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1 What Is Discrete-Event Simulation?

Consider simulation of some system which evolves through time. There is a huge variety of such applica-
tions. One can simulate a weather system, for instance. A key point, though, is that in that setting, the events
being simulated would be continuous, meaning for example that if we were to graph temperature against
time, the curve would be continuous, no breaks.

By contrast, suppose we simulate the operation of a warehouse. Purchase orders come in and are filled,
reduced inventory, but inventory is replenished from time to time. Here a typical variable would be the
inventory itself, i.e. the number of items currently in stock for a given product. If we were to graph that
number against time, we would get what mathematicians call a step function, i.e. a set of flat line seg-
ments with breaks between them. The events here—decreases and increases in the inventory—are discrete
variables, not continuous ones.

2 World Views in Discrete-Event Simulation Programming

Simulation programming can often be difficult—difficult to write the code, and difficult to debug. The
reason for this is that it really is a form of parallel programming, with many different activities in progress
simultaneously, and parallel programming can be challenging.

For this reason, many people have tried to develop separate simulation languages, or at least simulation
paradigms (i.e. programming styles) which enable to programmer to achieve clarity in simulation code.
Special simulation languages have been invented in the past, notably SIMULA, which was invented in the
1960s and has significance today in that it was the language which invented the concept of object-oriented
programmg which is so popular today. However, the trend today is to simply develop simulation libraries
which can be called from ordinary languages such as C++, instead of inventing entire new languages.1 So,
the central focus today is on the programming paradigms, not on language. In this section we will present
an overview of the three major discrete-event simulation paradigms.

1These libraries are often called “languages” anyway, and I will do so too.
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2.1 The Activity-Oriented Paradigm

Let us think of simulating a queuing system. The time between arrivals of jobs, and the time needed to serve
a job, will be continuous random variables, possibly having exponential or other continuous distributions.

Under the activity-oriented paradigm, we would break time into tiny increments. If for instance the mean
interarrival time were, say 20 seconds, we might break time into increments of size 0.001. At each time
point, our code would look around at all the activities, e.g. currently-active service jobs, and check for the
occurrence of events, e.g. completion of service.

Let SimTime represent current simulated time. Our simulation code in the queue example above would look
something like this:

1 QueueLength = 0
2 NJobsServed = 0
3 SumResidenceTimes = 0
4 ServerBusy = false
5 generate NextArrivalTime // random # generation
6 NIncrements = MaxSimTime / 0.001
7 for SimTime = 1*0.001 to NIncrements*0.001 do
8 if SimTime = NextArrivalTime then
9 QueueLength++

10 generate NextArrivalTime // random # generation
11 if not ServerBusy then
12 ServerBusy = true
13 jobobject.ArrivalTime = SimTime
14 generate ServiceFinishedtime
15 currentjob = jobobject
16 add jobobject to queue
17 QueueLength--
18 else
19 if SimTime = ServiceFinishedtime then
20 NJobsServed++
21 SumResidenceTimes += SimTime - currentjob.ArrivalTime
22 if QueueLength > 0 then
23 generate ServiceFinishedtime // random # generation
24 QueueLength--
25 else
26 ServerBusy = false
27 print out SumResidenceTimes / NJobsServed

2.2 The Event-Oriented Paradigm

Clearly, an activity-oriented simulation program is going to be very slow to execute. Most time increments
will produce no change to the system at all, i.e. no new arrivals to the queue and no completions of service
by the server. Thus the activity checks will be wasted processor time. This is a big issue, because in general
simulation code often needs a very long time to run.

Inspection of the above pseudocode, though, shows a way to dramatically increase simulation speed. Instead
of having time “creep along” so slowly, why not take a “shortcut” to the next event? What we could do is
something like the following:

3



Instead of having the simulated time advance via the code

1 for SimTime = 1*0.001 to NIncrements*0.001 do

we could advance simulated time directly to the time of the next event:

1 if ServerBusy and NextArrivalTime < ServiceFinishedtime or
2 not ServerBusy then
3 SimTime = NextArrivalTime
4 else
5 SimTime = ServiceFinishedtime

(The reason for checking ServerBusy is that ServiceFinishedtime will be undefined if ServerBusy is false.)

The entire pseudocode would then be

1 QueueLength = 0
2 NJobsServed = 0
3 SumResidenceTimes = 0
4 ServerBusy = false
5 generate NextArrivalTime
6 SimTime = 0.0;
7 while (1) do
8 if ServerBusy and NextArrivalTime < ServiceFinishedtime or
9 not ServerBusy then

10 SimTime = NextArrivalTime
11 else
12 SimTime = ServiceFinishedtime
13 if SimTime > MaxSimTime then break
14 if SimTime = NextArrivalTime then
15 QueueLength++
16 generate NextArrivalTime
17 if not ServerBusy then
18 ServerBusy = true
19 jobobject.ArrivalTime = SimTime
20 currentjob = jobobject
21 generate ServiceFinishedtime
22 QueueLength--
23 else // the case SimTime = ServiceFinishedtime
24 NJobsServed++
25 SumResidenceTimes += SimTime - currentjob.ArrivalTime
26 if QueueLength > 0 then
27 generate ServiceFinishedtime
28 QueueLength--
29 else
30 ServerBusy = false
31 print out SumResidenceTimes / NJobsServed

The event-oriented paradigm formalizes this idea. We store an event set, which is the set of all pending
events. In our queue example above, for instance, there will always be at least one event pending, namely
the next arrival, and sometimes a second pending event, namely the completion of a service. Our code above
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simply inspects the scheduled event times of all pending events (again, there will be either one or two of
them in our example here), and updates SimTime to the minimum among them.

In the general case, there may be many events in the event set, but the principle is still the same—in each
iteration of the while loop, we update SimTime to the minimum among the scheduled event times. Note
also that in each iteration of the while loop, a new event is generated and added to the set; be sure to look at
the pseudocode above and verify this.

Thus a major portion of the execution time for the program will consist of a find-minimum operation within
the event set. Accordingly, it is desirable to choose a data structure for the set which will facilitate this
operation, such as a heap-based priority queue. In many event-oriented packages, though, the event set is
implemented simply as a linearly-linked list. This will be sufficiently efficient as long as there usually aren’t
too many events in the event set; again, in the queue example above, the maximum size of the event set is 2.

Again, note the contrast between this and continuous simulation models. The shortcut which is the heart
of the event-oriented paradigm was only possible because of the discrete nature of system change. So this
paradigm is not possible in models in which the states are continuous in nature.

The event-oriented paradigm was common in the earlier years of simulation, used in packages in which code
in a general-purpose programming language such as C called functions in a simulation library. It still has
some popularity today. Compared to the main alternative, the process-oriented paradigm, the chief virtues
of the event-oriented approach are:

• Ease of implementation. The process-oriented approach requires something like threads, and in those
early days there were no thread packages available. One needed to write one’s own threads mecha-
nisms, by writing highly platform-dependent assembly-language routines for stack manipulation.

• Execution speed. The threads machinery of process-oriented simulation really slows down execution
speed (even if user-level threads are used).

• Flexibility. If for example one event will trigger two others, it is easy to write this into the application
code.

