Name:

Directions: Work only on this sheet (on both sides, if
needed); do not turn in any supplementary sheets of pa-
per. There is actually plenty of room for your answers, as
long as you organize yourself BEFORE starting writing.
In order to get full credit, SHOW YOUR WORK.

An oo number of points will be de-
ducted for illegibility.

1. (10) Consider the code

popl %ecx
popl %ecx
popl %ecx

(a) (10) Suppose we don’t plan to use the popped values.
Then fill in the blank in the instruction

addl __________, %hesp

so that it will have an equivalent effect as the set of
three pops.

(10) How many bytes of memory are read or written
(break it down accordingly) in the original code con-
sisting of three pops? What about in the case of the
add? Don’t count instruction fetches.

2. Consider the material in Section 7.1 (titled “First
Example”) of our PLN on subroutines.

In parts (a) and (b), suppose in line 24 the assembly
source code had accidentally been written as

call done
(a) (10) What would be the new machine language for
this instruction?

(10) Suppose we execute the program in GDB by
placing a breakpoint at done, as usual. What will
happen? (i) The program will produce a correct final
sum in EBX, with an extra stop at the breakpoint.
(ii) The program will produce an incorrect final sum
in EBX, with an extra stop at the breakpoint. (iii)
The program will produce a seg fault. (iv) The pro-
gram will eventually go into an infinite loop.

Parts (c) and (d) concern the GDB session.

(c¢) (10) State the addresses at which the .data and
.text segments begin.

(d) (10) Near the end of the session, I executed the GDB
command p sum. What output would I have gotten
if T had executed p/x $esp?

3. Consider Section 8.11 of our PLN on subroutines, ti-
tled “The Function main() IS...”

(a) (10) Suppose I were to run the program in GDB
and am currently about to execute the CALL on line
22. Specify a GDB command I could execute which
would print out the address of main()’s stack frame
(in hex).

(10) Suppose in the call to printf() we had asked
to print out argv[3] instead of argv[1l]. Which line
in the assembly language would change, and what
would it change to?

4. (10) Consider again the material in Section 7.1 of our
PLN on subroutines. The following code, in which you
will fill in the blanks, is to go between lines 25 and 26. It
will replace the first value in the x array, currently 1, by
a value to be read in from the keyboard.

pushl
pushl
pushl
pushl
pushl
call scanf

addl $8, Yesp
popl
popl
popl

The overall program has had two other changes made to
it:
fmt:

.string "%d" # in the .data segment

in place of _start
.globl main
main:

5. (10) Suppose we have an Intel-based PC with the
keyboard as in Section 4 of our PLN unit on I/0, except
that the keyboard ports have been attached to respond
to MR and MW instead of IOR and IOW. Rewrite in C
the assembly language code which reads one character.

Solutions:
1.a $12

1.b The original code reads 12 bytes, writes none; the
new code does not access memory.

2.a The op code, according to the PLN, ps 0xe8. The
distance from the next instruction after the call to done
is 0x001b-0x0010 = 0x0b. Taking little-endianness into
account, the instruction is then 0xe80b000000.

2.b The correct choice is (i). The CALL will cause a jump
to done, after which execution will continue downward
through the code, so that all of the code at and below
init will be executed, as desired. When we hit the RET
at offset 0x002e, that will cause a jump back to the saved
return address, which the CALL had put on the stack as
the address of the instruction immediately following the
CALL. Again, that jump will be just what we want. “It
all works out” (in this case, by accident).

2.c The queries to GDB show that just before the CALL
was to be executed, ¢(EIP) = 0x804807f. The output

of as -a shows that the CALL was at offset 0x000b of
the .text segment. So the latter must have started at
0x804807f-0x000b = 0x8048074.

The GDB session also shows that x was at location
0x80490a4. Since x was at the beginning of the .data
segment, the latter must also start at 0x80490a4.

2.d Our first query to GDB about ¢(ESP) had been just
before the CALL. At that time, the two arguments to
init() had already been pushed onto the stack. The exe-
cution of the CALL and then the RET had no net effect
on ESP, so when we reached the ADD which immediately
followed the CALL, ¢(ESP) was still what it had been at
our last query, Oxbfffcec8. The ADD then added 8 to that
value, yielding Oxbfffced0. ESP never changed after that.

3.a

p/x $ebp

3.b The instruction

movl $12(%ebp), %eax

pointed EAX to the beginning of argv, i.e. argv[0]. The
next line,

addl $4, Y%eax

moved EAX to point to argv[l]. If we want argv[3]
instead, then the number added should be 12 instead of
4.

4. Of course, just before the CALL, we need to push the
two arguments to scanf(), which are $x and $fmt. Note
that the first of those should NOT be x, in contrast to
the printf() case; that’s because our call in the scanf()
case would be scanf(”%”,&x)—mnote the ampersand.

But there’s more. We have to worry about what scanf()
might do to our register values. It says later in the notes
that the C compiler’s calling convention is as follows: The
module being compiled, in this case scanf(), must save
the values of the ESI, EDI and EBX registers that had
been there at the time the calling module makes the call.
In our case here, our calling module need not worry that
its value in EBX may be lost. On the other hand, our
calling module does use ECX, and the compiler does NOT
guarantee that the value in that register will be preserved;
so, we must save it on the stack before the call, and restore
it after the call. We could also save and restore EDX for
the same reason, in case we later add code which uses
EDX.

In addition, in calling any C function, we know that there
may be a return passed back in EAX. That is especially
true for the C library functions, which generally give a
result as a return value. So, in our calling module we
must protect EAX too, by saving it before the call and
restoring it afterward.

5.

char cl1, // will store the character which is read
c2, // will store a copy of the KSP Status

*P;

p = 0x62;
while(1)

// pointer to keyboard ports

{

€2 = *p;
if (!(c2 & 0x10)) break; // if KSP says key hit, break

}

cl = x(p-2); // read the character from the KDP
c2 |= 0x20;

*p = c2;

// flick ACK bit on

c2 &= 0Oxdf;

*p = c2;

// restore ACK bit to O

