Directory Hierarchy of JIAJTA

hostil dsm XXXX

hostil dsmil XXXX
host2 dsm XXXX
host3 dsm XXXX

If, for some reason, we decides to run an application on two hosts dsm@host1 and dsm@host3,
then we can either delete the two middle line of the above . jiahosts, or annotate the two middle
line as follows:

host1 dsm XXXX
#host1l dsmil XXXX
#host2 dsm XXXX
host3 dsm XXXX

3.2 Running Applications

The user can start the application on the master once it is built. The master will automatically
start the application on all slaves specified in .jiahosts (after copying the executable to the
slaves first, if running in a stand-alone environment).

4 Application Programming Interface of JTAJIA

4.1 JIAJIA Calls At a Glance

JIAJTA provides a simple yet powerful API to the applications. This interface is defined in
<jia.h>, which should be included by each application. JIAJIA provides following basic routines
supporting shared memory parallel programming to the applications:

e jia init(argc,argv) —initialize JIAJIA. It should be called at the beginning of the ap-
plication. The main task of jia init() is to start copies of the application on the hosts
specified in .jiahosts. Also, jia_init () initializes internal data structures of JIAJIA.

e jia alloc3(int size,...)—allocate shared memory. The parameter size indicates the
number of bytes allocated. Other parameters allow the programmer to control data dis-
tribution arcoss hosts to improve performance. Techniques of distributing shared memory
to improve performance will be discussed in the following subsection.

e jia lock(int lockid), jia unlock(int lockid)—acquire and release a lock specified
by lockid. jia lock() and jia unlock() provide a synchronization mechanism to ensure
exclusive access to a critical section. jia lock() and jia unlock() should appear in pairs
for obvious reasons. The maximum number of locks is specified in jia/src/global.h.

e jia barrier()—performs a global barrier. A barrier provides a global synchronization
mechanism by preventing any process from proceeding until all processes reach the barrier.
Note that jia barrier() can not be called inside a critical section enclosed by jia lock()
and jiaunlock().

e jia exit()—shut JIAJIA down.

Normally, the above basic routine is enough to write parallel programs with JIAJIA. To
ease the parallel programming and improve performance, JIAJIA also provides the following
subsidiary functions:

e jia config(int, int)—System configuration. It is used to turn some optimization
methods, such as home migration, write vector, and adaptive write detection, on and

off.

e jia divtask(int *begin, int *end) and jia loadcheck()—load balance primitives.
jia divtask() divides tasks across processors and jia loadcheck() checks loads of all
Processors.

e jia setcv(int cv),jiaresetcv(int cv), and jia waitcv(int cv)—set, reset, and
wait on a conditional variable cv. Conditional variable provides another method of syn-
chronization other than lock and barrier. However, no coherence of shared variables is
enforced on conditional variables and conditional variable is normally used together with
locks. The use of conditional variable will be explained further in the following section.
The maximum number of locks is specified in jia/src/global.h.

e jiawait()—similar to jia barrier() in that both require the arrival of all processes
before any one can proceed. They are different in that jia wait () does not enforce any
coherence operation across processors. Therefore, jia wait () is a simple synchronization
mechanism that requires all processes to wait altogether before going ahead.

e jia clock()—return elapsed time since the start of application in seconds in float type.
It can be used to summarize the time expended by the application.

e jia error(char *str)—print out the error string str and shut down all processes started
by jiainit().
e jia startstat() and jia stopstat()—start and stop statistics. These two calls are

valid only when the DOSTAT option is defined in Makefile when the system is made.

e jia send(char *buf, int len, int topid, int tag)—an MPI-similar call, send len
bytes of buf to host topid.

e jiarecv(char *buf, int len, int frompid, int tag)—an MPI-similar call, receive
len bytes from host frompid to buf.

e jia bcast(char *buf, int len, int root)—an MPI-similar call, send len bytes from
buf of host root to buf of all hosts.

e jia reduce(char *snd, char *rcv, int cnt, int op, int root)—an MPI-like call,
reduce cnt numbers from all hosts to host root with operation op.

4.2 JIAJIA Program Structure

To write program with JIAJIA, one should include jia.h in the program. The program of
JIAJTA implements the SPMD programming model, in which each processor run the same
program on different parts of the shared data. Figure 2 shows the structure of a typical JTAJIA
program.

Each JIAJIA main() program starts with creating multiple processes and initializing the
internal data structures of JIAJIA by calling jia_init(argc,argv). This is followed by allo-
cating shared memory by jia_alloc() calls. jia_.alloc() can be repeatedly called to allocate
multiple shared regions. Normally, all shared memory should be allocated together befored they
are used. A barrier is suggested to be called after allocating shared memory to ensure synchro-
nization. The slave() routine is then called by each created process to work on the allocated
shared data. Finally, the master waits for all slaves and then terminates by calling jia exit().

The slave() routine works on the shared memory. JIAJIA provides a process identifier,
called jiapid, to each process. The jiapid of the master is 0, the jiapid of other processes is
set according to the position of the associated host in the configuration file . jiahosts, i.e., the
process identifier of the host specified in the nth line (excluding blank and/or comment lines)
of .jiahostsis n — 1 (this requires the master to be specified at the first line of .jiahosts).
Besides, JIAJIA provides the global variable jiahosts as the current number of hosts. With
jiapid and jiahosts, different processes can be set to work on different things.

4.3 Shared Memory Allocation and Distribution

Figure 3 shows JIAJIA’s organization of the shared memory. In JIAJIA, each shared page has
a designated home node and homes of shared pages are distributed across all nodes. References
to home pages hit locally, references to non-home pages cause these pages to be fetched from
their home and cached locally. A cached page may be in one of three states: Invalid (INV),
Read-Only (RO), and Read-Write (RW). When the number of locally cached remote pages is
larger than the maximum number allowed, some aged cache pages must be replaced to its home
to make room for the new page. This allows JIAJIA to support shared memory that is larger
than physical memory of one machine.