2.3 The Process-Oriented Paradigm

Here each simulation activity is modeled by a process. The idea of a process is similar to the notion by
the same name in Unix, and indeed one could write process-oriented simulations using Unix processes.
However, these would be inconvenient to write, difficult to debug, and above all they would be slow.

As noted earlier, the old process-oriented software such as SIMULA and later CSIM were highly platform-
dependent, due to the need for stack manipulation. However, these days this problem no longer exists, due
to the fact that modern systems include threads packages (e.g. pthreads in Unix, Java threads, Windows
threads and so on). Threads are sometimes called “lightweight” processes.

If we were to simulate a queuing system as above, but using the process-oriented paradigm, we would have
two threads, one simulating the arrivals and the other simulating the operation of the server. Those would be
the application-specific threads (so NumActiveAppThreads = 2 in the code below), and we would also have
a general thread to manage the event set.

Our arrivals thread would look something like
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1 NumActiveAppThreads++
2 while SimTime < MaxSimTime do
3 generate NextArrivalTime
4 add an arrival event for time NextArrivalTime to the event set
5 sleep until wakened by the event-set manager
6 jobobject.ArrivalTime = SimTime
7 add jobobject to the machine queue
8 thread exit

The server thread would look something like

1 NumActiveAppThreads++
2 while SimTime < MaxSimTime do
3 sleep until QueueLength > 0
4 while QueueLength > 0 do
5 remove queue head and assign to jobobject
6 QueueLength--
7 generate ServiceFinishedtime
8 add a service-done event for time ServiceFinishedtime to the event set
9 sleep until wakened by the event-set manager

10 SumResidenceTimes += SimTime - jobobject.ArrivalTime
11 NJobsServed++
12 thread exit

The event set manager thread would look something like

1 while SimTime < MaxSimTime do
2 sleep until event set is nonempty
3 delete the minimum-time event E from the event set
4 update SimTime to the time scheduled for E
5 wake whichever thread had added E to the event set
6 thread exit

The main() program would look something like this:

1 QueueLength = 0
2 NJobsServed = 0
3 SumResidenceTimes = 0
4 ServerBusy = false
5 start the 3 threads
6 sleep until all 3 threads exit
7 print out SumResidenceTimes / NJobsServed

Note that the event set manager would be library code, while the other modules shown above would be
application code.

Two widely used process-oriented packages are C++SIM, available at http://cxxsim.ncl.ac.uk
and SimPy, available at http://simpy.sourceforge.net.

The process-oriented paradigm produces more modular code. This is probably easier to write and easier for
others to read. It is considered more elegant, and is the more popular of the two main world views today.
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3 Introduction to the SimPy Simulation Language

SimPy (rhymes with “Blimpie” is a public-domain package for process-oriented discrete-event simulation.
It is written in, and called from, Python. I like the clean manner in which it is designed, and the use of
Python generators—and for that matter, Python itself—is a really strong point. If you haven’t used Python
before, you can learn enough about it to use SimPy quite quickly; see my quick tutorial on Python, at my
Python tutorials page, http://heather.cs.ucdavis.edu/∼matloff/python.html.

Instead of using threads, as is the case for most process-oriented simulation packages, SimPy makes novel
use of Python’s generators capability.2 Generators allow the programmer to specify that a function can be
prematurely exited and then later re-entered at the point of last exit, enabling coroutines, meaning functions
that alternate execution with each other. The exit/re-entry points are marked by Python’s yield keyword.
Each new call to the function causes a resumption of execution of the function at the point immediately
following the last yield executed in that function. As you will see below, that is exactly what we need for
discrete-event simulation.

For convenience, I will refer to each coroutine (or, more accurately, each instance of a coroutine), as a
thread.3

3.1 How to Obtain and Install SimPy

You will need to have Python version 2.3 or better.

Download SimPy from SimPy’s Sourceforge site, http://simpy.sourceforge.net.

Create a directory, say /usr/local/SimPy.4 You need to at least put the code files Simulation. and init .
in that directory, and I will assume here that you also put in the test and documentation subdirectories which
come with the package, say as subdirectories of /usr/local/SimPy.

You’ll need that directory to be in your Python path, which is controlled by the PYTHONPATH environment
variable. Set this in whatever manner your OS/shell sets environment variable. For example, in a csh/UNIX
environment, type

setenv PYTHONPATH /usr/local/

Modify accordingly for bash, Windows, etc.

One way or the other, you need to be set up so that Python finds the library files correctly. Both the SimPy
example programs and our example programs here include lines like

from SimPy.Simulation import *

2Python 2.2 or better is required. See my Python generators tutorial at the above URL if you wish to learn about generators, but
you do not need to know about them to use SimPy.

3This tutorial does not assume the reader has a background in threads programming. In fact, readers who do have that back-
ground will have to unlearn some of what they did before, because our threads here will be non-preemptive, unlike the preemptive
type one sees in most major threads packages.

4My instructions here will occasionally have a slight Unix orientation, but it should be clear how to make the small adjustments
needed for other platforms.
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which instructs the Python interpreter to look for the module Simulation in the package SimPy. Given
the setting of PYTHONPATH above, Python would look in /usr/local/ for a directory SimPy, i.e. look
for a directory /usr/local/SimPy, and then look for Simulation.py and init .py (or their .pyc compiled
versions) within that directory.

Test by copying testSimPy from that directory to some other directory and then running

python testSimPy.py

Some graphical windows will pop up, and after you remove them, a message like “Run 54 tests...” will
appear.

3.2 SimPy Overview

Here are the major SimPy classes which we will cover in this introduction:5

• Process: simulates an entity which evolves in time, e.g. one job which needs to be served by a
machine; we will refer to it as a thread, even though it is not a formal Python thread

• Resource: simulates something to be queued for, e.g. the machine

Here are the major SimPy operations/function calls we will cover in this introduction:

• activate(): used to mark a thread as runnable when it is first created

• simulate(): starts the simulation

• yield hold: used to indicate the passage of a certain amount of time within a thread; yield is a Python
operator whose first operand is a function to be called, in this case a code for a function which performs
the hold operation in the SimPy library

• yield request: used to cause a thread to join a queue for a given resource (and start using it immedi-
ately if no other jobs are waiting for the resource)

• yield release: used to indicate that the thread is done using the given resource, thus enabling the next
thread in the queue, if any, to use the resource

• yield passivate: used to have a thread wait until “awakened” by some other thread

• reactivate(): does the “awakening” of a previously-passivated thread

• cancel(): cancels all the events associated with a previously-passivated thread

Here is how the flow of control goes from one function to another:

• When the main program calls simulate() the main program blocks. The simulation itself then begins,
and the main program will not run again until the simulation ends.

5Others will be covered in our followup tutorial at AdvancedSimpy.pdf.
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• Anytime a thread executes yield, that thread will pause. SimPy’s internal functions will then run, and
will restart some thread (possibly the same thread).

• When a thread is finally restarted, its execution will resume right after whichever yield statement was
executed last in this thread.

