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Abstract

Consider an Internet file for which last-time-of-access/modification (A/M) data is collected at
periodic intervals, but for which full A/M data are not available. Methodology is developed
here which enables estimation of the A/M rates, in spite of having only incomplete data of this
nature.
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1 Introduction

One of the major functions of computer networks—ranging from databases on private local area
networks (LANs) to World Wide Web sites—is the sharing of information. A question which then
arises concerns the number of people who are sharing that information.

Consider for example an Internet site which distributes public-domain software, written by various
authors, available World Wide Web. In order to justify the time and funding the authors devote
these projects, it would be of interest to know how many users download the software, that is the
mean number of downloads per unit time.

Another example arises with Web search engines. The user inputs one or more keywords, say
“sailboats.” The search engine will then produce a lengthy list of Web sites related to sailboats,



ordered according to various criteria. One such criterion (possibly provided by the user as an option)
might be frequency of modification; some users may be interested mainly in active sites which are
frequently updated. In this case, the we are interested in modification rates instead of access rates.

If we had direct data on A/M transactions, estimation of these and other simple rates would be
straightforward [5, Ch.12|. However, such data may either be difficult to collect or else simply
unavailable to the public.

For example, collection of some data of this type may require modification of server software, and
a server administrator may not have the time to make such a modification, or may not have the
source code at all [11, Sec.4.1.5]. For instance, in our Web search engine example above, the Web
server software probably does not collect data on file-modification times, even though it does log
external accesses.

Even worse, many server administrators would not be willing to divulge A/M data to the public,
or would not have the time to do so. And even if they did, the logistics of dealing with thousands
of Web site administrators would make our task infeasible.

However, there is related, publicly-accessible information which is available, in the form of time of
the last A/M transaction times for a file. On a UNIX system with a file named, say x, the shell
command

1ls -ul x

will produce the time of last access to a file, while

1ls -1 x

will yield the time of last modification. Typically, as external users without accounts on the server
machine, we will not have access to shell commands in the contexts we are considering here, but
standard Internet client-side software does have commands which are similar to these. Even basic
ftp versions have commands like these (with similar syntax). Similarly, http Web servers can allow
users to acquire last-modification times [3].

At first glance, last-A /M time data seems insufficient for estimating A /M rates, as there is no direct
relation between the data and the rates. To our knowledge, this problem has not been addressed
in the literature. However, we will develop methodology here with which one actually can estimate
the A/M rates from last-A/M time data.

An interesting issue which will arise as a byproduct concerns a theoretical question of conditional
versus unconditional statistical inference. We will present quantitative analyses comparing the two,
with interpretations of the results.



2 Two Competing Estimators of an A/M Rate

Assume that A/M transactions to the given file occur as a Poisson process with intensity parameter
A. Suppose we sample the process at n intervals of length 7, in each case recording the time of
the last file A/M transaction in the interval. By scaling time units, we may assume without loss of
generality that 7 = 1.0.

Let L; denote the (unobserved) number of file A/M transactions in the i** interval, so that

-k
P(L; =k) = %k =0,1,2,... 1)

A problem which will become central to the issues addressed in this work is that some L; may be 0.
Let M denote the number of i for which L; > 0,7 = 1,2, ...,n. In addition, let A; denote the value
of the first nonzero L;, Ay the second one, and so on.

Define Tj1, ..., T;4; to be the A /M transaction times to the file within the interval associated with A4;,
mod 1.0; that is, these random variables consist of the noninteger portions of the A/M transaction

times. We are able to observe only M and for i = 1,...,M the values of W; = T;4,.

Estimation based on the W; will be conditional on M, while estimation based on M itself will be
unconditional.

2.1 Estimation of A Via M

We begin with the simpler estimator, based only on M. It would seem more natural to estimate A
from the W;, but if M is small, there will be too few W; to get an accurate estimate from them, so
we turn to using M itself.

