
Name:

Directions: MAKE SURE TO COPY YOUR AN-
SWERS TO A SEPARATE SHEET FOR SENDING
ME AN ELECTRONIC COPY LATER.

1. (15) Suppose we are running a matrix application in
C on a single-core system. We might be doing various
operations with a matrix A, such as calculating row
and column sums, products of A with vectors (say, both
pre- and post-multiplying), and so on. Let n denote the
number of rows and columns of the matrix.

Of course, the elements of A are individual variables,
and thus they may be subject to false sharing problems.
Which of the following is true?

(i) With larger values of n, we probably won’t have
false sharing problems.

(ii) With smaller values of n, we probably won’t have
false sharing problems.

(iii) The value of n is irrelevant.

(iv) False sharing is not an issue if we have just one
core.

2. (30) Consider the Quicksort example using the
OpenMP task facility, Sec. 4.5.1. As we know, the
smaller the granularity in parallel computation, the
worse the adverse impact of overhead. So, here we might
add another argument to qs(), named k. If a task is
given a chunk (not in the first call) that is of size smaller
than k, this thread will NOT create new tasks.

In addition to adding the argument k to the declaration
of qs() and to calls to that function, two lines of the
original code must be changed. For each one, state the
line number and what the new contents of that line will
be.

NOTE CAREFULLY: In your electronic file, treat
the two changes as part (a) and part (b) of this prob-
lem. Also, you may assume that any nonparallel func-
tion used earlier in the book is available to you, callable
without function itself being in your code.

Sample answer:

change l i n e 88 to i f (!me) you

3. Consider the example on finding the maximal burst
in a time series, Sec. 4.14. Suppose we wish to find the
maximal sum rather than the maximal mean. So, in
line 51 sum() will be called instead of mean(). (Note:
The xi can be negative.) For convenience, we will in
general make minimal changes to the code, for example
using the same variable names.

(a) (10) Give the names of any variables that will no
longer be needed. If there are none, just write
None.

(b) (15) There is actually just one other line that needs
to be changed. State which one, and how it should
change.

4. (30) The Rdsm package has a barrier facility. Below
is the code, with some blanks. Fill them.

> barr
func t i on ()
{

r ea l rdsmlock (br l ock)
count <− barrnumle f t [1]
s ense <− bar r s ens e [1]
i f (count == 1) {

barrnumle f t [1] <− blank (a)
ba r r s ens e [1] <− blank (b)
rea l rdsmunlock (br lock)
re turn ()

}
e l s e {

barrnumle f t [1] <− barrnumle f t [1] − 1
rea l rdsmunlock (br lock)
repeat {

i f (ba r r s en se [1] != sense)
blank (c)

}
}

}

1

Solutions:

1. (iv) With multiple cores, a write to a variable by one core may unnecessarily invalidate other variables in the
same cache line at other cores. With a single core, there is no such problem.

2.

void swap (i n t ∗yi , i n t ∗ yj)
{ i n t tmp = ∗ y i ;
∗ y i = ∗ yj ;
∗ yj = tmp ;

}

i n t s epara t e (i n t ∗x , i n t low , i n t high)
{ i n t i , pivot , l a s t ;

p ivot = x [low] ; // would be be t t e r to take , e . g . , median o f 1 s t 3 e l t s
swap (x+low , x+high) ;
l a s t = low ;
f o r (i = low ; i < high ; i++) {

i f (x [i] <= pivot) {
swap (x+la s t , x+i) ;
l a s t += 1 ;

}
}
swap (x+la s t , x+high) ;
r e turn l a s t ;

}

i n t cmpints (i n t ∗u , i n t ∗v)
{ i f (∗u < ∗v) re turn −1;

i f (∗u > ∗v) re turn 1 ;
r e turn 0 ;

}

void qs (i n t ∗z , i n t z s t a r t , i n t zend , i n t f i r s t c a l l , i n t k)
{

#pragma omp p a r a l l e l
{ i n t part ;

i f (f i r s t c a l l == 1) {
#pragma omp s i n g l e nowait
qs (z , 0 , zend , 0 , k) ;

} e l s e {
i f (z s t a r t + k < zend) {

part = separa t e (z , z s t a r t , zend) ;
#pragma omp task
qs (z , z s t a r t , part −1 ,0 ,k) ;
#pragma omp task
qs (z , part+1,zend , 0 , k) ;

} e l s e q so r t (z+zs ta r t , zend−z s t a r t +1, s i z e o f (i n t) , cmpints) ;
}

}
}

3.a Line 33.

3.b Line 55:

xbar = xbar + x [perend] ;

4.

> barr
func t i on ()
{

r ea l rdsmlock (br l ock)
count <− barrnumle f t [1]
s ense <− bar r s ens e [1]
i f (count == 1) {

barrnumle f t [1] <− myinfo$nwrkrs
ba r r s en s e [1] <− 1 − bar r s ens e [1]
rea l rdsmunlock (br lock)
re turn ()

}
e l s e {

2

barrnumle f t [1] <− barrnumle f t [1] − 1
rea l rdsmunlock (br lock)
repeat {

i f (ba r r s en se [1] != sense)
break

}
}

}

3