For example, suppose somebody allocates a shared memory of size 4MB in four hosts, 1IMB
in each. Then when host 0 want to access a location in the first IMB (saying loaction 1024),
the reference hits directly in the its home part of the shared space. If, however, host 0 wants
to access a shared location whose home stays at host 3 (saying, location 3M + 1024), then host

6

#include <jia.h>
char *ptrl, *ptr2,

slave()
{
/* Program of slave, operate on allocated shared memory, synchronize
with locks, conditional variables, or barrier as required */

main(argc,argv)

{
/* initialize jiajia, create multiple processes */
jia_init(argc,argv);

/* allocate shared memory */
ptri=jia_alloc(sizel);
ptr2=jia_alloc(size2);

jia_barrier();
/* start the slave program, multiple processes work on the shared data */
slave();

/* exit jiajia */
jia_exit();

Figure 2: Program structure of JIAJIA applications

cache cache cache

0 m1+1 my_1+1
home home home

Interconnection Network

Figure 3: Memory Organization of JIAJIA

0 fetches the page which contains the referenced location from host 3 and keeps the page in
its cache. Further references of host 0 to the same page (e.g., to location 3M + 1028) will hit
directly in the cache.

We can see from the memory organization of JIAJIA that, references to local home pages
has less system overhead than those to remote pages. Hence, good program of JIAJTA should
allocate and distributed shared memory properly so that most reference hit in home. JIAJIA
provides flexible shared memory allocation calls to allow the programmer to control the ini-
tial distribution of homes of shared locations. The basic shared memory allocation function
in JIAJIA 1s jia_alloc3(size, blocksize, starthost) which allocates size bytes cycli-
cally across all hosts, each time blocksize bytes. The starthost parameter specifies the
host from which the allocation starts. JIAJIA also defines three simpler shared memory allo-
cation calls: jia_alloc2(size, blocksize) which equals to jia_alloc3(size, blocksize,
0), jia_allocl(size) which equals to jia_alloc3(size, size, 0), and jia alloc(size)
which equals to jia_alloc3(size, Pagesize, 0).

For example, consider a configuration of four nodes each with 16MB physical memory. Sup-

pose an application uses a 24MB-size shared integer array a.

e If the programmer want to distribute the shared array in the way shown in Figure 4(a),
then he(she) can allocate the array with the following call:

a = (int*)jia.alloc3(0x1800000,0x600000,0)

298¢ 8808

3
a a
a

a a

a
a a

a

a

Interconnection Network Interconnection Network

(a) (b)

9998 6608

a a

Interconnection Network Interconnection Network

(c) (d)

Figure 4: Memory Allocation Example

e The following call
a = (int*)jia.alloc3(0x1800000,0x300000,0)

allocates shared memory in the way shown in Figure 4(b).

e The following call
a = (int*)jia.alloc3(0x1800000,0x800000,2)

allocates shared memory in the way shown in Figure 4(c).

e The following call
a = (int*)jia.alloc3(0x1800000,0xc00000,2)

allocates shared memory in the way shown in Figure 4(d).

4.4 Synchronization

JIAJTA supports three kinds of synchronization mechanisms: lock, barrier, and conditional
variable.

A pair of jialock() and jia unlock() encloses a critical section. jia lock()s and
jiaunlock()s can be called embeddedly provided they appear in pair.

A barrier provides a global synchronization mechanism by preventing any process from pro-
ceeding until all processes reach the barrier. Note that jia barrier() can not be called inside
a critical section enclosed by jia lock() and jia unlock().

Conditional variable provides another method of synchronization other than lock and barrier.
jia_setcv(int cv) and jia resetcv(int cv) set and reset the conditional variable cv respec-
tively, while jia waitcv(int cv) waits on the conditional variable cv until it is set. Multiple
hosts can wait on a conditional variable which is set by one host.

As has been stated, JIAJIA supports the scope consistency in which a new value writ-
ten by a host is delivered to another (others) through a jiaunlock()—jialock() pair or a
jia barrier(), as is shown in the example of Figure 5.

Current version of JIAJIA does not enforced coherence arcoss a jia_setcv()—jiawaitcv()
pair (Though last version of JIAJIA maintains coherence among hosts in a jia_setcv()—
jiawaitcv() pair) because the concept of “scope” is unclear for conditional variables. However,
the conditional variable provides a useful synchronization method in parallel programs with
producer-consumer sharing pattern. Take the program segment in Figure 6 as an example. The
producer process write a value “1” into the shared variable x, while the consumer reads the new
value. Figure 6(a) and (b) provides two synchronization methods between the producer and the
consumer. The synchronization method in Figure 6(b) is obviously much more efficient than
that in Figure 6(a) because it does not require the consumer to constantly send request message
for the lock as does the program in Figure 6(a). It worth to mention that, it will yield incorrect
result if the while statement is put inside the critical section in the consumer of Figure 6(a), or
if references to the shared variable x is not protected by locks in Figure 6(b).

It worth to re-emphasize that, since scope consistency is adopted as the memory consistency
model, conflicting accesses (two accesses are conflicting if they accesses the same shared location
and at least one is a write) from different processes must be separated by a release—acquire pair
on the same lock or by a barrier.

4.5 Message-Passing Primitives

In our experience with users, we found that some users still need some message-passing primitives
in the shared memory programming environment. For large problems, one would like to write
message passing program for some modules (or just port existing message passing modules)
and write shared memory program for other modules. On the other hand, using some message
passing primitives in shared memory programs helps to improve performance in many cases.