Note that activate(), reactivate() and cancel do NOT result in a pause to the calling function. Such a pause
occurs only when yield is invoked. Those with extensive experience in threads programming (which, as
mentioned, we do NOT assume here) will recognize this the non-preemptive approach to threads. In my
opinion, this is a huge advantage, for two reasons:

• Your code is not cluttered up with a lot of lock/unlock operations.

• Execution is deterministic, which makes both writing and debugging the program much easier.

(A disadvantage is that SimPy, in fact Python in general, cannot run in a parallel manner on multiprocessor
machines.)

3.3 Introduction to Using SimPy

We will demonstrate the usage of SimPy by presenting three variations on a machine-repair model. In
each case, we are modeling a system consisting of two machines which are subject to breakdown, but with
different repair patterns:

• MachRep1.py: There are two repairpersons, so that both machines can be repaired simultaneously if
they are both down at once.

• MachRep2.py: Here there is only one repairperson, so if both machines are down then one machine
must queue for the repairperson while the other machine is being repaired.

• MachRep3.py: Here there is only one repairperson, and he/she is not summoned until both machines
are down.

In all cases, the up times and repair times are assumed to be exponentially distributed with means 1.0 and
0.5, respectively. Now, let’s look at the three programs.6

3.3.1 MachRep1.py: Our First SimPy Program

Here is the code:

1 #!/usr/bin/env python
2

3 # MachRep1.py
4

5 # Introductory SimPy example: Two machines, which sometimes break down.

6You can make your own copies of these programs by downloading the raw .tex file for this tutorial, and then editing out the
material other than the program you want.
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6 # Up time is exponentially distributed with mean 1.0, and repair time is
7 # exponentially distributed with mean 0.5. There are two repairpersons,
8 # so the two machines can be repaired simultaneously if they are down
9 # at the same time.

10

11 # Output is long-run proportion of up time. Should get value of about
12 # 0.66.
13

14 import SimPy.Simulation
15 import random
16

17 class G: # global variables
18 Rnd = random.Random(12345)
19

20 class MachineClass(SimPy.Simulation.Process):
21 UpRate = 1/1.0 # reciprocal of mean up time
22 RepairRate = 1/0.5 # reciprocal of mean repair time
23 TotalUpTime = 0.0 # total up time for all machines
24 NextID = 0 # next available ID number for MachineClass objects
25 def __init__(self):
26 SimPy.Simulation.Process.__init__(self) # required
27 self.UpTime = 0.0 # amount of work this machine has done
28 self.StartUpTime = 0.0 # time the current up period started
29 self.ID = MachineClass.NextID # ID for this MachineClass object
30 MachineClass.NextID += 1
31 def Run(self):
32 while 1:
33 # record current time, now(), so can see how long machine is up
34 self.StartUpTime = SimPy.Simulation.now()
35 # hold for exponentially distributed up time
36 UpTime = G.Rnd.expovariate(MachineClass.UpRate)
37 yield SimPy.Simulation.hold,self,UpTime
38 # update up time total
39 MachineClass.TotalUpTime += SimPy.Simulation.now() - self.StartUpTime
40 RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
41 # hold for exponentially distributed repair time
42 yield SimPy.Simulation.hold,self,RepairTime
43

44 def main():
45 SimPy.Simulation.initialize() # required
46 # set up the two machine processes
47 for I in range(2):
48 # create a MachineClass object
49 M = MachineClass()
50 # register thread M, executing M’s Run() method,
51 SimPy.Simulation.activate(M,M.Run())
52 # run until simulated time 10000
53 MaxSimtime = 10000.0
54 SimPy.Simulation.simulate(until=MaxSimtime)
55 print "the percentage of up time was", \
56 MachineClass.TotalUpTime/(2*MaxSimtime)
57

58 if __name__ == ’__main__’: main()

First, some style issues:

• My style is to put all global variables into a Python class, which I usually call G. See my Python
tutorial if you wish to know my reasons.

• In order to be able to use debugging tools, I always define a function main() which is my “main”
program, and include the line

if __name__ == ’__main__’: main()
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Again, see my Python tutorial if you wish to know the reasons.

• In this first SimPy example, I am using the “wordier” form of Python’s import facility:

import SimPy.Simulation

This leads to rather cluttered code, such as

SimPy.Simulation.simulate(until=MaxSimtime)

instead of

simulate(until=MaxSimtime)

The latter could be used had we done the import via

from SimPy.Simulation import *

But in this first SimPy program, I wanted to clearly distinguish SimPy’s functions from the others.
The same holds for the functions in the Python library random. So, in this program, we use long
names.

Let’s look at main(). Since we are simulating two machines, we create two objects of our MachineClass
class. These will be the basis for our two machine threads. Here MachineClass is a class which I wrote, as
a subclass of SimPy’s built-in class Process.

By calling SimPy’s activate() function on the two instances of MachineClass, we tell SimPy to create a
thread for each of them, which will execute the Run() function for their class. This puts them on SimPy’s
internal “ready” list of threads which are ready to run.

The call to SimPy’s simulate() function starts the simulation. The next statement, the print, won’t execute
for quite a while, since it won’t be reached until the call to simulate() returns, and that won’t occur until the
end of the simulation.

Python allows named arguments in function calls,7, and this feature is used often in the SimPy library. For
example, SimPy’s simulate() function has many arguments, one of which is named until.8 In our call here,
we have only specified the value of until, omitting the values of the other arguments. That tells the Python
interpreter that we accept whatever default values the other arguments have, but we want the argument until
to have the value 10000.0. That argument has the meaning that we will run the simulation for a simulated
time span of duration 10000.0.

In general, I’ll refer to the functions like MachineClass.Run() in this example) as the process execution
method (PEM). (Functions in Python are called methods.)

The object G.Rnd is an instance of the Random class in the random module of the Python library. This
will allow us to generate random numbers, the heart of the simulation. We have arbitrarily initialized the
seed to 12345.

7See my Python tutorial.
8Look in the file Simulation.py of the SimPy library to see the entire code for simulate().
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Since we are assuming up times and repair times are exponentially distributed, our code calls the function
random.Random.expovariate(). Its argument is the reciprocal of the mean.9 Here we have taken the mean
up time and repair times to be 1.0 and 0.5, respectively, just as an example.

Note too that Python’s random class contains a variety of random number generators. To see what is
available, get into interactive mode in Python and type

>>> import random
>>> dir(random)

To find out what the functions do, use Python’s online help facility, e.g.

>>> help(random.expovariate)

The call to SimPy’s initialize() function is required for all SimPy programs.

Now, let’s look at MachineClass. First we define two class variables,10 TotalUpTime and NextID. As
the comment shows, TotalUpTime will be used to find the total up time for all machines, so that we can
eventually find out what proportion of the time the machines are up. Be sure to make certain you understand
why TotalUpTime must be a class variable rather than an instance variable.

Next, there is the class’ constructor function, init ().11 Since our class here, MachineClass, is a subclass
of the SimPy built-in class Process, the first thing we must do is call the latter’s constructor; our program
will not work if we forget this (it will also fail if we forget the argument self in either constructor).

Finally, we set several of the class’ instance variables, explained in the comments. Note in particular the ID
variable. You should always put in some kind of variable like this, not necessarily because it is used in the
simulation code itself, but rather as a debugging aid.

