
Name:

Directions: Work only on this sheet (on
both sides, if needed). MAKE SURE TO COPY YOUR
ANSWERS TO A SEPARATE SHEET FOR SEND-
ING ME AN ELECTRONIC COPY LATER.

Important note: Remember that in problems calling
for R code, you are allowed to use any built-in R func-
tion, e.g. choose(), sum(), combn() etc.

1. There are various high-level threads access systems
other than OpenMP. One of them is a language called
Cilk++, developed at MIT and purchased by Intel.
Judging from the names of the Cilk++ constructs be-
low, give names of OpenMP or pthreads constructs that
should roughly correspond.

(a) (5) cilk for

(b) (5) cilk::reducer opadd

(c) (5) cilk::mutex

(d) (5) cilk spawn (a dictionary definition of spawn:
“to produce or create something”)

2. (10) Explain briefly why R’s snow library would
be a poor choice—essentially an impossible one—for
pipelined parallel algorithms such as in our MPI ex-
ample, Sec. 1.3.3.2.

3. Consider the in-place matrix transposition code in
Sec. 4.3.4.

(a) (10) Fill in the blank: Since each thread works on
completely separate elements of the matrix, there
“should” not be a lot of cache coherency transac-
tions. But there probably will be, due to the prob-
lem of .

(b) (10) Give a potential improvement to one (1) line
of the code.

4. (10) Consider the Dijkstra example, pp.71ff. Sup-
pose that in the end, shortest distances from vertex 0 to
vertex i are roughly correlated with i, i.e. vertices with
larger values of i tend to be further from 0. Comment
on performance issues that would likely arise. Cite cer-
tain variables and/or lines so that it is clear that you
understand the issues, but be brief. As usual, you are
limited to a single, hopefully not very long, line.

5. (40) The function below is written in R, but
could be applied to any scheduling situation; it is
merely an analytical tool. The call form is static-
time(tasktms,nth), where we have nth threads, and
tasktms are the task times, assumed here to be known
in advance.

Say for instance we have 6 tasks, needing times task-
tms[1] through tasktms[6], and 2 threads. We would

have some kind of parallel for loop, iterating i through
1 to 6; one thread would handle some values of i, and
the other thread would handle the others.

Here we assume the static scheduling algorithm used by
OpenMP, and the function will return the time needed
to complete all the tasks. Fill in the blanks.

s t a t i c t ime <− f unc t i on (tasktms , nth) {
n <− l ength (tasktms)
a1ton <− 1 : n
endtimes <− vec to r (l ength=nth)
f o r (i in 1 : nth) {

determine which ta sk s thread i w i l l handle
i f (i != nth) {

th i s 1doe s <−
blank (a)

} e l s e
th i s 1doe s <−

blank (b)
blank (c)

}
blank (d)

}

1

Solutions:

1.a OMP for pragma

1.b OMP reduction clause, with ’+’

1.c pthread mutex lock()

1.d pthread create()

2. It would be impossible to get parallelism this way, without direct communication between the workers.

3.a false sharing

3.b One could try special scheduling, say dynamic, on line 12.

4. Entry of the vertices into the nondone array will roughly occur in order of i, so that soon the low-numbered
threads have little or no work to do in line 54.

5. The problem was in part incorrectly specified, as it assumed (without saying so) a chunk size of 1. The code
below is written under that assumption.

In actuality, the default for static scheduling is to divide the iterations in approximately equal-sized chunks. In our
situation here, we could fill blank (a) with

((i −1) ∗ f l o o r (n/nth) + 1) : (i ∗ f l o o r (n/nth)

and do something similar for blank (b).

This does not affect the answers to blanks (c) and (d).

s t a t i c t ime <− f unc t i on (tasktms , nth) {
n <− l ength (tasktms)
a1ton <− 1 : n
endtimes <− vec to r (l ength=nth)
f o r (i in 1 : nth) {

determine which ta sk s thread i w i l l handle
i f (i != nth) {

th i s 1doe s <−
which (a1ton %% nth == i)

} e l s e
th i s 1doe s <−

which (a1ton %% nth == 0)
endtimes [i] <− sum(tasktms [th i s 1doe s])

}
max(endtimes)

}

2