10

jia_lock(0);
x=1;
jia_unlock(0);
jia_lock(1l);
y=1;
jia_unlock(1);
jia_lock(0);
a=x;
b=y;
jia_unlock(0);
jia_lock(1);
a=x;
b=y;
jia_unlock(1);
Shared variable: x,y;
Local variable: a,b;
Initial: x=y=0;
Final: P2: a=1,b=0; P3: a=0,b=1;
(a). Write Propagation in locks
P1 P2 P3
x=1; y=1; z=1;
jia_barrier(1); jia_barrier(); jia_barrier();
a=x; a=x; a=x;
b=y; b=y; b=y;
c=z; c=z; c=z;
Shared variable: x,y,z;
Local variable: a,b,c;
Initial: x=y=z=0;
Final: P1: a=b=c=1; P2: a=b=c=1; P3: a=b=c=1;

(b). Write Propagation in barrier

Figure 5: Write Propagation in JTAJIA

11

Producer Consumer
jia_lock(0);
x=1;
jia_unlock(0);
while (a==0){
jia_lock(0);
a=x;
jia_unlock(0);

(a). Producer-Consumer with Lock

Producer Consumer
jia_lock(0);
x=1;
jia_unlock(0);
jia_setcv(0);
jia_waitcv(0);
jia_lock(0);
a=x;
jia_unlock(0);

(b). Producer-Consumer with Lock and Conditional
Variable

Figure 6: Example of Conditional Variables

12

These observations motivate us to provide some simple message passing primitives in JIAJIA.

As has been stated, JTAJIA provides four MPI-like message passing primitives: jia_send(),
jiarecv(), jia bcast(), and jia reduce(). Their usage is similar to their MPI counter-
parts. It should be mentioned that there is a receiving buffer in each host, so that it is unnec-
essary for the receiving host to sit waiting for the message before the sending host can send the
message out. The jia bcast() or jia reduce() should be called by all processors for correct
operation. For jia reduce(), current version of JIAJIA supports summing, maximizing, and
minimizing operations for integer, float, and double data types. The operations supported by
jia reduce() are defined in opt.h.

4.6 The jia config() Call

The jia_config() call provides a flexible mechanism to configure the JIAJIA system at runtime
while the library remains the same. Currently, it is used to switch on/off some performance
optimization techniques. It accepts two parameters: the first parameter indicates the name of
the optimization and the second parameter is either ON or OFF. All optimizations are initially
closed until is is turned on with jia_config (XXX, ON).

The optimizations provided by jia_config() include:

e Home Migration—A jia_config(HMIG, ON) call turns the home migration optimization
on. The home migration scheme is implemented to migrate home pages adaptively ac-
cording to the application sharing pattern. In the scheme, pages that are written by only
one processor between two barriers are migrated to the single writing processor. Normally,
the home migration optimization should not be turned on until shared data is initialized.
If jia_config(HMIG, ON) is called before shared data initialization, all shared pages will
be migrated to the initialization processor. Performance evaluation with SPLASH pro-
gram suite and NAS Parallel Benchmarks shows that home migration can reduce diffs
dramatically and improve performance significantly. See [3] for detail.

e Reducing Message Overhead—JIAJIA implements a write vector technique to reduce mes-
sage amount. Other than fetching a whole page on a page fault as in traditional home-based
software DSMs, the write vector technique divides a page into blocks and fetches only those
blocks that are modified since the faulting processor fetched the page last time. A call
jia_config(WVEC, ON) turns the write vector optimization on. Performance evaluation
with some popularly accepted benchmarks shows that the write vector technique can re-
duce message amounts dramatically and consequently improve performance significantly
in some benchmarks. See [4] for detail.

e Adaptive Write Detection—An adaptive write detection scheme is implemented in JTAJTA
to reduce write faults on read-only pages. It automatically recognizes single write to a
shared page by its home host and assumes the page will continue to be written by the
home host in the future until the page is written by remote hosts. During the period the

13

page is assumed to be singly written by its home host, no write detection of this home
page 1s required and page faults caused by home host write detection can be avoided. The
jia_config(ADWD, ON) call turns this optimization on. Evaluation with some well-known
DSM benchmarks reveals that the new write detection can reduce page faults dramatically

and improve performance significantly. See [5] for detail.

Broadcast Barrier Messages—After all hosts arrive at a barrier, the barrier manager need
to send barrier acknowledgement to all hosts. JIAJTA provides both one-by-one and tree-
structure broadcast methods for barrier acknowledgement. The jia_config(BROADCAST,
ON/OFF) call switches between these two methods.

Load Balancing—The jia_config(LOADBAL,ON) call turns a simple load balancing opti-
mization on. See next subsection for detail.

4.7 Load Balancing Primitives

JIAJIA provides a simple load balancing method for non-dedicated environments. It is mainly

designed for regular applications and provides two primitives jia divtask(int *begin, int

*end) and jia loadcheck() to divide tasks across processors and check computation power of

each processor.

The jia divtask(int *start,int *end) call regards the initial value of (*end)-(*start)

as the total task to be divided and returns the task of each processor in begin and end. The

normal way to parallelize the sequential loop

18

for (i=0;i<N;i++){

}
start = N/jiahosts*jiapid;
end = start + N/jiahosts;

if (jiapid == (jiahosts-1)) end = N;
for (i=start;i<end;i++){

With the jia divtask() call, the above parallization can be written as follows

start = 0;
end = N;
jia_divtask(&start,&end);
for (i=start;i<end;i++){

14

If the LOADBAL switch is closed, then the above program segment distributes loops across all
processors evenly. If the LOADBAL switch is turned on by jia_config(LOADBAL, ON), then
loops are distributed across processors according their computation power.

The jia_ loadcheck() call checks and records computation power of each processor in the
system. The computation power of a processor i1s calculated by dividing its old computation
power by the computation time since last jia loadcheck() call. The computation time between
two jia_loadcheck() calls is calculated as the elapsed time minus synchronization waiting time.
The total computation power of all processors are always normalized to 1.

Though the above load balancing optimization scheme is very simple, preliminary evaluation

result seems encouraging.

4.8 1/0

Normally, all I/O operations should be done in the master (host 0). Currently, no I/O operations
on the standard I/0 is allowed in slaves. If I/O in slaves is required, file I/O can be used. In
JIAJIA, we redirect any write to stand output to the file apps.log (in stand-alone workstation
environment) or apps-i.log (in NFS environment), where apps is the name of the executable
application program and ¢ is the host id.