If you have experience with pre-emptive thread systems, note that we did NOT need to protect the line

MachineClass.NextID += 1

with a lock variable. This is because a SimPy thread retains control until voluntarily relinquishing it via a
yield. Our thread here will NOT be interrupted in the midst of incrementing MachineClass.NextID.

Now let’s look at the details of Machine.Run(), where the main action of the simulation takes place.

The SimPy function now() yields the current simulated time. We are starting this machine in up mode, i.e.
no failure has occurred yet. Remember, we want to record how much of the time each machine is up, so
we need to have a variable which shows when the current up period for this machine began. With this in
mind, we had our code self.StartUpTime = SimPy.Simulation.now() record the current time, so that later
the code

MachineClass.TotalUpTime += SimPy.Simulation.now() - self.StartUpTime

9You might think the mean would be a more natural form for the argument, but the reciprocal has physical meaning too, which
we will discuss later in our unit which reviews the laws of probability for continuous random variables.

10If you are not familiar with the general object-oriented programming terms class variable and instance variable, see my
Python tutorial.

11Some programmers consider this to be a bit different from a constructor function, but I’ll use that term here.
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will calculate the duration of this latest uptime period, and add it to our running total.

Again, make sure you understand why StartUpTime needs to be an instance variable rather than a class
variable.

A point to always remember about simulation programming is that you must constantly go back and forth
between two mental views of things. On the one hand, there is what I call the “virtual reality” view, where
you are imagining what would happen in the real system you are simulating. On the other hand, there is the
“nuts and bolts programming” view, in which you are focused on what actual program statesments do. With
these two views in mind, let’s discuss the lines

UpTime = G.Rnd.expovariate(MachineClass.UpRate)
yield SimPy.Simulation.hold,self,UpTime

First, from a “virtual reality” point of view, what the yield does is simulate the passage of time, specifically,
UpTime amount of time, while the machine goes through an up period, at the end of which a breakdown
occurs.

Now here’s the “nuts and bolts programming” point of view: Python’s yield construct is a like a return,
as it does mean an exit from the function and the passing of a return value to the caller. In this case, that
return value is the tuple (SimPy.Simulation.hold,self,UpTime). Note by the way that the first element in that
tuple is in SimPy cases always the name of a function in the SimPy library. The difference between yield
and return is that the “exit” from the function is only temporary. The SimPy internals will later call this
function again, and instead of starting at the beginning, it will “pick up where it left off.” In other words, the
statement

yield SimPy.Simulation.hold,self,UpTime

will cause a temporary exit from the function but later we will come back and resume execution at the line

MachineClass.TotalUpTime += SimPy.Simulation.now() - self.StartUpTime

The term “yield” alludes to the fact that this thread physically relinquishes control of the Python interpreter.
Execution of this thread will be suspended, and another thread will be run. Later, after simulated time
has advanced to the end of the up period, control will return to this thread, resuming exactly where the
suspension occurred.

The second yield,

RepairTime = G.Rnd.expovariate(MachineClass.RepairRate)
yield SimPy.Simulation.hold,self,RepairTime

works similarly, suspending execution of the thread for a simulated exponentially-distributed amount of time
to simulate the repair time.

In other words, the while loop within MachineClass.Run() simulates a repeated cycle of up time, down
time, up time, down time, ... for this machine.

It is very important to understand how control transfers back and forth among the threads. Say for example
that machine 0’s first uptime lasts 1.2 and its first downtime lasts 0.9, while for machine 1 the corresponding
times are 0.6 and 0.8. The simulation of course starts at time 0.0. Then here is what will happen:
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• The two invocations of activate() in main() cause the two threads to be added to the “runnable” list
maintained by the SimPy internals.

• The invocation of simulate() tells SimPy to start the simulation. It will then pick a thread from the
“runnable” list and run it. We cannot predict which one it will be, but let’s say it’s the thread for
machine 0.

• The thread for machine 0 will generate the value 1.2, then yield. SimPy’s internal event list will now
show that the thread for machine 0 is suspended until simulated time 0.0+1.2 = 1.2. This thread will
be moved to SimPy’s “suspended” list.

• The thread for machine 1 (the only available choice at this time) will now run, generating the value
0.6, then yielding. SimPy’s event list will now show that the thread for machine 0 is waiting until time
0.6. The “runnable” list will be empty now.

• SimPy advances the simulated time clock to the earliest event in the event list, which is for time 0.6.
It removes this event from the event list, and then resumes the thread corresponding to the 0.6 event,
i.e. the thread for machine 1.

• The latter generates the value 0.8, then yields. SimPy’s event list will now show that the thread for
machine 0 is waiting until time 0.6+0.8 = 1.4.

• SimPy advances the simulated time clock to the earliest event in the event list, which is for time 1.2.
It removes this event from the event list, and then resumes the thread corresponding to the 1.2 event,
i.e. the thread for machine 0.

• Etc.

When the simulation ends, control returns to the line following the call to simulate() where the result is
printed out:

print "the percentage of up time was", Machine.TotalUpTime/(2*MaxSimtime)

3.3.2 MachRep2.py: Introducing the Resource Class

Here is the code:

1 #!/usr/bin/env python
2

3 # MachRep2.py
4

5 # SimPy example: Variation of MachRep1.py. Two machines, but sometimes
6 # break down. Up time is exponentially distributed with mean 1.0, and
7 # repair time is exponentially distributed with mean 0.5. In this
8 # example, there is only one repairperson, so the two machines cannot be
9 # repaired simultaneously if they are down at the same time.

10

11 # In addition to finding the long-run proportion of up time as in
12 # Mach1.py, let’s also find the long-run proportion of the time that a
13 # given machine does not have immediate access to the repairperson when
14 # the machine breaks down. Output values should be about 0.6 and 0.67.
15

16 from SimPy.Simulation import *
17 from random import Random,expovariate,uniform
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18

19 class G: # globals
20 Rnd = Random(12345)
21 # create the repairperson
22 RepairPerson = Resource(1)
23

24 class MachineClass(Process):
25 TotalUpTime = 0.0 # total up time for all machines
26 NRep = 0 # number of times the machines have broken down
27 NImmedRep = 0 # number of breakdowns in which the machine
28 # started repair service right away
29 UpRate = 1/1.0 # breakdown rate
30 RepairRate = 1/0.5 # repair rate
31 # the following two variables are not actually used, but are useful
32 # for debugging purposes
33 NextID = 0 # next available ID number for MachineClass objects
34 NUp = 0 # number of machines currently up
35 def __init__(self):
36 Process.__init__(self)
37 self.StartUpTime = 0.0 # time the current up period stated
38 self.ID = MachineClass.NextID # ID for this MachineClass object
39 MachineClass.NextID += 1
40 MachineClass.NUp += 1 # machines start in the up mode
41 def Run(self):
42 while 1:
43 self.StartUpTime = now()
44 yield hold,self,G.Rnd.expovariate(MachineClass.UpRate)
45 MachineClass.TotalUpTime += now() - self.StartUpTime
46 # update number of breakdowns
47 MachineClass.NRep += 1
48 # check whether we get repair service immediately
49 if G.RepairPerson.n == 1:
50 MachineClass.NImmedRep += 1
51 # need to request, and possibly queue for, the repairperson
52 yield request,self,G.RepairPerson
53 # OK, we’ve obtained access to the repairperson; now
54 # hold for repair time
55 yield hold,self,G.Rnd.expovariate(MachineClass.RepairRate)
56 # release the repairperson
57 yield release,self,G.RepairPerson
58

