
Overview of Input/OutputMechanisms

NormanMatloff
Universityof California,Davis
\copyrigth{2001}, N. Matloff

February5, 2001

Contents

1 Intr oduction 1

2 Our Mythical Machine Ar chitecture 2

3 I/O Ports and DeviceStructure 2

4 Program Accessto I/O Ports 2

4.1 I/O AddressSpaceApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.2 Memory-MappedI/O Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 I/O Programming 4

5.1 Wait-LoopI/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.2 Interrupt-DrivenI/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.3 DirectMemoryAccess(DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A Specificationsof Our Mythical Machine 7

1 Intr oduction

During the early daysof computers,input/output (I/O) wasof very little importance.Insteadcomputers,
as their nameimplied, were usedto compute. A typical application might involve hugemathematical
calculations neededfor someproblemin physics. The I/O donein suchan applicationwould be quite
minimal,with themachinegrindingaway for hoursata timewith littl e or no I/O beingdone.

1



4 PROGRAM ACCESSTO I/O PORTS

Today, wehavejusttheopposite situation. I/O playsacrucialrolein mostmoderncomputerapplications.In
fact,applicationsin whichI/O playsanimportantrolecanarguablybeviewedasthemostpowerful “driving
force” behindthe revolutionaryrise to prominenceof computersin the lastdecadeor so. Todaywe make
useof computersin numerousaspectsof our businessandpersonallives–andin thevastmajority of such
uses,theprogramscenteraroundI/O operations.

In someof theseapplications, theuseof a computeris fairly obvious: First andforemost,theInternet,but
alsocredit-cardbilling, airline reservations, word processors,spreadsheets,automaticteller machines,real
estatedatabases,drafting programsfor architects,video games,andso on. Possibly lessobvious is the
existenceof computersin automobiles, andin suchhousehold itemsaswashing machinesandautofocus
cameras. However, whetherthe existenceof computersin theseapplications is obvious or hidden, the
commontheme behind them is that they all are running programs in which I/O plays an important
role,usually the dominant role.

2 Our Mythical Machine Ar chitectur e

In this tutorial,youwill learnaboutI/O ona mythicalmachinedescribedin theAppendixbelow. However,
the principles are similar for almostany machine.

3 I/O Ports and DeviceStructur e

An I/O deviceconnectsto thesystembusthroughports. I/O portsaresimilar in structureto CPUregisters.
However, aport is not in theCPU,beinginsteadlocatedbetweentheI/O deviceandthesystembus.

Portsareusually 8 bits in width. They have addresses,just like wordsin memorydo, andtheseaddresses
aregivenmeaningthroughtheaddressbus,justasis thecasefor wordsin memory.

4 Program Accessto I/O Ports

Notethatapotential ambiguity arises.Supposewewishto communicatewith port50,whichis connectedto
someI/O device. TheCPUwill placethevalue50on theaddressbus. Sinceall itemswhichareconnected
to thebus will seewhat is on the addressbus,how canthey distinguishthis 50, intendedfor an I/O port,
from a valueof 50meantto addressword50of memory?In otherwords, how cantheCPUindicatethatit
wantsto addressI/O port50ratherthanmemoryword50?Therearetwo fundamentalsystemsfor handling
thisproblem,describednext.

4.1 I/O Addr essSpaceApproach

Recall that the systembus of a computerconsists of an addressbus, a databus, anda control bus. The
controlbus in many computers,suchasthosebasedon Intel CPUs,hasa specialline or lines to indicate
thatthecurrentvalueon theaddressbusis meantto indicateanI/O port, ratherthanawordin memory. For

Input/Output:2



4 PROGRAM ACCESSTO I/O PORTS 4.2 Memory-MappedI/O Approach

ourmythicalcomputerherewewill assumefour suchlines,MR (memoryread),MW (memorywrite), IOR
(I/O read)andIOW (I/O write).