5 Tuning the Performance

5.1 Exploiting Locality

In a DSM system, remote accesses takes much longer time to complete than those hit locally.
Therefore, exploiting reference locality plays an important role in improving performance, and
consequently in writing parallel applications of a DSM system. In a software DSM system,
exploiting reference locality is even more important, not only because of the large latency of
inter-process communication in network of workstations, but also because of serving remote
access will cost CPU cycles in a software DSM system. In JIAJIA. two kinds of reference
locality can be exploited when writing a parallel program: home locality and cache locality.

As has been stated, JIAJIA allows the programmer to fully control the distribution of data
across processors. Experiences show that totally different performance can be get with different
distribution of shared data. For example, consider the distribution of matrices in a matrix multi-
plication application. Suppose a[1024] [1024] and b[1024] [1024] are two float matrices to be
multiplied, and c¢[1024] [1024] is the result of multiplication of matrices a and b. Figure 7(a)
and Figure 7(b) show two different allocation schemes for these three matrices. In the allocation
scheme of Figure 7(a), the home of matrix a, b, and c are allocated row by row across hosts,

15

while in the allocation scheme of Figure 7(b), the home of matrix a, b, and ¢ are distributed
band by band across all four hosts, in the way that each host homes the band of a and ¢ it
processes. Evaluation results on a four-processor SPARCstation 20 show that, when multiplied
with middle product algorithm shown in Figure 8(a), the multiplication of 1024 x 1024 matrices
takes 93 seconds when shared matrices are allocated in the way of Figure 7(a), while only 64
seconds are required when the data distribution method of Figure 8(b) is taken.

JIAJIA caches remote pages in a cache whose size 1s defined by the Cachepages constant
in jia/src/global.h. The cache size can be adjusted when necessary to reach high reference
locality. A good program of JIAJIA should take full advantage of the cache and avoid remote
accesses as much as possible.

Consider again the matrix multiplication example. Figure 8(a) and 8(b) show the middle
product and inner product algorithm of matrices multiplication. Suppose the matrices are
distributed in the way of Figure 7(b), i.e., the matrices are distributed in the way that all
memory references to matrix a and matrix ¢ hit locally at the home, while only one quarter of
references to matrix b hit locally, references to other three quarters of matrix b cause remote
accesses. When the middle product algorithm in Figure 8(a) is employed, all reference to one
row of b finish before next row is referenced. As a result, cache size has little influence to
the performance of the middle product algorithm. It takes 64 seconds to finish a 1024 x 1024
multiplication in a four processor SPARCstation 20. When the middle product algorithm in
Figure 8(a) is employed, the full matrix b is referenced for each iteration of i. To get acceptable
performance, the cache should be able to hold the whole matrix b. Our eveluation results in the
four processor SPARCstation 20 show that, when the cache size is 1024 pages with page size
of 4096 bytes, the multiplication of 1024 x 1024 matrices takes 76 seconds, while 1164 seconds
are required when the cache size i1s 512 pages. Statistics show that 768 remote page accesses
happens in each processor when the cache size i1s 1024 pages, while the number increases to
114,684 when the cache size is 512 pages.

The page size defined in jia/src/global.h may also have influence on reference locality.
One can adjust it (must be a multiple of the operating system page size) to reach high reference
locality. For example, for a 8192 x 8192 float matrix, eight remote get page request is required
to access a remote row when the page size is 4096 bytes, while just one remote get page request
can bring a remote row to local cache if the page size is set to 32768 bytes.

5.2 Using jia config() Call

As indicated in [2], [3], [4], and [5], different optimization works for different applications de-
pending the sharing pattern of the application. Some optimization may even deteriorate per-
formance because of the additional overhead of the optimization or because the optimization
changes memory access behavior of the application.

Normally, the home migration and adaptive write detection techniques work well for regular
problems with a large shared data set and with barrier as the main synchronization method.

16

#include <jia.h>
#define N 1024

float (*a)[N],(*b)[N],(*c)[N]; /*a,b,c are pointers to N-element arrays*/
main(argc,argv)

{

jia_init(argc,argv);

a=(float (*)[N])jia_alloc(N*N*sizeof(float));

b=(float (*)[N])jia_alloc(N*N*sizeof(float));

c=(float (*)[N])jia_alloc(N*N*sizeof(float));

jia_barrier();

worker () ;

jia_barrier();

jia_exit();

(a). Allocate a, b, and ¢ row by row across hosts
main(argc,argv)
{
jia_init(argc,argv);
a=(float (*)[N])jia_alloc3(N*N*sizeof (float) ,N*N*sizeof (float)/jiahosts,0);
b=(float (*)[N])jia_alloc3(N*N*sizeof (float) ,N*N*sizeof(float)/jiahosts,0);
c=(float (*)[N])jia_alloc3(N*N*sizeof (float) ,N*N*sizeof(float)/jiahosts,0);
jia_barrier();
worker () ;

jia_barrier();

jia_exit();

(b). Allocate a, b, and ¢ band-by-band across hosts

Figure 7: Shared Memory Allocation in Matrix Multiplication

17

void worker()
{int i,j,k;

int start,end;
float temp;

start=(N/jiahosts)*jiapid;
end=start+(N/jiahosts);

for (j=0;j<N;j++){
for (i=start;i<end;i++){
temp=0.0;
for (k=0;k<N;k++)
temp+=al[i] [k]*b[j] [k];
clil [j1=temp;
}
}
}

(a). Middle Product Algorithm

void worker()
{int i,j,k;

int start,end;
float temp;

start=(N/jiahosts)*jiapid;
end=start+(N/jiahosts);

for (i=start;i<end;i++){
for (j=0;j<N;j++){
temp=0.0;
for (k=0;k<N;k++)
temp+=ali] [k]1*b[j] [k];
clil [j1=temp;
}
}
}