59 def main():
60 initialize()
61 # set up the two machine processes
62 for I in range(2):
63 M = MachineClass()
64 activate(M,M.Run())
65 MaxSimtime = 10000.0
66 simulate(until=MaxSimtime)
67 print ’proportion of up time:’, MachineClass.TotalUpTime/(2*MaxSimtime)
68 print ’proportion of times repair was immediate:’, \
69 float(MachineClass.NImmedRep)/MachineClass.NRep
70

71 if __name__ == ’__main__’: main()

This model includes a queuing element. A typical (but not universal) way to handle that in SimPy is to add
an object of the SimPy class Resource:

RepairPerson = Resource(1)

with the “1” meaning that there is just one repairperson. Then in MachineClass.Run() we do the following
when an uptime period ends:
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yield request,self,G.RepairPerson
yield hold,self,G.Rnd.expovariate(MachineClass.RepairRate)
yield release,self,G.RepairPerson

Here is what those yield lines do:

• The first yield requests access to the repairperson. This will return immediately if the repairperson is
not busy now. Otherwise, this thread will be suspended until the repairperson is free, at which time
the thread will be resumed.

• The second yield simulates the passage of time, representing the repair time.

• The third yield releases the repairperson. If another machine had been in the queue, awaiting repair—
with its thread suspended, having executing the first yield—it would now attain access to the repair-
person, and its thread would now execute the second yield.

Suppose for instance the thread simulating machine 1 reaches the first yield slightly before the thread for
machine 0 does. Then the thread for machine 1 will immediately go to the second yield, while the thread
for machine 0 will be suspended at the first yield. When the thread for machine 1 finally executes the third
yield, then SimPy’s internal code will notice that the thread for machine 0 had been queued, waiting for the
repairperson, and would now reactivate that thread.

Note the line

if G.RepairPerson.n == 1:

Here n is a member variable in SimPy’s class Resource. It gives us the number of items in the resource
currently free. In our case here, it enables us to keep a count of how many breakdowns are lucky enough to
get immediate access to the repairperson. We later use that count in our output.

The same class contains the member variable waitQ, which is a Python list which contains the queue for the
resource. This may be useful in debugging, or if you need to implement a special priority discipline other
than the ones offered by SimPy.

Another member variable is activeQ, which is a list of threads which are currently using units of this re-
source.

3.3.3 MachRep3.py: Introducing Passivate/Reactivate Operations

Here’s the code:

#!/usr/bin/env python

# MachRep3.py

# SimPy example: Variation of Mach1.py, Mach2.py. Two machines, but
# sometimes break down. Up time is exponentially distributed with mean
# 1.0, and repair time is exponentially distributed with mean 0.5. In
# this example,there is only one repairperson, and she is not summoned
# until both machines are down. We find the proportion of up time. It
# should come out to about 0.45.
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from SimPy.Simulation import *
from random import Random,expovariate

class G: # globals
Rnd = Random(12345)
RepairPerson = Resource(1)

class MachineClass(Process):
MachineList = [] # list of all objects of this class
UpRate = 1/1.0
RepairRate = 1/0.5
TotalUpTime = 0.0 # total up time for all machines
NextID = 0 # next available ID number for MachineClass objects
NUp = 0 # number of machines currently up
def __init__(self):

Process.__init__(self)
self.StartUpTime = None # time the current up period started
self.ID = MachineClass.NextID # ID for this MachineClass object
MachineClass.NextID += 1
MachineClass.MachineList.append(self)
MachineClass.NUp += 1 # start in up mode

def Run(self):
while 1:

self.StartUpTime = now()
yield hold,self,G.Rnd.expovariate(MachineClass.UpRate)
MachineClass.TotalUpTime += now() - self.StartUpTime
# update number of up machines
MachineClass.NUp -= 1
# if only one machine down, then wait for the other to go down
if MachineClass.NUp == 1:

yield passivate,self
# here is the case in which we are the second machine down;
# either (a) the other machine was waiting for this machine to
# go down, or (b) the other machine is in the process of being
# repaired
elif G.RepairPerson.n == 1:

reactivate(MachineClass.MachineList[1-self.ID])
# now go to repair
yield request,self,G.RepairPerson
yield hold,self,G.Rnd.expovariate(MachineClass.RepairRate)
MachineClass.NUp += 1
yield release,self,G.RepairPerson

def main():
initialize()
for I in range(2):

M = MachineClass()
activate(M,M.Run())

MaxSimtime = 10000.0
simulate(until=MaxSimtime)
print ’proportion of up time was’, MachineClass.TotalUpTime/(2*MaxSimtime)

if __name__ == ’__main__’: main()

Recall that in this model, the repairperson is not summoned until both machines are down. We add a class
variable MachineClass.NUp which we use to record the number of machines currently up, and then use it
in the following code, which is executed when an uptime period for a machine ends:

1 if MachineClass.NUp == 1:
2 yield passivate,self
3 elif G.RepairPerson.n == 1:
4 reactivate(MachineClass.MachineList[1-self.ID])
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We first update the number of up machines, by decrementing MachineClass.NUp. Then if we find that
there is still one other machine remaining up, this thread must suspend, to simulate the fact that this broken
machine must wait until the other machine goes down before the repairperson is summoned. The way this
suspension is implemented is to invoke yield with the operand passivate. Later the other machine’s thread
will execute the reactivate() statement on this thread, “waking” it.

But there is a subtlety here. Suppose the following sequence of events occur:

• machine 1 goes down

• machine 0 goes down

• the repairperson arrives

• machine 0 starts repair12

• machine 0 finishes repair

• machine 1 starts repair

• machine 0 goes down again

The point is that when the thread for machine 0 now executes

if MachineClass.NUp == 1:

the answer will be no, since MachineClass.NUp will be 0. Thus this machine should not passivate itself.
But it is not a situation in which this thread should waken the other one either. Hence the need for the elif
condition.

