
Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (10) For each of the following instructions, state the
number of bus transactions which would occur, including
the instruction fetch. (Ignore cache and prefetch effects.)

(a) movl %ebx,(%ecx)

(b) movl %ebx,(%esp)

(c) movl %ebx,12(%ecx)

(d) movl %ebx,x

(e) movl %ebx,x(%ecx)

(f) jnz top

2. Look at the output of as -a on p.15 of our unit on
subroutines.

In Parts (a) and (b) of this question, suppose that the
.data and .text segments begin at 0x4000 and 0x6000,
respectively. Suppose also that just before Step A for Line
24, c(ESP) = 0x1000. Use hex notation in your answers.

(a) (10) List the values, if any, which we can be sure that
will be in the PC at some point during the processing
of the instruction in Line 24. (“Processing” includes
Steps A-C, but you should NOT break your list down
according to step.)

(b) (10) Just prior to Step A of Line 35, state what
c(ESP) and c(ECX) will be.

In Part (c), do NOT make the assumptions used in Parts
(a) and (b).

(c) (15) Suppose the call in Line 24 and the ret in
Line 35 were both to be replaced by jmp instruc-
tions (with Line 26 having a label, say top2). Show
the machine code which would be produced by the
assembler for these two instructions.

3. (15) As discussed in our unit on machine language
and in class, in some cases the assembler can only “par-
tially” assemble an instruction, and the linker must later
adjust the code produced by the assembler. State which
instructions in this as -a output on pp.3-4 of the unit
on machine language fall into this category. Your answer
will consist of a list of line numbers.

4. (5) In the function sum() on p.10 of the unit on
subroutines, suppose the local variables had been:

int i=12,s=5,z[10];

Show the assembly code that gcc might produce from
this code fragment, in place of what we see at the top of
p.11. Make sure that you only modify the code on p.11,
not adding any new lines.

5. (10) In Homework III.A, we were finally able to take a
program consisting at least partly of assembly language
and run it by itself, i.e. not within GDB, without causing
a seg fault. Identify the line on pp.7-8 of the unit on
subroutines which made this possible.

6. (15) Say we have C code

int g(int x)
{ int q;
...
}
...
int y[20],z; // global variables
...
z = g(y[4]);

Show the assembly code that gcc might produce from
this code fragment, up to and including a call instruction.
(More than one answer is possible.)

Solutions:

1. 2, 2, 2, 2, 1

2.a 0x6000 (just prior to instruction fetch), 0x06005 (after
instruction decode), 0x6013 (after Step C)

2.b 0x1000 - 4 = 0xffc

2.c The first JMP will be only 2 bytes, rather than the
5 occupied by the CALL, to top will be at 0x0002 and
init will be at 0x0010. Thus the distance operand of the
first JMP will be 0x0010 - 0x0002 = 0x0e, and since the
op code is 0xeb, the JMP instruction will be 0xeb0e.

Again because everything is moved forward 3 bytes due
to having the CALL replaced by the shorter JMP, the
second JMP, which replaces the RET, would be at 0x0022
- 3 = 0x001f. That JMP instruction occupies 2 bytes, i.e.
0x001f and 0x0020, so the jump distance is measured from
0x0021 to top, which is at 0x0002. Thus the distance is
0x0002 - 0x0021 = -0x1f = 0xe1 (in 8-bit arithmetic, since
the distance operand is just 1 byte). So, the second JMP
instruction will be 0xebe1.

3. 27, 33

4.

subl $48, %esp
movl $5, -8(%ebp)
movl $12, -4(%ebp)

5. call exit

6. For example:

1

movl $16, %eax
pushl y(%eax)

2