(b). Inner Product Algorithm

Figure 8: Matrices Multiplication Process(matrix b is supposed to be transposed)

18

The write vector technique works well for some irregular applications in which the shared data
set is not large and the shared pages are frequently referenced. Follows are some conclusion
remarks of our evaluation.

e Home Migration: Performance evaluation with Water, LU, Ocean, MG, SOR, ILINK,
and EM3D shows that most tested benchmarks exhibits single writer sharing behavior and
the home migration scheme is effective in migrating home of pages to their single writer.
Diffs are reduced dramatically in all benchmarks tested. As a side effect, home migration
removes the effect of data pre-sending when a non-home writer sends diffs of a modified
page to its home. Six of seven tested benchmarks achieve significant performance gains
with home migration, and home migration makes host 0 the bottleneck and degrades the
performance in ILINK.

e Write vector: Performance evaluation with some popularly accepted benchmarks (Wa-
ter, Barnes, LU, SOR-Z, SOR-NZ, ILINK, and TSP) shows that the write vector technique
reduces message amounts by times in four (LU, SOR-Z, ILINK, and TSP) of seven bench-
marks, and consequently improves performance significantly in three (LU, ILINK, and
TSP). The extra time overhead of the write vector technique is negligible in the tested
benchmarks.

e Adaptive Write Detection: The effect of the adaptive write detection is evaluated with
some matrix-based DSM benchmarks, include LU from SPLASH2, SOR from TreadMarks
benchmarks, MG from NAS Parallel Benchmarks, and a real application EM3D from
Institute of Electronics, Chinese Academy of Sciences. Evaluation results show that the
adaptive write detection can reduce page faults dramatically and improve performance by
5% for LU, 43% for SOR, 17% for MG, and 19% for EM3D. Evaluation result also implies
that the major overheads of virtual memory write detection is not caused by factors such
as mprotect () and SIGSEGYV signal handler call, but caused by other factors such as
processor pipeline interruption, cache and TLB pollution, etc.

e Broadcast We observe a speedup of 30-50% for barrier operation in Dawning 1000A which
connects eight Power PC 604 with an 100bps switched Ethernet). For bus structure net-
work like Ethernet, the one-by-one barrier acknowledgement method is suggested because
the tree-structure broadcast method does introduce additional overhead.

For detailed evaluation results, see [3], [4], and [5].

5.3 Trade Performance With Memory Space

The original design of JIAJIA (on network of SPARCstation 10 workstations, each with 32MB
memory) regards the memory as a critical resource. Memory spaces for twins, messages, and
write notices are dynamically allocated and freed to reduce memory overhead. Our experiments

19

in Dawning 1000A indicates that, frequent allocation and free of memory space introduce a heavy
oveahead to the operating system, and may often break the system down (Illegal Instruction
error). Hence, to improve performance and to make JIAJIA more robust, we provide an option
to reserve memory space for messages, twins, and write notices. Define RESERVE TWIN_SPACE in
jia/src/mem.h will switch the memory reservation on. The RESERVE TWIN SPACE option has
already been defined jia/src/mem.h as the default choice. For environments (each node in
Dawning 1000A has a 256MB memory) and applications which are not memory critical, the
default memory reservation scheme is suggested.

6 Advanced Topics

6.1 Options and Values

Follows are some options and values in JIAJIA that some advanced users of JIAJIA may feel
interest in changing for performance or other purpose.

e Cachepages—defined in jia/src/global.h. Specifies the cache size in number of pages.

o Pagesize—defined in jia/src/global.h. Specifies the page size of JTAJIA. Page size is
the basic unit of coherence and communication in software DSM systems.

e Maxhosts—definedin jia/src/global.h. Maximum number of hosts of a parallel system.

e Maxlocks—defined in jia/src/global.h. Maximum number of locks in JIAJIA. The
value of the lockid parameter of jia lock(lockid) and jia unlock(lockid) should be
in the range [0,Maxlocks).

e Maxcvs—defined in jia/src/syn.h. Maximum number of conditional variables in JIA-
JIA. The value of the condv parameter of jia setcv(condv), jia resetcv(condv), and
jiawaitcv(condv) should be in the range [0,Maxcvs).

e Startaddr—defined in jia/src/global.h. The start virtual address from which the al-
location of shared space starts. JIAJTA allocates shared space through mapping them into
a fixed virtual address. The [Startaddr, Startaddr+Maxmemsize) should not overlap
with other space used by the same process.

o Maxmemsize—defined in jia/src/global.h. Maximum number of bytes of the shared
memory allocated in JIAJIA.

e Homepages—defined in jia/src/mem.h. Maximum number of home pages in a host.

e Maxfileno—definedin jia/src/init.h. Maximum number of file descriptors that can be
concurrently opened in UNIX. It should be no less than 4*Maxhosts*Maxhosts in JIAJIA.

20

o Maxqueue—defined in jia/src/comm.h. The size of input and output queue for commu-
nication. Normally, it should no less than 2*maxhosts.

e RESERVE TWIN SPACE—defined in jia/src/mem.h. JIAJIA will reverve space for twin if
RESERVE TWIN SPACE is defined. See last section for its function.

e DOSTAT—defined in jia/src/global.h. JIAJIA will print out statistics (such as message
numbers, remote get page numbers, ...) at the end of the program if DOSTAT is defined.

e JIA DEBUG—defined in jia/src/global.h. JIA DEBUG is used by the developer to debug
JIAJIA system. It is not suggested to use by common users.

6.2 Error Messages

JIAJIA prints error messages and exits in exceptions such as incorrect returned value of system
calls. Follows are some exception messages.

e “req fdcreate-->bind()” or “rep fdcreate-->bind()” — Bind error in initializing
communication sockets. Current version of JIAJIA employs UDP protocol for commu-
nication. Each JIAJTIA application requires 4*jiahosts*jiahosts communication ports
which are process id related numbers range from 10000 to 30000. As a result, communi-
cation ports of different applications may overlap and binding of a port to a socket will be
failed. Rerun the application will correct this error.

e “Access shared memory out of range ---” — Address error, please check the program
to make sure all its references to shared address are correct and meet the requirement of
scope consistency.