3.3.4 MMk.py

Here is an alternate way to handle queues, by writing one’s own code to manage them. Though for most
situations in which entities queue for a resource we make use of the SimPy’s Resource class, there are some
situations in which we want finer control. For instance, we may wish to set up a special priority scheme, or
we may be modeling a system in which the number of resources varies with time.13

We thus need to be able to handle resource management “on our own,” without making use of the Resource
class. The following program shows how we can do this, via passivate() and reactivate():

1 #!/usr/bin/env python
2

3 # simulates NMachines machines, plus a queue of jobs waiting to use them
4

5 # usage: python MMk.py NMachines ArvRate SrvRate MaxSimtime
6

7 from SimPy.Simulation import *

12You might argue that machine 1 should be served first, but we put nothing in our code to prioritize the order of service.
13One way to do this with Resource is to use fake yield request and yield release statements, with the effect of reducing

and increasing the number of servers. However, this must be done carefully. See a discussion of this on the SimPy Web site, at
http://simpy.sourceforge.net/changingcapacity.htm.
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8 from random import Random,expovariate
9

10 # globals
11 class G:
12 Rnd = Random(12345)
13

14 class MachineClass(Process):
15 SrvRate = None # reciprocal of mean service time
16 Busy = [] # busy machines
17 Idle = [] # idle machines
18 Queue = [] # queue for the machines
19 NDone = 0 # number of jobs done so far
20 TotWait = 0.0 # total wait time of all jobs done so far, including
21 # both queuing and service times
22 def __init__(self):
23 Process.__init__(self)
24 MachineClass.Idle.append(self) # starts idle
25 def Run(self):
26 while 1:
27 # "sleep" until this machine awakened
28 yield passivate,self
29 MachineClass.Idle.remove(self)
30 MachineClass.Busy.append(self)
31 # take jobs from the queue as long as there are some there
32 while MachineClass.Queue != []:
33 # get the job
34 J = MachineClass.Queue.pop(0)
35 # do the work
36 yield hold,self,G.Rnd.expovariate(MachineClass.SrvRate)
37 # bookkeeping
38 MachineClass.NDone += 1
39 MachineClass.TotWait += now() - J.ArrivalTime
40 MachineClass.Busy.remove(self)
41 MachineClass.Idle.append(self)
42

43 class JobClass:
44 def __init__(self):
45 self.ArrivalTime = now()
46

47 class ArrivalClass(Process):
48 ArvRate = None
49 def __init__(self):
50 Process.__init__(self)
51 def Run(self):
52 while 1:
53 # wait for arrival of next job
54 yield hold,self,G.Rnd.expovariate(ArrivalClass.ArvRate)
55 J = JobClass()
56 MachineClass.Queue.append(J)
57 # any machine ready?
58 if MachineClass.Idle != []:
59 reactivate(MachineClass.Idle[0])
60

61 def main():
62 NMachines = int(sys.argv[1])
63 ArrivalClass.ArvRate = float(sys.argv[2])
64 MachineClass.SrvRate = float(sys.argv[3])
65 initialize()
66 for I in range(NMachines):
67 M = MachineClass()
68 activate(M,M.Run())
69 A = ArrivalClass()
70 activate(A,A.Run())
71 MaxSimtime = float(sys.argv[4])
72 simulate(until=MaxSimtime)
73 print MachineClass.TotWait/MachineClass.NDone
74

75 if __name__ == ’__main__’: main()
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3.3.5 SMP.py

Here is another example, this one modeling a multiprocessor computer system, i.e. one with many CPUs.

Here we see more use of SimPy’s request and release capabilities. One thing to pay particular attention to is
the fact that a processor needs at one point to have possession (yield request) of two things at once.

1 #!/usr/bin/env python
2

3 # SMP.py
4

5 # SimPy example: Symmetric multiprocessor system. Have m processors
6 # and m memory modules on a single shared bus. The processors read from
7 # and write to the memory modules via messages sent along this shared
8 # bus. The key word here is "shared"; only one entity (processor or
9 # memory module) can transmit information on the bus at one time.

10

11 # When a processor generates a memory request, it must first queue for
12 # possession of the bus. Then it takes 1.0 amount of time to reach the
13 # proper memory module. The request is queued at the memory module, and
14 # when finally served, the service takes 0.6 time. The memory module
15 # must then queue for the bus. When it acquires the bus, it sends the
16 # response (value to be read in the case of a read request,
17 # acknowledgement in the case of a write) along the bus, together with
18 # the processor number. The processor which originally made the request
19 # has been watching the bus, and thus is able to pick up the response.
20

21 # When a memory module finishes a read or write operation, it will not
22 # start any other operations until it finishes sending the result of the
23 # operation along the bus.
24

25 # For any given processor, the time between the completion of a previous
26 # memory request and the generation of a new request has an exponential
27 # distribution. The specific memory module requested is assumed to be
28 # chosen at random (i.e. uniform distribution) from the m modules.
29 # While a processor has a request pending, it does not generate any new
30 # ones.
31

32 # The processors are assumed to act independently of each other, and the
33 # requests for a given processor are assumed independent through time.
34 # Of course, more complex assumptions could be modeled.
35

36 from SimPy.Simulation import *
37 from random import Random,expovariate,uniform
38 import sys
39

40 class Processor(Process):
41 M = int(sys.argv[1]) # number of CPUs/memory modules
42 InterMemReqRate = 1.0/float(sys.argv[2])
43 NDone = 0 # number of memory requests completed so far
44 TotWait = 0.0 # total wait for those requests
45 WaitMem = 0
46 NextID = 0
47 def __init__(self):
48 Process.__init__(self)
49 self.ID = Processor.NextID
50 Processor.NextID += 1
51 def Run(self):
52 while 1:
53 # generate a memory request
54 yield hold,self,expovariate(Processor.InterMemReqRate)
55 self.StartWait = now() # start of wait for mem request
56 # acquire bus
57 yield request,self,G.Bus
58 # use bus
59 yield hold,self,1.0
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60 # relinquish bus
61 yield release,self,G.Bus
62 self.Module = G.Rnd.randrange(0,Processor.M)
63 # go to memory
64 self.StartMemQ = now()
65 yield request,self,G.Mem[self.Module]
66 if now() > self.StartMemQ:
67 Processor.WaitMem += 1
68 # simulate memory operation
69 yield hold,self,0.6
70 # memory sends result back to requesting CPU
71 yield request,self,G.Bus
72 yield hold,self,1.0
73 # done
74 yield release,self,G.Bus
75 yield release,self,G.Mem[self.Module]
76 Processor.NDone += 1
77 Processor.TotWait += now() - self.StartWait
78

79 # globals
80 class G:
81 Rnd = Random(12345)
82 Bus = Resource(1)
83 CPU = [] # array of processors
84 Mem = [] # array of memory modules
85

86 def main():
87 initialize()
88 for I in range(Processor.M):
89 G.CPU.append(Processor())
90 activate(G.CPU[I],G.CPU[I].Run())
91 G.Mem.append(Resource(1))
92 MaxSimtime = 10000.0
93 simulate(until=MaxSimtime)
94 print ’mean residence time’, Processor.TotWait/Processor.NDone
95 print ’prop. wait for mem’, float(Processor.WaitMem)/Processor.NDone
96

97 if __name__ == ’__main__’:
98 main()

3.3.6 Use of SimPy’s cancel() Function

In many simulation programs, a thread is waiting for one of two events; whichever occurs first will trigger
a resumption of execution of the thread. The thread will typically want to ignore the other, later-occurring
event. We can use SimPy’s cancel() function to cancel the later event.

An example of this is in the program TimeOut.py. The model consists of a network node which transmits
but also sets a timeout period, as follows: After sending the message out onto the network, the node waits
for an acknowledgement from the recipient. If an acknowledgement does not arrive within a certain specified
period of time, it is assumed that the message was lost, and it will be sent again. We wish to determine the
percentage of attempted transmissions which result in timeouts.