Define
p=P(L;>0)=1—e?, (2)

so that

A= —log(1 —p) (3)

Maximum likelihood estimators (MLEs) are generally optimal, i.e. have minimum asymptotic vari-
ance [2]. The MLE of p based on M is well known to be p = M/n, so from (3) the MLE of X based
on M is



X = —log(1 — p) = —log(1 — M/n) (4)

2.2 Estimation of \ Via the W,

Let fix(w) and Fi(w) denote the p.d.f. and c.d.f., respectively, of W;, conditioned on A; = k. Then
fork > 0,

Fp(w) = P(Wi<w|A;=k) (5)
= P()/ilswa"'aYiAi Sw|AZ:k)a

where Yj1, ..., Y;a, are the unordered versions of the T;; (the former variables can be thought of as
a random permutation of the latter ones). The Y;; are i.i.d. U(0,1) [8, Theorem 6.1 , so we have
that Fj(w) = w* and fy(w) = kw*~! for win (0,1) and k > 0.

Now let G(w) = P(W; <w|A; > 0), and set g = G’'. Then

1 o0

G(w) P4 > 0) ,;P(VVZ <wandA; = k) (7)

1 >0 e A\k
= 1_6—)\2Fk(w). k' (8)

k=1 :
- o0 —Aw A k

= (1 _ e—)\) —Aw ° ]§| w) (9)

e Me = !

e — 1
= a1 (10)
Thus
)\e/\w

g(w) = AT (11)

We wish to find the MLE of A based on the W;, conditional on M = m > 0. The conditional
likelihood function of W; = wy,..Wy, = w,, is

L(wt, ooy ) = g(w01)g(w3)-g(wm) = — - ATy (12)



Maximizing this yields that the conditional MLE, 5\, must satisfy the equation

where W = (Wi + ... + Wy,)/m and

r(t) = - -

2.2.1 Solution of the Likelihood Equation

Equation (13) has no closed-form solution. Thus iterative numerical methods must be used.
However, we can at least establish that the root exists and is unique, as follows. It is easily verified
that r(t) above is an increasing function of t, and varies continuously between 0.5 and 1. However,

W can take on any value between 0 and 1. Thus the solution of the equation exists and is unique
if W > 0.5, and otherwise the MLE is 0.0.

Later, in determining the statistical accuracy of our estimator, we will again need to deal with the
non-closed form of the MLE here, but will present a way to circumvent this problem.

3 Statistical Inference on \

3.1 The “Delta Method”

The “delta method” [6] says, roughly, that a function of an asymptotically Gaussian-distributed
sequence of random variables is itself an asymptotically Gaussian-distributed sequence. In our
context here, the relevant formulation is as follows.

Suppose that a random variable Uy, calculated from k observations from a distribution family
parameterized by 6, is used to estimate @ and is distributed approximately N (8,0%(0)/k). Then if
q is a differentiable function, the quantity q(Uy) is approximately distributed as

N[q(),4'(0)**(6) /K]

The quantity



is then the asymptotic variance (AVar) of q(Ug).

The approximate square root of this quantity,

SE(q(Uy)) = | (Uk)|o(Ux)/VE

is known as the standard error of U. The standard error can be used for statistical inference
purposes. For instance, an approximate 95% confidence interval for ¢(8) based on ¢(Uy) is

a(Uy) £ 1.96¢'(Uy) o (Uy) /VE

3.2 Inference on \

In the notation above, take k to be n, take 6 to be p, and take Uy to be p = M/n. Then
from Equation (2), take q(t) to be -log(1-t). Since the Central Limit Theorem shows that p is
approximately distributed as N(p, p(1-p)/n), then by the delta method X has an approximately
normal distribution which has mean A and variance

(14)

3.3 Inference on \

Now, let us see what can be done in the case of A. Note first that since \ is a function of W, we
would ordinarily take q() to be this function. In other words, q() would be the functional inversion
of Equation (13). However, as noted earlier, we do not have this latter function in closed form.

We could find the approximate value of that function (actually, its derivative) during our iterative
procedure to find 5\, but there is an easier approach. Instead, we use the delta method on the
function r() in Equation (13), “pretending” that we do not know the asymptotic variance of W but
do know that of . Since we actually do know the asymptotic variance of W, we can solve for what
we do want. Here are the details.

The quantity W has mean



EW = EW = 5 —er(/\), (15)

and variance
Var(W) = % Var(W) (16)
= (F-ron ). (18)

(By the way, note that by comparing Equations (13) and (15), we see that X is not only the MLE
of A, but also the Method of Moments Estimator of that quantity .)