(to be continued)

6.3 The argc and argv Parameters in JTAJTA

JIAJIA adds a parameter -PStartport in the command line when starting remote processes.
Hence, both the argec and argv parameters are changed by JIAJIA in hosts other than host 0.
Cares should be taken when you use these two parameters in your application program.

6.4 FORTRAN Interface

Currently, JTAJIA can only be used with FORTRAN 77 compilers supporting POINTER state-
ment. Fortunately, both Solaris FORTRAN and AIX FORTRAN support POINTER.

To use JIAJIA in FORTRAN programs, you should include a file named jiaf.h, which

contains necessary information about all subroutines and functions provided by JTAJIA. All

21

JIAJIA provided C functions can be called in FORTRAN as functions or subroutines, depending
if it returns a value. jiaf.h also defined a COMMON block named jia, which contains two
integer members, jiapid and jiahosts, for work sharing control among parallel processes.
Since those two variables are defined in a COMMON block, any subroutine or functions using

them must contain the following declaration:
COMMON /jia/ jiapid, jiahosts

Owing to the difference between C and FORTRAN in transferring function parameters, most
JIAJIA subroutines must be called with their parameters specified by the %val modifier. For

example, jia lock can be called as
CALL jia lock(%val(1l))

and the following code allocates shared memory for matrix A and assigns value to one of its
elements:

PARAMETER (N=1024)

POINTER (PA, A)

REAL A(N,N)

PA = jia_alloc(%val(N*N*4))
A(2,102) = 3.14159

To allocate a COMMON block in shared space, you should not list your data variables in
COMMON statement. Instead, listed in COMMON blocks are only the associated pointer vari-
ables, since FORTRAN usually does not allow pointer-based variables to be used in COMMON

statements. For example, to allocate the following block to shared space:

COMMON /shared/ a(N,N), b(N,N), c(N,N)
REAL a, b, c

you should write:

COMMON /shared/ pa, pb, pc
POINTER (pa, a), (pb, b), (pc, c)
REAL a(N,N), b(N,N), c(N,N)

pa = jia_alloc(%val (N*Nx*4))
pb = jia_alloc(%val (N*Nx*4))
pc = jia_alloc(%val (N*N*4))

To ease JIAJIA initialization in FORTRAN programs, a FORTRAN subroutine jiaf init,

which needs no parameters, is provided. You can initialize JIAJIA by simply calling it.

22

7 Documentations

Our web site http://www.ict.ac.cn/chpc/dsminclude following documentations of JTAJIA.

e Papers.

Technique reports (include a detail design report with flow charts of JIAJIA Version 1.0).
e Source codes of all versions.

Presentations and Talks.

e User’s manual.

Any work related to JTAJIA should cite one of [1], [2], [3], [4], or [5].

23

References

1]

Weiwu Hu, Weisong Shi, and Zhimin Tang, “JTIAJIA: A Software DSM system Based
on a New Cache Coherence Protocol”, in Proc. of 7th International Conference on High
Performance Computing and Networking Europe, LNCS 1593, pp. 463-472, Amsterdam,
Apr. 1999. , available at http://www.ict.ac.cn/chpc/dsm.

Weiwu Hu, Weisong Shi, and Zhimin Tang, “Reducing System Overheads in Home-based
Software DSMs”, in Proc. of 13th Int’l Parallel Processing Sym., pp. 167-172, San Juan,
Apr. 1999, available at http://www.ict.ac.cn/chpc/dsm.

Weiwu Hu, Weisong Shi, and Zhimin Tang, “Home Migration in Home-based Software
DSMs”, accepted by The 1st Workshop on Software Distributed Shared Memory, available
at http://www.ict.ac.cn/chpc/dsm.

Weiwu Hu, “Reducing Message Overhead in Home-based Software DSMs”, accepted
by The 1st Workshop on Software Distributed Shared Memory, available at http:
//www.ict.ac.cn/chpc/dsm.

Weiwu Hu, Weisong Shi, and Zhimin Tang, “Adaptive Write Detection in Home-Based
Software DSMs” | accepted by The 8th IEEE International Symposium on High Performance
Distributed Computing, available at http://www.ict.ac.cn/chpc/dsm.

24

A Matrix Multiplication in C

Followed is the source code of middle product matrix multiplication. In order to reduce miss
rate, we allocate the matrix a, b, ¢ on the processors band by band uniformly. As a result,
only (n — 1)/n of matrix b need to be fetched from remote processors during the course of

computation.
#include <jia.h>

#tdefine N 1024
float (*a)[N], (*b)[N], (*c)[N];

void seqinit()
{int 1i,j;
if (jiapid==0) {
for (i=0;i<N;i++)
for (j=0;j<N;j++){
ali]l[j1=1.0;
b[il[j]l=1.0;

void worker()
{int 1i,j,k;
int start, end;
float temp;

begin=(N/jiahosts)*jiapid;
end=start+(N/jiahosts) ;

for (j=0;j<N;j++)
for (i=begin;i<end;i++){

temp=0.0;

for (k=0;k<N;k++)
temp+=ali] [k]*b[j] [k];

clil [jl=temp;

if (i==start)
printf ("c[4d] [(4d]=%f\n",i,j,c[il [j1);

25

void main(int argc,char **argv)
{int i,j,size;
float t1,t2;

jia_init(argc,argv) ;

size = N*N*sizeof(float);

a=(float (*)[N])jia_alloc3(size,size/jiahosts,0);
b=(float (*)[N])jia_alloc3(size,size/jiahosts,0);
c=(float (*)[N])jia_alloc3(size,size/jiahosts,0);

jia_barrier();
seqinit();
jia_barrier();
jia_startstat();
ti=jia_clock();
worker() ;
jia_barrier();
t2=jia_clock();
if (jiapid==0)
printf ("Total time for matric multiply is == %10.2f seconds\n", t2-t1);
jia_exit();