To accessI/O port50, theCPUwill asserteitherIOR or IOW (dependingon whetherit wantsto readfrom
or write to thatport),while to accessword 50 in memory, theCPUwill asserteitherMR or MW. In either
casethe CPU will placethe value50 on the addressbus,but the valuesit simultaneouslyplaceson these
linesin thecontrolbuswill distinguish betweenI/O port50andword50of memory.

The programmerhimself or herselfcontrolswhich of theselines will be asserted,by choosingwhich in-
struction to use.

MOV R2,[50]

and

IN R5,[50]

will bothcausethevalue0x50to go out onto theaddressbus,andin bothcasestheresponsewill be sent
backvia the databus. (HereR2 andR5 areCPU registers.) But the MOV will assertthe MR line in the
controlbus,while theIN instructionwill asserttheIOR line in thatbus.As aresult,theMOV will resultin
copying thememorybyteataddress50to R2,while theIN will copythebytefrom I/O port50 to R5.

SincethelinesIOR/IOW andMR/MW allow usto distinguishbetweenI/O portsandmemorywordshaving
identicaladdresses,we candescribethis by sayingthat the I/O portshave a separateaddressspacefrom
thatof memory. Thuswewill call this theI/O addressspaceapproach.

In ourmachinethekeyboardhasportswith addresses60and61. For example,theinstruction

IN R3,[60]

would copyacharacterfrom thekeyboard’sdataport,whichhasaddress60,to theR3register.

Justaswith memorychips,theaddressesof I/O portsaredeterminedby combinationsof gateswhoseoutputs
feedinto somethinglike a Chip Selectpin in a givenport.1 Denoting theChipSelectpin by CS,we would
have in thecaseof thekeyboardportataddress52

����� ������	 ��
���� �� ������� ���

4.2 Memory-Mapped I/O Approach

Another approachto the “duplicate port/memory address”problemdescribedabove is called memory-
mappedI/O.” 2

1Or moretypically, a setof ports. Thekeyboard portsin our exampleherewould typically bemountedon onecommonI/O
board,providing acommoninterfacefor themto thebus.

2Unfortunately, many termsin thecomputer field are“overloaded.” It hasbecomecommonon personalcomputersto refer to
themappingof videomonitorpixelsto memoryaddressesalsoas“memory-mapped I/O.” However, this is not theoriginal useof
theterm,andshouldnot beconfused with whatwearediscussinghere.

Input/Output:3



5 I/O PROGRAMMING

Underthisapproach,therearenospeciallinesin thecontrolbusto indicateI/O accessversusmemoryaccess
(thoughtherestill mustbeoneor two linesto distinguisha readfrom awrite, of course),andthusnospecial
I/O instructionssuchasIN andOUT. Onesimply usesordinaryinstructionssuchasMOV, whetheroneis
accessingI/O portsor memory.

Notethatwecanusethememory-mappedapproachevenif we dohavespecialI/O instructionsandcontrol
lines, just by ignoring them. In our machinehere,for instance,we retainthe addresses60 and61 for the
keyboardportsbut connecttheir read/writepinsto theMR andMW linesinsteadof IOR andIOW. To read
a characterfrom theKeyboardDataPort60andcopyit to amemorylocationCHARBUFFER:

MOV CHARBUFFER,[60]

Sincethis is anordinaryMOV instruction, theCPU is being“fooled” into thinking thatthekeyboarddata
port is physically a memorylocation, whichtheMOV is reading.But of courseit is notmemory.

