
Intel’s ‘cmpxchg’ instruction

Intel’s documentation

• You can find out what any of the Intel x86
instructions does by consulting the official
software developer’s manual, online at:

http://www.intel.com/products/processor/manuals/index.htm

• Our course-webpage has a link to this site
that you can just click (under ‘Resources’)

• The instruction-set reference is two parts:
– Volume 2A: for opcodes A through M
– Volume 2B: for opcodes N through Z

Example: ‘cmpxchg’

• Operation of the ‘cmpxchg’ instruction is
described (on 3 pages) in Volume 2A

• There’s an English-sentence description,
and also a description in ‘pseudo-code’

• You probably do not want to print out this
complete volume (.pdf) – over 700 pages!

• (You could order a printed copy from Intel)

Instruction format

• Intel’s assembly language syntax differs
from the GNU/Linux syntax (known as
‘AT&T syntax’ with roots in UNIX history)

• When AT&T syntax is used, the ‘cmpxchg’
instruction has this layout:
[lock] cmpxchg reg, reg/mem

 optional ‘prefix’
 (used for SMP)

 mnemonic
 opcode

 source
 operand

 destination
 operand

An instruction-instance

• In our recent disassembly of Linux’s kernel
function ‘rtc_cmos_read()’, this ‘cmpxchg’
instruction-instance was used:

lock cmpxchg %edx, cmos_lock

 prefix opcode source-operand destination-operand

Note: Keep in mind that the accumulator %eax will affect what happens!
 So we need to consider this instruction within it’s surrounding context

‘effects’ and ‘affects’

• According to Intel’s manual, the ‘cmpxchg’
instruction also uses two ‘implicit’ operands
(i.e., operands not mentioned in the instruction)
– The CPU’s accumulator register
– The CPU’s EFLAGS register

• The accumulator-register (EAX) is both a
source-operand and a destination-operand

• The six status-bits in the EFLAGS register will
get modified, as a ‘side-effect’ this instruction

‘cmpxchg’ description

• This instruction compares the accumulator
with the destination-operand (so the ZF-bit
in EFLAGS gets assigned accordingly)

• Then:
– If (accumulator == destination)

{ ZF  1; destination  source; }
– If (accumulator != destination)

{ ZF  0; accumulator  destination; }

The ‘busy-wait’ loop

Here is a ‘busy-wait’ loop, used to wait for the CMOS access to be ‘unlocked’
spin: mov cmos_lock, %eax # copy lock-variable to accumulator

test %eax, %eax # was CMOS access ‘unlocked’?
jnz spin # if it wasn’t, then check it again

A CPU will fall through to here if ‘unlocked’ access was detected,
and that CPU will now attempt to set the ‘lock’ – in other words, it
will try to assign a non-zero value to the ‘cmos_lock’ variable.

But there’s a potential ‘race’ here – the ‘cmos_lock’ might have been
zero when it was copied, but it could have been changed by now…
… and that’s why we need to execute ‘lock cmpxchg’ at this point

Busy-waiting will be brief
spin: # see if the lock-variable is clear

mov cmos_lock, %eax
 test %eax, %eax
 jnz spin

ok, now we try to grab the lock
 lock cmpxchg %edx, cmos_lock

did another CPU grab it first?
test %eax, %eax
jnz spin

If our CPU wins the ‘race’, the (non-zero) value from source-operand EDX will
have been stored into the (previously zero) ‘cmos_lock’ memory-location, but
the (previously zero) accumulator EAX will not have been modified; hence our
CPU will not jump back, but will fall through and execute the ‘critical section’ of
code (just a few instructions), then will promptly clear the ‘cmos_lock’ variable.

The ‘less likely’ case
spin: # see if the lock-variable is clear

mov cmos_lock, %eax
 test %eax, %eax
 jnz spin

ok, now we try to grab the lock
 lock cmpxchg %edx, cmos_lock

did another CPU grab it first?
test %eax, %eax
jnz spin

If our CPU loses the ‘race’, because another CPU changed ‘cmos_lock’ to some
non-zero value after we had fetched our copy of it, then the (now non-zero) value
from the ‘cmos_lock’ destination-operand will have been copied into EAX, and so
the final conditional-jump shown above will take our CPU back into the spin-loop,
where it will resume busy-waiting until the ‘winner’ of the race clears ‘cmos_lock’.

yes

Setup nonzero
value in EDX

EAX  cmos_lock EAX
 is zero?

no

EAX
 is zero?

EAX equals cmos_lock ?

