
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary
sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself
BEFORE starting writing. In order to get full credit, SHOW YOUR WORK.

1. (5) What is the hex (i.e. base-16) form of the decimal number 52?

2. (5) Fill in the blank: If you are using subroutines, you may not use the register for data storage.

3. The following questions are about the revised version of the program in Sec. 6 of our unit on Linux assembly
language. Assume throughout that x begins in location 0x500.

(a) (5) What will be the hex address of the word in the .data segment whose initial value is 22?

(b) (5) After the instruction labeled init is executed, what value will be in EAX?

(c) (5) Which instruction will be executed after the ret in init()? (Write out the exact assembly language
instruction here.)

(d) (5) What value will be in EBX at the time the first call to swap() is made?

(e) (10) With the data we have here, the array is correctly rearranged from (1, 5, 2, 18, 25, 22, 4) to (1, 2, 4, 5,
18, 22, 25). But suppose we had accidentally forgotten to put the parentheses in the instruction labeled top.
What would happen? Would the program likely generate a seg fault? If so, explain how. If not, what would
the final ordering be in the array?

4. (5) In the example of the speaker in Sec. 13.4 in our unit on Linux assembly language, why not use $0xc instead
of $0xfc? Explain fully.

5. (10) Consider the C statement

int g = 1985229328;

Note that 1985229328 = 7× 167 + 6× 166 + 5× 165 + 4× 164 + 3× 163 + 2× 162 + 1× 161 + 0× 160. Suppose &g
= 0x234. What is the content of byte 0x236, assuming this is run on an Intel machine?

6. (20) Suppose we have written an assembly language program z.s and we run as on it with the –gstabs option, so
that the assembler saves the symbol table. This produces a file z.o, which we link to create an executable file z. For
each of the following, answer either Yes or No, indicating whether the indicated information is saved in the symbol
table or not.

(i) The labels (i.e. names like x, sum and top) will be saved.

(ii) For labels in the .data segment, the types of the data (integer, character, etc.) will be saved.

(iii) For labels in the .data segment, the sizes in bytes of the data items will be saved.

(iv) For labels in the .data segment, the addresses (at least the offsets) of the labels will be saved.

7. (25) The following code might appear in an English/Chinese text editor:

.data
line: .space 12
nb: .long 12
neb: .long 0

.text

.globl _start
_start:

movl $0, %ebx
movl $line, %eax
movl nb, %ecx

1

top:
movb (%eax), %dl
______ ______, %dl # fill in operation and

source operand
jz x
addl ______, %eax
decl %ecx
jmp next

x:
incl %ebx
___________ # fill in one instruction here

next:
decl %ecx
jnz top
movl ______, neb

The string of bytes which comprise a line in the file to be edited starts at line. The label nb is the name of a word
which contains the number of bytes in the line.

The code is supposed to count the number of English characters in the line, and place that count in neb. Fill in the
blanks.

Solutions:

1. 0x34

2. ESP

3.a. 0x514

3.b. 0x500

3.c.

movl (%eax), %ecx

3.d. 5

3.e. 2, 4, 22, 0x504, 0x508, 0x510, 0x50c

4. We need to preserve the original values of the other bits.

5. The number in g is 0x76543210. Since Intel is little-endian, that implies that 0x10 is in byte 0x234, 0x32 is in
byte 0x235, 0x54 is in byte 0x236 and 0x76 is in byte 0x237.

6. (i) Yes. (ii) No. Remember, there are no types at the assembly language level. (iii) No. Similarly, there are no
sizes associated with labels. A label is only a name for the given byte (or, equivalently, the given word). (iv) Yes.
This is how we can do things like x/7w &x in GDB or DDD.

7.

.data
line: .space 12 # a line of characters from the file being edited
nb: .long 12 # length of "line" in bytes
neb: .long 0 # in end, will contain number of English characters

.text

.globl _start
_start:

EBX will hold a count of English characters
EAX will always point to the current character in "line"
ECX will serve as a loop counter
movl $0, %ebx
movl $line, %eax

2

movl nb, %ecx
top:

movb (%eax), %dl # get byte from "line"
test for high bit being a 1
andb $0x80, %dl
jz x
this is the Chinese case
addl $2, %eax
decl %ecx
jmp next

x:
English case
incl %ebx
incl %eax

next:
decl %ecx
jnz top
movl %ebx, neb

3