Oneadvantageof thememory-mappedapproachto I/O portaddressingis thatonecaneasilyaccesstheports
from a high-level language suchasC directly, insteadof usingassemblylanguage,by takingadvantageof
thefactthatthe* operatorin C allowsaccessto specificmemorylocations. For example,theaboveoperation
couldbedonein a C programby having thedeclaration

char CharBuffer,*KDataPtr;

andthenusing thecode

KDataPtr = 0x60;
CharBuffer = *KDataPtr;

Wecouldnotdothisdirectlywith theI/O addressspaceapproach,becausewehavenowayin theC language
to makethecompilerproduceIN or OUT instructions.(Theabove codewould producea MOV.) However,
compilerson machineswhich usetheI/O addressspaceapproachusually includelibrary functions which
canbecalledfrom C to dotheseoperations; theauthorsof thesefunctionswrotethemin assemblylanguage.

5 I/O Programming

Considerthecaseof readinga characterfrom thekeyboard.Theprogramwhichwill readthecharacterhas
no ideawhentheuserwill hit a key on thekeyboard.How should theprogrambewritten to dealwith this
time problem?(Notethatwe arefor themomentdiscussing programswhich directlyaccessthekeyboard,
ratherthangoingthrough theoperatingsystem,asis thecasewith programsyouusuallywrite; moreonthis
point later.) Therearethreebasicapproaches,coveredin thefollowing subsections.

Input/Output:4



5 I/O PROGRAMMING 5.1 Wait-LoopI/O

5.1 Wait-Loop I/O

As describedin theAppendixto thisdocument,Bit 0 in ourmachine’sKeyboardStatusPort(KSP)tellsus
whethera characteris readyto reador not; a valueof 1 in thisbit meansa characteris ready, and0 means
theuserhasnotyet typeda character. Wait-loop I/O thenconsists of writing a loop, in which theprogram
keepstestingBit 0 of theKSP:

LP: IN R4,[61] ; get value of KSP
AND R4,1 ; check Bit 0
JZ LP ; if that bit is 0, try again

DONE: IN R4,[60] ; finally, get the character

Duringthetimebeforetheuserhitsakey, thevaluereadfrom theKSPwill alwayshave a0 in Bit 0, sothat
theAND resultsin 0, andwe jump backto LP. But eventuallytheuserwill hit a key, resulting in Bit 0 of
theKSPbeing1, andwe leave theloop. Wethenpick up thecharacterat DONE.

5.2 Interrupt-Driv en I/O

Wait-loopI/O is very wasteful. Usuallythespeedof I/O device is very slow comparedto CPUspeed.This
is particularly truefor I/O deviceswhicharemainlyof a mechanicalratherthana purelyelectronicnature,
suchasprintersanddisk drives,andthusareusually ordersof magnitudeslower thanCPU actions. It is
evenworsefor a keyboard:Not only is humantypingextremelyslow relative to CPUspeeds,but alsoa lot
of thetime theuseris not typingatall; he/shemaybethinking, takinga break,or whatever.

Accordingly, if we usewait-loop I/O, theCPUmustexecutethewait loop many timesbetweensuccessive
I/O actions.This is wastedtimeandwastedCPUcycles.

An analogyis thefollowing. Supposeyouareexpectinganimportantphonecall at theoffice. Imaginehow
wastefulit would beif phonesdidn’t havebells—-youwouldhaveto repeatedlysay, “Hello, hello,hello,...”
into thephoneuntil thecall actuallycamein! Thiswould beabig wasteof time. Thebell in thephonefrees
you from this;youcandootherthingsaroundtheoffice,without payingattention to thephone,becausethe
bell will notify youwhenacall arrives.

Thusit would benice to have an analogof a telephonebell in thecomputer. This doesexist, in the form
of an interrupt. It takesthe form of a signal sentto the CPU by an I/O device. This signalforcesthe
CPUto suspend,i.e. “interrupt,” thecurrently-running program,say“X,” andswitchexecutionto another
procedure,whichwe termthe interrupt serviceroutine (ISR) for thatI/O device.3

Hereis a simpleexample(a bit morecomplex this time, sincewe arereadingseveral characters,not just
one):

3This is calleda hardware interrupt or external interrupt . Thosewho have doneassembly-languageprogrammingon PCs
shouldnotconfusethiswith theINT instruction.Thelatter is almostthesameasaprocedureCALL instruction,andis usedonPCs
to implementsystemscalls,i.e. callsto theoperatingsystem.