}

26

B Matrix Multiplication in FORTRAN

program matrix
include ’jiaf.h’

parameter (n=1024)

integer i, j

common /shared/ pa, pb, pc

pointer (pa, a), (pb, b), (pc, ¢)
real a(n,n), b(n,n), c(n,n), t1, t2

call jiaf_init()

call jia_barrier()

pa = jia_alloc(%val(4*n#*n),%val(4*n*n/jiahosts),%val(0))
pb = jia_alloc(%val(4*n#*n),%val(4*n*n/jiahosts),%val(0))
pc = jia_alloc(%val(4*n#*n),%val(4*n*n/jiahosts),%val(0))
if (jiapid .eq. 0) then

do j=1,n
doi=1,n
a(i,j) = 1.0
b(i,j) = 1.0
end do
end do
endif

call jia_barrier()

t1 = jia_clock()

call worker()

call jia_barrier()

t2 = jia_clock()

if (jiapid .eq. 0) then

print *, ’Elapsed time is’, t2-t1, ’ seconds’
endif

call jia_exit()

end

subroutine worker ()
include ’jiaf.h’
integer begin, end
parameter (n=1024)
common /shared/ pa, pb, pc

27

pointer (pa, a), (pb, b), (pc, c)
real a(n,n), b(n,n), c(n,n)

begin = n/jiahosts*jiapid + 1

end = n/jiahosts*(jiapid+1)

do j = begin, end
doi=1,n

t =0
do k=1, n
t =t + a(k,i)*b(k,j)
enddo
c(i,j) =t
if ((jiapid .eq. 0) .and. (i .eq. 1)) then
print *, ’c(’, i, j, ’) =, <(i,])
endif
enddo

enddo

call jia_barrier()
return

end

28

C LU Factorization in C

Followed 1is the source code of LU factorization. The matrix is factored column by column in the
algorithm. To improve reference locality, the matrix is distributed across processors in a round-
robin manner in which columns are allocated contigyously and entirely in the local memory of

processors that “own” them.

As the factorization procudure proceed (j), the update of the current column is finished by
processor that “owns” it.
new value of the current column, a jia barrier() is called to propagate the up-to-date value
of the current column to all processors. Barrier is the only synchronization mechnism used in

LU factorization.

#include <stdio.h>
#include <math.h>

#include <stdlib.h>

#include <jia.h>

#define
#define
#define
#define
#define
#define

N

CHECK
EPSILON
MAXRAND
min(a,b)
fabs(a)

double (*a) [N];
double **0ld,**new;
char luerr[80];

void seqinita()

{int 1i,j;

if (jiapid==0) {
if (CHECK==1){

1024

0

le-5

32767.0

((@<®)) 7 (a) : (b))
(((a)>0.0) ? (a) : (0.0-(a)))

old=(double **)malloc(N*sizeof(double *));
for (i=0;i<N;i++){
old[i]=(double *)malloc(N*sizeof (double));

3

new=(double **)malloc(N*sizeof(long));
for (i=0;i<N;i++){
new[i]l=(double *)malloc(N*sizeof (double));

X
3

srand48((long) 1);

29

Since all the rest updates of the trailing submatrix depend on the

for (i=0; i<N; i++){
for (j=0; j<N; j++) {
a[j1[i] = ((double) lrand48())/MAXRAND;
if (i==j) aljl[i]l *= 10.0;
if (CHECK==1) old[jl1[il = al[jI1[i]l;
}
}
}
}

void lua()
{register int 1i,j,k;
int begin;
double temp;

for (j=0;j<N;j++){
if ((j%jiahosts)==jiapid){
if (fabs(al[j1[j]1)>EPSILON){
temp=al[j][j];
for (i=j+1;(i<N);i++){
aljl[i]l/=temp;
}
}else{
sprintf (luerr,"Matrix a is singular, ald] [4d]=k1f",j,j,aljl1[i]);
jia_error(luerr);
}
}
jia_barrier();
begin=j+1-(j+1)%jiahosts+jiapid;
if (begin<(j+1)) begin+=jiahosts;
for (k=begin;k<N;k+=jiahosts){
temp=alk] [j1;
for (i=j+1;(i<N);i++){
alk] [il-=(al[j] [i]*temp);
}

void checka()
{int 1i,j,k;

30

double temp;

if ((CHECK==1)&&(jiapid==0)){
for (i=0;i<N;i++)
for (j=0;j<N;j++){
temp=0.0;
for (k=0;k<=min(i,j) ;k++)
if (i==k) temp+=al[j][k];
else temp+=a[k] [i]*a[j] [k];
new[j] [i]=temp;
if (fabs(old[j][i]-new[j][i])>EPSILON){
sprintf (luerr,"Incorrect! old[%d] [4d]=Y%1f, new[%d] [d]=V1f\n",
i,j,old[j1[i],i,j,new[j]1[i]);
jia_error(luerr) ;
}else if (j==0){
printf("old[%d] [%d]=%14.61f, new[%d] [%d]=%14.61f\n",
i,j,old[j][i],1,j,new[j][i]);

void main(int argc, char **argv)
{int 1i,j,k;
float clockl,clock?2;
int size;
jia_init(argc,argv);
size = N*N*sizeof (double);
a=(double (*)[N])jia_alloc3(size,size/N,0);
jia_barrier();
seqinita();
jia_barrier();
clocki=jia_clock();
lua();
clock2=jia_clock();
printf("total time elapsed = %8.2f second\n", (clock2-clockl));
jia_barrier();
checka();
jia_exit();