ZF  1
cmos_lock  EDX

ZF  0
EAX  cmos_lock

yes no

no critical
section

yes

cmos_lock  0

start

finish

 flowchart

The ‘cmos_lock’ variable

• This global variable is initialized to zero,
meaning that access to CMOS memory
locations is not currently ‘locked’

• If some CPU stores a non-zero value in
this variable’s memory-location, it means
that access to CMOS memory is ‘locked’

• The kernel needs to insure that only one
CPU at a time can set this ‘lock’

How often is ‘cmpxchg’ used?
$ cat vmlinux.asm | grep cmpxchg

c01046de: f0 0f b1 15 3c 99 30 lock cmpxchg %edx,0xc030993c
c0105591: f0 0f b1 15 3c 99 30 lock cmpxchg %edx,0xc030993c
c01055d9: f0 0f b1 15 3c 99 30 lock cmpxchg %edx,0xc030993c
c010b895: f0 0f b1 11 lock cmpxchg %edx,(%ecx)
c010b949: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c0129a9f: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c0129acf: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c012d377: f0 0f b1 0e lock cmpxchg %ecx,(%esi)
c012d41a: f0 0f b1 0e lock cmpxchg %ecx,(%esi)
c012d968: f0 0f b1 16 lock cmpxchg %edx,(%esi)
c012e568: f0 0f b1 2e lock cmpxchg %ebp,(%esi)
c012e57a: f0 0f b1 2e lock cmpxchg %ebp,(%esi)
c012e58a: f0 0f b1 2e lock cmpxchg %ebp,(%esi)
c012e83f: f0 0f b1 13 lock cmpxchg %edx,(%ebx)
c012e931: f0 0f b1 0a lock cmpxchg %ecx,(%edx)
c012ea94: f0 0f b1 11 lock cmpxchg %edx,(%ecx)
c012ecf4: f0 0f b1 13 lock cmpxchg %edx,(%ebx)
c012f08e: f0 0f b1 4b 18 lock cmpxchg %ecx,0x18(%ebx)
c012f163: f0 0f b1 11 lock cmpxchg %edx,(%ecx)
c013cb60: f0 0f b1 0e lock cmpxchg %ecx,(%esi)
c0148b3c: f0 0f b1 29 lock cmpxchg %ebp,(%ecx)
c0150d0f: f0 0f b1 3b lock cmpxchg %edi,(%ebx)
c0150d87: f0 0f b1 31 lock cmpxchg %esi,(%ecx)
c0199c5e: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c024b06f: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c024b2fe: f0 0f b1 51 18 lock cmpxchg %edx,0x18(%ecx)
c024b321: f0 0f b1 51 18 lock cmpxchg %edx,0x18(%ecx)
c024b34b: f0 0f b1 4b 18 lock cmpxchg %ecx,0x18(%ebx)
c024b960: f0 0f b1 53 18 lock cmpxchg %edx,0x18(%ebx)

Here’s the occurrence
 that we studied in the
 ‘rtc_cmos_read()’
 kernel-function…

…plus 28 other times!

The ‘preparation’ steps

• The instructions that preceed ‘cmpxchg’
will setup register EDX (source operand)
and register EAX (the x86 ‘accumulator’)

• Several instructions are used to set up a
value in EDX, and result in this layout:

The current processor’s value for
‘per_cpu__cpu_number’

plus 1
EDX:

CMOS
register’s

index

 31 8 7 0

 this might be zero…
 …but this part is guaranteed to be non-zero!

The ‘most likely’ senario

• One of the CPUs wishes to access CMOS
memory – so it needs to test ‘cmos_lock’
to be sure that access is now ‘unlocked’
(i.e., cmos_lock == 0 is true)

• The CPU copies the ‘cmos_lock’ variable
into the EAX, where it can then be tested
using the ‘test %eax, %eax’ instruction

• A conditional-jump follows the test

‘btr’/’bts’ versus ‘cmpxchg’

• In an earlier lesson we used the ‘btr’/’bts’
instructions to achieve ‘mutual exclusion’,
whereas Linux uses ‘cmpxchg’ to do that

• We think ‘btr’/’bts’ is easier to understand,
so why do you think the Linux developers
would prefer to use ‘cmpxchg’ instead?

<allow some class discussion here>

• The Intel documentation does not state
precisely how other EFLAGS status-bits
(besides ZF) are affected by ‘cmpxchg’,
only that they reflect the comparison of
‘accumulator’ and ‘destination’ operands

• Usually the CPU implements comparison-
of-operands by performing a subtraction

EFLAGS

C
F1P

F0A
F0Z

F
S
F

T
F

I
F

D
F

O
F

IOPL
N
T

R
F

V
M

A
C

 31 11 10 9 8 7 6 5 4 3 2 1 0