Input/Output:5



5 I/O PROGRAMMING 5.2 Interrupt-DrivenI/O

LP: ... ; do some work in this loop, maybe unrelated to keyboard
...
...
...
...
J LP

...

...

; ISR starts here
; the following code must be loaded at address 0x1000000
PUSH R4 ; we will use R4, etc. here, so must save old ones
PUSH R5
PUSH R6
IN R4,[60] ; pick up the character from the KSP
MOV R5,COUNT ; get current character count, stored in memory
MOV R6,a(CHARS) ; where does character array start?
ADD R6,R5 ; R6 now points to place for next character
MOV [R6],R4 ; place the character there
POP R6 ; restore old register values
POP R5
POP R4
IRET ; back to the interrupted routine

NotethattheISR mayor maynothaveany relationto whatis in theloop(starting atLP). But thekey point
is that at sometimes(whenever someonehits a key, in this case)the ISR will needto be run, and from
thepoint of view of the interrupted program,that time is unpredictable. In the examplehere,eachtime a
characteris typed,a differentinstructionwithin theloopmightgetinterrupted.

Whatkind of codemight be in the loop? Well, for example,consider a programto do someprinting. For
simplicity, let ussuppose thattheprinteris setup sothatwe give it onecharacterat a time. (Most modern
printerswould have usgive themgroupsof charactersata time,but thegeneralprinciple wouldbesimilar.)
Again,sincea printeris a mechanicaldevice, it is slow whencomparedto CPUspeeds.It would bequitea
wasteto usewait-loop I/O, tying up theCPUbetweenprintingof successivecharacters.

So,for example,we couldput somesortof gamein theLP loop,sothatat leasttheuserwould have some
entertainmentwhile theprinting is beingdone.And eventhoughthegamewould beinterruptedfrequently,
theuserwould never noticeit, sincetheexecutiontime for theISR for eachcharacterwouldbequitesmall.

Interruptsystemscanget quite complex. What happens,for example,whentwo I/O devicesboth issue
interruptsataboutthesametime(i.e. within thesameinstruction in theLP loop)?Whichonegetspriority?
And evenwhenthereis justoneinterruptatatime,how cantheprogramor CPUsensewhichof severalI/O
devicesis theonewhich“rang thebell” in thiscase?SinceeachI/O devicewill have its own ISR, thisissue
mustberesolved.Therearemany possible resolutions,but wewill notdiscuss themhere.

Input/Output:6



A SPECIFICATIONSOFOURMYTHICAL MACHINE 5.3 DirectMemoryAccess(DMA)

5.3 Dir ectMemory Access(DMA)

In ourkeyboardISRexampleabove,whenauserhit akey, theISRcopiedthecharacterfrom theKDP into a
register, thencopiedtheregisterto memory. This is wasteful;it would bemoreefficient if wecouldarrange
for thecharacterto godirectly to memoryfrom theKDP. This is calleddir ect memory access(DMA).

DMA is notneededfor deviceswhichsendor receive charactersata slow rate,suchasakeyboard,but it is
oftenneededfor something like adiskdrive,whichsends/receivescharactersatveryhighrates.Soin many
machinesa diskdrive is connectedto aDMA controller, which in turnconnectsto thesystembus.

A DMA controllerworksvery muchlike a CPU, in thesensethat it canwork asa bus master like a CPU
does.Specifically, a DMA controllercanreadfrom andwrite to memory, i.e. asserttheMR andMW lines
in thebus,etc.

So,thedevicedriverprogramfor something like adiskdrivewill oftensimplysendacommandto theDMA
controller, andthengo dormant.After theDMA controllerfinishesits assignment,sayingwriting onedisk
sectorto memory, it causesaninterrupt; theISR herewill be thedevice driver for thedisk, thoughtheISR
won’t have muchwork left to do.