Due to the Central Limit Theorem, W has an approximately normal distribution with mean and
variance as in (15) and (16). So, now considering W to be a function of A in Equation (13), rather
than vice versa, and thus “applying the delta method in reverse,” we have that

Var(W = AVar(W) = r'(A)QAVar(S\),

so that the standard error of \ is

1 - 1

SE(\) = ——\/Var(W) = ———
™ r'(A) W) Vm - 1'(X)

\/i — e+ (). (19)

One can choose between A and A by comparing the standard errors in Equations (14) and (19).

4 Evaluation

We performed a simulation study, calculating the mean squared errors (MSE) for X and X:

MSE(}) = E[(A -\,

MSEQ\) = E[(A — ).



The results are shown in Figures 1 and 2, in the form of the square root of MSE, normalized by A;
in other words, what is plotted is

MSE

Intuitively, X should typically be a superior estimator to A, since the former is based on “richer”
information than the latter (i.e. last-A/M times rather than counts of nonzero intervals). However,
such intuition must be tempered by the fact that if A is small, the quantity M might also be very
small—in which case A will be based on such a small sample that A may actually be the superior
estimator.

This intuition is confirmed in Figures 1 (n = 50) and 2 (n = 500). For a sample size of 50, A performs
better than A for A < 3.7, while for n = 500 the change point comes earlier, at approximately A = 3.0.
In other words, a sample size of n = 500 is large enough so that we will get a fairly large value of
M even if A is small.

Let d represent the ratio of the two MSEs:

_ MSE())
~ MSE())

The quantity d is plotted in Figure 3, displaying the comparison between the two estimators more
explicitly.

As a basis of comparison, we also plot the “ideal” MSE, that is the MSE we would attain if the

full file A/M-time data were available to us, rather than merely the last-A /M times and M. This is
defined as follows. Using the L; from Section 2, let

3|'—‘

Then K has mean A and variance A\/n, so MSE(K) = \/n.

Figures 1 and 2 show that K performs better than both A and ;\, as expected since K is based on
complete information. However, if such information is not available, we see here that A and A do a
good job under the circumstances.

Indeed, the restriction to partial information is not really a limitation in the context of estimating
file A/M rates, for the simple reason that in this context it is easy to generate very large samples.
The collection of data can be typically automated via programs which can just as easily be run
for months as for hours. One can run the programs long enough to achieve reasonable estimation
accuracy.



Moreover, in the application contexts we have outlined earlier, there is typically no need for very
fine levels of accuracy. All that is needed is methodology to derive some reasonable estimate of
A /M rates from the last-access-time data, which A and A now provide for us.

5 The Poisson Assumption and Alternatives

Up to this point, we have been assuming that the A/M transactions occur as a Poisson process. Let
us now give this assumption closer examination.

5.1 Formulation as a Renewal Process

Let S; denote the time between the (i — 1)** and i*® A /M transactions. Under the Poisson assump-
tion, these inter-transaction times are independent and identically distributed, with the common
distribution being exponential. We will now continue to assume that the S; are i.i.d., but not
necessarily with an exponential distribution.

Let N(t) denote the total number of A/M transactions which have occurred on or before time t, i.e.

N(t) =maz{i: S1+..+S; <t}

N(t) is known as a renewal process [8, Sec.6.5].

From here on, we will assume that the sampling interval width 7 is large enough so that P(L; = 0)
is negligible. It is important to keep in mind that we can arrange things this way, because we always
have the option of increasing 7, even on an after-the-fact basis subsequent to collecting our data.
(If we do this, we will pay a price for it, in that we will discard some of our data, but at least it will
allow us to handle the non-Poisson case, as seen below.) After doing so, though, we still assume
that we rescale time units so that 7 = 1.0, as before. We will now have that (except for negligible
probability) A; = L; for all i, and that M = n.

The random variable W is the i** forward recurrence time, meaning the time to the next renewal,
measured from the it observation epoch i-1. From renewal theory, the (asymptotic) density function
of this quantity is

where C is the cumulative distribution function of S.