31

D LU Factorization in FORTRAN

program lu

include ’jiaf.h’

parameter (n=1024)

integer i, j

integer MAXRAND

common /shared/ pa

pointer (pa, a)

character*30 luerr

common /res/ 01d(0:n-1,0:n-1)
real t1, t2, temp, a(0:n-1,0:n-1)

call jiaf_init()

print *, ’jiahosts = ’, jiahosts

pa = jia_alloc(Y%val(4*n#*n), %val(n*4),0)
call jia_barrier()

MAXRAND = 32768
if (jiapid .eq. 0) then
do j =0, n-1
do i =0, n-1
a(i,j) =1.0%(rand(0)/MAXRAND)
if (i.eq.j) then
a(i,j)=a(i,j)*10.0

endif
0ld(i,j) = a(i,j)
enddo
enddo
endif

call jia_barrier()
luerr = ’Matrix is sigular . . .’
t1 = jia_clock()
temp=1lua()
if (temp.eq.-1) then
call jia_error(luerr)
endif
call jia_barrier()
t2 = jia_clock()
if (jiapid .eq. 0) then
print *, ’Elapsed time is’, t2-t1, ’ seconds’

32

endif
temp = checka(1)
if (temp.eq.-1) then
luerr = ’Incorrect results ’
call jia_error(luerr)
else
endif
call jia_exit()
end

function lua()
include ’jiaf.h’
integer begin

real temp
parameter (n=1024)
common /shared/ pa
pointer (pa, a)
real a(0:n-1,0:n-1)

do 20 j = O,n-1
if((j-j/jiahosts*jiahosts) .eq.jiapid) then
if (abs(a(j,j)).gt.EPSILON) then
temp = a(j,j)
do i = j+1, n-1
a(i,j)=a(i,j)/temp
enddo
else
lua = -1
goto 100
endif
endif

call jia_barrier()
begin=(j+1)/jiahosts*jiahosts+jiapid
if (begin.lt.(j+1)) then
begin=jiahosts+begin

endif
do 10 k=begin,n-1,jiahosts

temp=a(j,k)

do i=j+1, n-1

a(i,k) = a(i,k)-a(i,j)*temp

33

enddo

10 continue
20 continue
lua =0
100 return
end

130

120

function checka(check)

integer check

real temp, EPSILON

parameter (n=1024)

common /shared/ pa

common /jia/ jiapid, jiahosts
pointer (pa, a)

real a(0:n-1,0:n-1) ,new(0:n-1,0:n-1)
common /res/ 01d(0:n-1,0:n-1)

EPSILON = 1e-b
if (jiapid.eq.0) then
if (check.eq.1) then
print *, ’Begin Check the result’

do 110 i = O0,n-1
do 120 j= 0,n-1
temp = 0.0
do 130 k = 0, min(i,j)
if (i.eq.k) then
temp = temp+a(k,j)

else
temp = temp+a(i,k)*a(k,j)
endif
continue

new(i,j) = temp

if (abs(old(i,j)-new(i,j)).gt. EPSILON) then
print *, ’Incorrect!’
print *,’01d(’,i,’,’,j,’)=?,01d(4i,]j)
print *,’new(’,i,’,’,j,’)=’,new(di,j)
checka = -1
goto 140

endif

continue

34

110 continue
endif
endif
checka =0
140 return
end

35

E 7 Calculation in C

Followed is the source code of 7 calculation by integrating £f(x) = 4/(1 + x**2). Different
processors are responsible for different parts of intergration. At the end of the program, each
processor adds it’s partial value to the final vale pi in a critical section. jia_lock() and
jiaunlock() is used to ensure mutual exclusive references to pi in a critical section.

#include <stdio.h>
#include <math.h>
#include <jia.h>

double f(double a)

{
return (4.0 / (1.0 + a%*a));

void main(int argc,char *argv[])
{
int n,i,begin,end;
double PI25DT = 3.141592653589793238462643;
double mypi, h, sum, x, a;
float startt, endt;
double *pa;

jia_init(argc,argv);

n = 1000000;

pa=(double *)jia_alloc(sizeof (double));
jia_barrier();

if (jiapid==0) {

*pa =0.0;
}
jia_barrier();
startt = jia_clock();
h 1.0 / (double) n;
sum = 0.0;

begin = n/jiahosts*jiapid+1;

end = n/jiahosts*(jiapid+1);

for (i = begin; i <= end; i++){
x = h * ((double)i - 0.5);

36

sum += f(x);
}
mypi = h * sum;
jia_lock(1);
*pa= *pa+mypi;
jia_unlock(1);
jia_barrier();
endt = jia_clock();
if (jiapid==0) {
printf("pi is approximately %.16f, Error is %.16f\n",
*xpa, fabs(*pa - PI25DT));
printf ("Elapsed time = %f\n", endt-startt);

37

F =« Calculation in FORTRAN

program main
include ’jiaf.h’

real*16 PI25DT

parameter (PI25DT = 3.141592653589793238462643d0)
real*16 pi, h, sum, x, f, a

integer i

integer begin, end

real startt, endt

pointer (pp, pi)

f(a) = 4.4d0 / (1.d0 + a*a)
n = 10000
call jiaf_init()
pp = jia_alloc(%val(16))
call jia_barrier()
10 if (jiapid .eq. O) then
pi = 0.0d0
endif
call jia_barrier()
startt= jia_clock()
h = 1.040/n
sum = 0.0dO
begin = n/jiahosts*jiapid+1
end = n/jiahosts*(jiapid+1)
print *, ’begin = ’, begin, ’end= ’,end
do 20 i = begin, end
x = h * (dble(i) - 0.5d0)
sum = sum + f(x)
20 continue
sum = h * sum

call jia_lock(%val(1))
pi = pi + sum

call jia_unlock(%val(1l))

call jia_barrier()

endt = jia_clock()

if (jiapid .eq. 0) then

38

write(6, 97) pi, abs(pi-PI25DT)
97 format(’ pi is ’, F27.25, 7 +- ’, F27.25)
print*, ’Elapsed time is ’, endt-startt, ’seconds’
endif

call jia_exit()

30 stop
end

39