A Specificationsof Our Mythical Machine

Theinstruction setwill consist of:

MOV x,y copy y to x
ADD x,y add y to x
SUB x,y subtract y from x
AND x,y AND together x and y, placing the result in x
OR x,y OR together x and y, placing the result in x
NOT x peform a 1s-complement operation on x
IN x,y do an input operation from the I/O port y, putting the

result in x
OUT y,x do an output operation to the I/O port y, using x as source
JZ t jump to t if the Z bit is set
JN t jump to t if the N bit is set
J t jump unconditionally to t
CALL t call the subroutine at t
RET return from subroutine
IRET return from interrupt service routine
PUSH x push x onto stack; x must be a register
POP x pop stack and place the popped value into x; x must be

a register

Herex canbe eithera registeror a memorylocation, andy canbe eithera register, memorylocationor
a constant(assumedto be in hex notation), but x andy cannotboth be memorylocations(or a memory

Input/Output:7



A SPECIFICATIONSOFOURMYTHICAL MACHINE

locationanda port). RegistersaredenotedR0, R1, R2 andsoon, andalsoincludethestackpointer SP. A
memorylocationcanbegiveneitherasa label,aswith X in

MOV R2,X

asa hex literal, asin

ADD R4,[2500]

or with indir ect addressing, asin

ADD R4,[R6]

Note that the bracketsareusedto distinguishlabelsfrom constants, andregisteraddressing from indirect
addressing. Thus

ADD R4,[2500]

addswhatever is in memorylocation2500to R4,while

ADD R4,2500

would addthenumber2500to R4,and

ADD R4,[R6]

addswhatever is in thememorylocationpointedto by R6 to R4,while

ADD R4,R6

addsthecontentsof R6 itself to R4.

Onecanspecifytheaddressof a lableusingthenotation a(), e.g.a(X) for theaddressof X.

With thecontrol-transferinstructionsJZ,JN,JandCALL, thetargett is specifiedaswith memoryaddresses
above, i.e. eitherasa labelor asa hex literal surroundedby brackets.

The Z (Zero) andN (Negative) bits arestoredin a specialPS(ProgramStatus)register. They reflect the
resultof themostrecentALU operation(including MOV, in which theALU doesa copyoperation); Z will
be1 or 0, dependingonwhetherthelatestALU operationresultedin azerovalue,respectively, andsimilarly
for N.

Thestackis assumedto grow toward0. ThustheCALL instructionwill performthefollowing operations:

Input/Output:8



A SPECIFICATIONSOFOURMYTHICAL MACHINE

SP <-- SP-1
copy PC to the memory location pointed to by SP
copy t to the PC

An interruptwill causethefollowing to occurassoonasthecurrentinstructionfinishes:

CPU notices the Interrupt Request
line in the system bus has
been asserted by some I/O
device

CPU pushes current PC value on stack ; save PC of interrupted routine
CPU pushes current PS value on stack ; save PS of interrupted routine
CPU does PC <-- 0X1000000 ; jump to ISR

TheIRET instruction “undoes”all of this:

CPU pops stack and placed popped value ; restore old PS
in PS

CPU posp stack and placed popped value ; restore old PC
in PC

We assumethemachinehasa KeyboardStatusPort (KSP)at port 60, anda KeyboardDataPort (KDP) at
port 61. The KSP’s bit 0 indicateswhethera characterhasarrived (coded1) or not (coded0). Beforethe
userhits a key, this bit is 0; whentheuserfinally hits a key, the bit changesto 1; thenwhentheprogram
readsthatcharacterby readingtheKDP, thisbit revertsto 0.

We will not defineportsfor othermachineshere,sincethey will not beneededfor examples,but a typical
machinewouldhavea numberof I/O devicesandthushave many ports.

Input/Output:9