The timeout period is assumed to be 0.5, and acknowledgement time is assumed to be exponentially dis-
tributed with mean 1.0. Here is the code:

1 #!/usr/bin/env python
2

3 # Introductory SimPy example to illustrate the modeling of "competing
4 # events" such as timeouts, especially using SimPy’s cancel() method. A
5 # network node sends a message but also sets a timeout period; if the
6 # node times out, it assumes the message it had sent was lost, and it
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7 # will send again. The time to get an acknowledgement for a message is
8 # exponentially distributed with mean 1.0, and the timeout period is
9 # 0.5. Immediately after receiving an acknowledgement, the node sends

10 # out a new message.
11

12 # We find the proportion of messages which timeout. The output should
13 # be about 0.61.
14

15 # the main classes are:
16

17 # Node, simulating the network node, with our instance being Nd
18 # TimeOut, simulating a timeout timer, with our instance being TO
19 # Acknowledge, simulating an acknowledgement, with our instance being ACK
20

21 # overview of program design:
22

23 # Nd acts as the main "driver," with a loop that continually creates
24 # TimeOuts and Acknowledge objects, passivating itself until one of
25 # those objects’ events occurs; if for example the timeout occurs
26 # before the acknowledge, the TO object will reactivate Nd and cancel
27 # the ACK object’s event, and vice versa
28

29 from SimPy.Simulation import *
30 from random import Random,expovariate
31

32 class Node(Process):
33 def __init__(self):
34 Process.__init__(self)
35 self.NMsgs = 0 # number of messages sent
36 self.NTimeOuts = 0 # number of timeouts which have occurred
37 # ReactivatedCode will be 1 if timeout occurred, 2 ACK if received
38 self.ReactivatedCode = None
39 def Run(self):
40 while 1:
41 self.NMsgs += 1
42 # set up the timeout
43 G.TO = TimeOut()
44 activate(G.TO,G.TO.Run())
45 # set up message send/ACK
46 G.ACK = Acknowledge()
47 activate(G.ACK,G.ACK.Run())
48 yield passivate,self
49 if self.ReactivatedCode == 1:
50 self.NTimeOuts += 1
51 self.ReactivatedCode = None
52

53 class TimeOut(Process):
54 TOPeriod = 0.5
55 def __init__(self):
56 Process.__init__(self)
57 def Run(self):
58 yield hold,self,TimeOut.TOPeriod
59 G.Nd.ReactivatedCode = 1
60 reactivate(G.Nd)
61 self.cancel(G.ACK)
62

63 class Acknowledge(Process):
64 ACKRate = 1/1.0
65 def __init__(self):
66 Process.__init__(self)
67 def Run(self):
68 yield hold,self,G.Rnd.expovariate(Acknowledge.ACKRate)
69 G.Nd.ReactivatedCode = 2
70 reactivate(G.Nd)
71 self.cancel(G.TO)
72

73 class G: # globals
74 Rnd = Random(12345)
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75 Nd = Node()
76

77 def main():
78 initialize()
79 activate(G.Nd,G.Nd.Run())
80 simulate(until=10000.0)
81 print ’the percentage of timeouts was’, float(G.Nd.NTimeOuts)/G.Nd.NMsgs
82

83 if __name__ == ’__main__’: main()

The main driver here is a class Node, whose PEM code includes the lines

1 while 1:
2 self.NMsgs += 1
3 G.TO = TimeOut()
4 activate(G.TO,G.TO.Run())
5 G.ACK = Acknowledge()
6 activate(G.ACK,G.ACK.Run())
7 yield passivate,self
8 if self.ReactivatedCode == 1:
9 self.NTimeOuts += 1

10 self.ReactivatedCode = None

The node sets up a timeout by creating an object G.TO of our TimeOut class, and sets up a transmission
and acknowledgement by creating an object G.ACK of our Acknowledge class. Then the node passivates
itself, allowing G.TO and G.ACK to do their work. One of them will finish first, and then call SimPy’s
reactivate() function to “wake up” the suspended node. The node senses whether it was a timeout or
acknowledgement which woke it up, via the variable ReactivatedCode, and then updates its timeout count
accordingly.

Here’s what TimeOut.Run() does:

1 yield hold,self,TimeOut.TOPeriod
2 G.Nd.ReactivatedCode = 1
3 reactivate(G.Nd)
4 self.cancel(G.ACK)

It holds a random timeout time, then sets a flag in Nd to let the latter know that it was the timeout which
occurred first, rather than the acknowledgement. Then it reactivates Nd and cancels ACK. ACK of course
has similar code for handling the case in which the acknowledgement occurs before the timeout.

Note that in our case here, we want the thread to go out of existence when canceled. The cancel() function
does not make that occur. It simply removes the pending events associated with the given thread. The thread
is still there.

However, here the TO and ACK threads will go out of existence anyway, for a somewhat subtle reason:14

Think of what happens when we finish one iteration of the while loop in main(). A new object of type
TimeOut will be created, and then assigned to G.TO. That means that the G.TO no longer points to the old
TimeOut object, and since nothing else points to it either, the Python interpreter will now garbage collect
that old object.

You should notice some differences about this example from the machine-repair models we looked at earlier:
14Thanks to Travis Grathwell for pointing this out.
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• Rather than creating and activating all the threads before the simulation starts, here most of our threads
are created “on the fly,” as the simulation progresses.

• The functions Acknowledge.Run() and TimeOut.Run() don’t consist of while loops. Each thread
does one thing, and then exits.15

This is a common pattern.

Here is another example of cancel():

1 #!/usr/bin/env python
2

3 # JobBreak.py
4

5 # One machine, which sometimes breaks down. Up time and repair time are
6 # exponentially distributed. There is a continuing supply of jobs
7 # waiting to use the machine, i.e. when one job finishes, the next
8 # begins. When a job is interrupted by a breakdown, it resumes "where
9 # it left off" upon repair, with whatever time remaining that it had

10 # before.
11

12 from SimPy.Simulation import *
13 from random import Random,expovariate
14

15 import sys
16

17 class G: # globals
18 CurrentJob = None
19 Rnd = Random(12345)
20 M = None # our one machine
21

22 class Machine(Process):
23 def __init__(self):
24 Process.__init__(self)
25 def Run(self):
26 while 1:
27 UpTime = G.Rnd.expovariate(Machine.UpRate)
28 yield hold,self,UpTime
29 CJ = G.CurrentJob
30 self.cancel(CJ)
31 NewNInts = CJ.NInts + 1
32 NewTimeLeft = CJ.TimeLeft - (now()-CJ.LatestStart)
33 RepairTime = G.Rnd.expovariate(Machine.RepairRate)
34 yield hold,self,RepairTime
35 G.CurrentJob = Job(CJ.ID,NewTimeLeft,NewNInts,CJ.OrigStart,now())
36 activate(G.CurrentJob,G.CurrentJob.Run())
37

