
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper.
There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

1. Consider the C and assembly code in Section 6.8.1, pp.134-136.

(a) (20) Based on the information here, how many arguments does exit() have? (i) None. (ii) One. (iii) Two. (iv)
Three. (v) It would have the number of arguments given in c(EAX).

(b) (25) Suppose that in running this code under GDB, I set a breakpoint at line 35, p.136, and run the program.
When it stopped at the breakpoint, I submitted these commands, with the results shown:

35 pop %ebx
(gdb) info registers
eax 0xbfaaaad4 -1079334188
ecx 0xbfaaaa50 -1079334320
edx 0x1 1
ebx 0x804a020 134520864
esp 0xbfaaaa18 0xbfaaaa18
ebp 0xbfaaaa38 0xbfaaaa38
esi 0x8048460 134513760
edi 0x8048340 134513472
eip 0x8048443 0x8048443 <addone+7>
eflags 0x200202 [IF ID]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51
(gdb) x/5x 0xbfaaaa18
0xbfaaaa18: 0xb8074ff4 0x0804841b 0x0804a020 0x08049ff4
0xbfaaaa28: 0xbfaaaa48

State the addresses of x and the instruction on line 26, p.135.

(c) (10) It would have been better to use ECX instead of EBX on p.136. Very briefly explain what advantage
would accrue from using ECX here, citing a specific passage in the textbook.

2. (25) Suppose we wish to store data on a stack that grows away from 0. Thus we cannot use the pushl instruction,
and of course subroutines calls will use the “normal” stack, not this one; we will just use this one to store data. Give
two lines of assembly code that will push the number 88 onto this new stack. Assume that EDX will serve as our
stack pointer.

3. (20) Suppose we’re writing an assembly language program whose .data segment is

.data
x: .long 0
fmt: .string "%d"

We wish to read in the value of x from the keyboard, by calling the C library function scanf(). Give assembly code
(no more than five lines) that will do this.

Solutions:

1a. (ii)

1b. x is at 0x804a020, and the instruction is at 0x0804841b.

1c. Page 141, bottom says we are guaranteed there will be no “live” values in ECX. Thus we need not save it on the
stack, and later pop it off, thus saving time.

2.

addl $4,%edx
movl $88,(%edx)

3.

pushl $x
pushl $fmt
call scanf

1

