
Name:

Directions: Work only on this sheet (on both sides, if
needed); do not turn in any supplementary sheets of pa-
per. There is actually plenty of room for your answers, as
long as you organize yourself BEFORE starting writing.

1. (10) Give a single assembly language instruction equiv-
alent to

popl %ecx
popl %ecx
popl %ecx

assuming that we do not care what the popped values
actually are.

2. (10) When the call scanf(”%d%d%d”,&u,&v,&w)
is compiled, how many push operations will appear before
the CALL instruction?

3. (10) Say you are running some program on CSIF that
makes use of a special library in your own home directory,
say /home/thisisme/. What command should you run
to enable the OS to find that library when you execute
the program?

4. (10) List the Intel-specific registers (using their offi-
cial Intel names) whose values are affected when a RET
instruction executes.

5. This problem concerns the code in pp.137-139. Sup-
pose we were to change things so that addone() would
have (as viewed as a function callable from C) the signa-
ture

int addone(int x)

as opposed to what was in the version in the book,

void addone(int *x)

The function will now return the value of its argument
plus 1.

(a) (30) Fill in the gap in the revised version of ad-
done():

.text

.globl addone
addone:

insert at most 4 instructions here
ret

(b) (30) Suppose the call in TryAddOne.c is now
wrapped inside a print call:

printf("%d\n",addone(x));

I ran the new code through gcc -S, an excerpt of
which appears below. Fill in the gaps.

movl $7, x
movl x, %eax
movl (%esp) # gap 1
call addone
movl # gap 2
movl $.LC0, (%esp)
call printf

Solutions:

1. addl $12, %esp

2. 4

3

setenv LD_LIBRARY_PATH /home/thisisme

4. ESP, EIP

5.a

.text

.globl addone
addone:

movl 4(%esp), %eax
incl %eax
ret

5.b

movl $7, x
movl x, %eax
movl %eax, (%esp)
call addone
movl %eax, 4(%esp)
movl $.LC0, (%esp)
call printf

1

