
Name:

Directions: Work only on this sheet (on both sides, if
needed); do not turn in any supplementary sheets of pa-
per. There is actually plenty of room for your answers, as
long as you organize yourself BEFORE starting writing.
In order to get full credit, SHOW YOUR WORK.

ASSUME THROUGHOUT THAT WE ARE
DEALING WITH ORDINARY PCS RUNNING
LINUX. By the way, instructions like pushl w,
where w is a label in the .data section, are OK.

1. Consider the assembly language presentation of the
compiled code for NumNode.java on p.17 of our PLN
on the JVM.

(a) (5) Give the JVM machine code in hex for the
if cmpge instruction which starts at offset 21 of In-
sert().

(b) (5) Give the line number in the source code on p.16
whose compiled code includes this same if cmpge
instruction.

(c) (10) Suppose we are currently just about to execute
the putfield instruction in offset 6 of NumNode().
Draw the contents—in terms of variables in the
source code on p.16—of the operand stack at that
point (with the stack growing downward in your pic-
ture).

2. (10) Say an interrupt occurs during the execution of
some instruction. During Step D of that instruction, how
many bytes are read from memory? How many bytes are
written?

3. For each of the following instructions, state how many
bytes of memory are read, and how many are written. Do
not count instruction fetches.

(a) (10) addl $8, (%eax)

(b) (10) inb $50, %al

4. (5) Consider the threads example from discussion sec-
tion. Suppose we execute the program as

a.out /dev/pts/3 /dev/pts/2 /dev/pts/4 /dev/pts/6

and run ps (with whatever options are needed for
threads). How many threads will show up?

5. (15) Write OS code that launches a new user pro-
cess (as opposed to giving an already-existing process a
turn). Assume that the OS has stored the addresses of
the processes’ stack and first-executed instruction at the
OS’ variables stackstart and progstart, respecitively,
and that the initial value of EFLAGS is in initeflags.
Assume also that the values in the registers EAX, EBX
and so on will be initialized by the process itself. You
may have at most six instructions, hopefully fewer.

6. (10) Consider our very first assembly language exam-
ple program, in Section 4 of our PLN on Linux assembly
language. This code calculated the sum of a four-element
array. I’ve revised the code, so that it accomplishes this
same goal but in a different way. Here is the core of the
output from as -a:

_start:
0000 B8040000 movl $4, %eax

00

0005 BB000000 movl $0, %ebx
00

000a 031D0000 top: addl x, %ebx
0000

0010 80050C00 _______, top+_____
000004

0017 48 decl %eax
0018 75F0 jnz top
001a 891D1000 done: movl %ebx, sum

Fill in the blanks.

7. Consider a page fault ISR on an Intel machine, written
in assembly language.

(a) (10) At what address will the ISR start? Use the c()
notation in your answer, e.g. c(EBX)+8888*c(2000).

(b) (10) Suppose for some reason we want the ISR to
check whether the instruction that triggered the in-
terrupt was a JNZ. We’ll put 1 in EAX if that is the
case, and put 0 there otherwise. Fill in the blank:

movl $0, %eax

jnz q
movl $1, %eax

q:

Solutions:

1.a 0xa2000f

1.b 25

1.c

this
V

2. 12 bytes written, none read

3.a 4 bytes read, 4 bytes written

3.b no bytes read or written

4. 5 including main()

5.

movl stackstart, %esp
pushl initeflags
pushl $0
pushl progstart
iret

6. The program literally modifies itself.

addb $4, top+2

7.a

c(c(IDT) + 8 * 0xe)

cmpb (%cr2), $0x75

1