5.2 Assessing the Exponential Assumption

Since we do observe the values of the variables W;, we can apply standard statistical goodness-
of-fit assessment procedures [8, Sec.10.3.4]. It should be noted, though, that in our context there
is typically a large amount of data, which means that if a goodness-of-fit hypothesis test is used,
even slight departures from the exponential model will (misleadingly) result in rejection of they
hypothesis at standard significance levels. Thus care should be used [4, Ch.7].

5.3 Alternative Approaches for Use in the Nonexponential Case

From renewal theory we know that the exponential assumption is necessary and sufficient for our
renewal process to have independent increments, i.e. the property that events in disjoint intervals
of time are independent. (This is related to the fact that the exponential density is the only one
to be “memoryless.”) Thus even if we were to find a suitable nonexponential parametric model, say
a I distribution, we would have a problem with statistical inference procedures; that methodology
assumes that the W; are independent, which would not be true.

As an alternative to assuming that the density function c(t) for S is of exponential form, we present
here a novel application to renewal theory of tools for nonparametric density estimation. Here
Equation (20) will play the central role.

Nonparametric density estimation is a refinement of the usual histogram methods taught in ele-
mentary statistics courses. It is used primarily as a tool for exploratory data analysis, with the aim
being to answer questions about the overall shape of the density function, such as: Is the density
unimodal or multimodal? Where does the bulk of the distribution lie? By contrast, it is rare that
nonparametric density estimation has been used to estimate a density at only one point, which is

what we will do here.

From Equation (20), we see that

The right-hand side here is the reciprocal of the mean inter-access time. By standard renewal theory
that is equal to the asymptotic mean number of A /M accesses per unit time—exactly what we need.

So, our job now is to estimate b(0) from our data W;, without assuming a parametric family such
as the exponential.

5.3.1 Kernel-Based Estimation

The classic kernel nonparametric density estimator, applied here to the function b(t), is

10



where h is a smoothing parameter and the kernel K is chosen to be a mean-0 density function in its
own right. The choice of K is up to the user, provided K satisfies certain regularity conditions [7].

The smoothing parameter is similar to the bin width in histograms. A large body of mathematical
theory exists on this point; here we will assume that h — 0 and nh — oo as n — oo. Here we will
choose

05, —1<t<l
K(t) = { 0, otherwise

With this choice of K we would have

_ 0.5%(0,h)

5(0) —

where #(u,v) denotes the count of the number of W; in the interval (u,v).

However, kernel estimators are subject to serious bias problems near the boundary of a density’s
nonzero region. For a kernel estimator fof a density f based on a kernel K which has the value 0
outside of (-1,1),

N 0
BIFO) = [ K(w)du 1(0) + O(h)

7).

So, in our case here,

Thus we must redefine (21) to be

It is up to the user to choose the value of the smoothing parameter h. Though some methods have
been proposed for choosing h, no fully practical method has yet been developed, so nonparametric
density estimation is used typically has a data-exploratory tool rather than a means of formal
statistical inference.

11



5.3.2 Use of Monotonicity

Equation (20) shows that b(t) is a nonincreasing function. This allows us to make use of nonpara-
metric maximum likelihood estimators for unimodal densities [9].

Let B(t) denote the cumulative distribution function corresponding to b(t), and consider its es-
timator, the empirical distribution function of the W;, B(t) = L# (0,t). B will then be a step

—n
function with jumps of size 1/n, the i*® of which occurs at W), defined to be the ith-smallest

among Wi, ...,W,. Then one defines a density estimator b to consist of the slopes of the upper

envelope of B, so that for t between W(;_1) and W(;

~ B(Wy) — B(W,
b(t) = min max ( (t)) ( (s))

s<i—1 t>1 Wy — W)

where W(g) is taken to be 0 [1].

Ordinarily, an important advantage of this kind of estimator is that there is no smoothing parameter
for the user to choose. This would be true in our case if we were estimating b(t) for some t > 0, but
unfortunately there is a problem at 0: Just as was the case with kernel-based density estimators at
the boundary, the nonparametric maximum likelihood estimator also is nonconsistent at 0, meaning
that the estimator 5(0) does not converge to b(0) as n — oo [10].

There is no fully satisfactory method for dealing with this, other than to use the estimator 5(6)
instead of b(0), for some positive € near 0. Thus the user still must make a choice, in this case the
value of e.
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