38 class Job(Process):
39 ServiceRate = None
40 NDone = 0 # jobs done so far
41 TotWait = 0.0 # total wait for those jobs
42 NNoInts = 0 # jobs done so far that had no interruptions
43 def __init__(self,ID,TimeLeft,NInts,OrigStart,LatestStart):
44 Process.__init__(self)
45 self.ID = ID
46 self.TimeLeft = TimeLeft # amount of work left for this job
47 self.NInts = NInts # number of interruptions so far
48 # time this job originally started
49 self.OrigStart = OrigStart
50 # time the latest work period began for this job
51 self.LatestStart = LatestStart
52 def Run(self):

15Or is canceled.
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53 yield hold,self,self.TimeLeft
54 # job done
55 Job.NDone += 1
56 Job.TotWait += now() - self.OrigStart
57 if self.NInts == 0: Job.NNoInts += 1
58 # start the next job
59 SrvTm = G.Rnd.expovariate(Job.ServiceRate)
60 G.CurrentJob = Job(G.CurrentJob.ID+1,SrvTm,0,now(),now())
61 activate(G.CurrentJob,G.CurrentJob.Run())
62

63 def main():
64 Job.ServiceRate = float(sys.argv[1])
65 Machine.UpRate = float(sys.argv[2])
66 Machine.RepairRate = float(sys.argv[3])
67 initialize()
68 SrvTm = G.Rnd.expovariate(Job.ServiceRate)
69 G.CurrentJob = Job(0,SrvTm,0,0.0,0.0)
70 activate(G.CurrentJob,G.CurrentJob.Run())
71 G.M = Machine()
72 activate(G.M,G.M.Run())
73 MaxSimtime = float(sys.argv[4])
74 simulate(until=MaxSimtime)
75 print ’mean wait:’, Job.TotWait/Job.NDone
76 print ’% of jobs with no interruptions:’, \
77 float(Job.NNoInts)/Job.NDone
78

79 if __name__ == ’__main__’: main()

Here we have one machine, with occasional breakdown, but we also keep track of the number of jobs done.
See the comments in the code for details.

Here we have set up a class Job. Each object of this type models one job to be done. Let’s take a look at
Job.Run():

1 yield hold,self,self.TimeLeft
2 Job.NDone += 1
3 Job.TotWait += now() - self.OrigStart
4 if self.NInts == 0: Job.NNoInts += 1
5 SrvTm = G.Rnd.expovariate(Job.ServiceRate)
6 G.CurrentJob = Job(G.CurrentJob.ID+1,SrvTm,0,now(),now())
7 activate(G.CurrentJob,G.CurrentJob.Run())

This looks innocuous enough. We hold for the time it takes to finish the job, then update our totals, and
launch the next job. What is not apparent, though, is that we may actually never reach that second line,

Job.NDone += 1

The reason for this is that the machine may break down before the job finishes. In that case, what we have set
up is that Machine.Run() will cancel the pending job completion event, simulate the repair of the machine
and then create a new instance of Job which will simulate the processing of the remainder of the interrupted
job.

There are other ways of doing this, in particular by using SimPy’s interrupt() and interrupted() functions,
but again, we defer this to a separate document in http://heather.cs.ucdavis.edu/∼matloff/
156/PLN.

25

http://heather.cs.ucdavis.edu/~matloff/156/PLN
http://heather.cs.ucdavis.edu/~matloff/156/PLN


3.3.7 Note These Restrictions

Some PEMs may be rather lengthy, and thus you will probably want to apply top-down program design and
break up one monolithic PEM into smaller functions. In other words, you may name your PEM Run(), and
then have Run() in turn call some smaller functions. This is of course highly encouraged. However, you
must make sure that you do not invoke yield in those subprograms; it must be used only in the PEM itself.
Otherwise the Python interpreter would lose track of where to return the next time the PEM were to resume
execution.

Also, make sure NOT to invoke yield from within main() or some other function not associated with a call
to activate().

3.3.8 Other SimPy Features

Advanced features of SimPy will be discussed in separate documents in http://heather.cs.ucdavis.
edu/∼matloff/156/PLN.

3.4 SimPy Data Collection and Display

SimPy provides the class Monitor to make it more convenient to collect data for your simulation output. It
is a subclass of the Python list type.

3.4.1 Introduction to Monitors

For example, suppose you have a variable X in some line in your SimPy code and you wish to record all
values X takes on during the simulation. Then you would set up an object of type Monitor, say named
XMon, in order to remind yourself that this is a monitor for X. Each time you have a value of X to record,
you would have a line like

XMon.observe(X)

which would add the value, and the current simulated time, to the list in XMon. (So, XMon’s main data
item is a list of pairs.)

The Monitor class also includes member functions that operate on the list. For example, you can compute
the mean of X:

print ’the mean of X was’, XMon.mean()

For example, we could apply this to the program MMk.py in Section 3.3.4. Here are code excerpts where
we would make changes (look for lines referring to WaitMon):

class MachineClass(Process):
...
TotWait = 0.0
WaitMon = Monitor()
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def __init__(self):
...

def Run(self):
while 1:
...

while MachineClass.Queue != []:
J = MachineClass.Queue.pop(0)
yield hold,self,G.Rnd.expovariate(MachineClass.SrvRate)
Wait = now() - J.ArrivalTime
MachineClass.WaitMon.observe(Wait)

...
MaxSimtime = float(sys.argv[4])
simulate(until=MaxSimtime)
print MachineClass.WaitMon.mean()

There is a function Monitor.var() for the variance too.

Note, though, that means are often not meaningful, no pun intended. To get a better understanding of queue
wait times, for instance, you may wish to plot a histogram of the wait times, rather than just computing their
mean. This is possible, via the function Monitor.histogram, which finds the bin counts and places them
into a data structure which can then be displayed using SimPy’s SimPlot package.

Indeed, since monitors collect all the data, you can write your own routines (or better, subclasses of Monitor,
to find quantiles, etc.

3.4.2 Time Averages

Suppose in the example above we wished to find the long-run queue length. Before addressing how to do
this, let’s first ask what it really means.

Suppose we record every queue length that occurs in our simulation run, and take the average of those
numbers. Would that be what we want? No, because it doesn’t account for the time duration of each of
those numbers. If for instance the queue had length 5 for long periods of time but had length 2 for shorter
times, clearly we should not give the 5 and the 2 equal weights. We need to factor the durations into our
weighting.

Say for instance the queue lengths were as follows: 2 between times 0.0 and 1.4, 3 between times 1.4 and
2.1, 2 between times 2.1 and 4.9, and 1 between 4.9 and 5.3. Then the average would be

(2× 1.4 + 3× 0.7 + 2× 2.8 + 1× 0.4)/5.3 = 2.06 (1)

Another way to look at it would be to think of observing the system at regular time intervals, say 1.0, 2.0,
3.0 etc. Let Qi denote the queue length observed at time i. Then we could define the long-run average queue
length as

lim
n→∞

Q1 + ... + Qn

n
(2)

This actually is consistent with (1), in the long run.
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3.4.3 The Function Monitor.timeAverage()

The function Monitor.timeAverage() computes time-value product averages for us, very convenient. Each
time the queue changes length, you would call Monitor.observe() with the current queue length as argument,
resulting in Monitor recording the length and the current simulated time (from now()).

In our little numerical example which led to (1), when the simulation ends, at time 5.3, the monitor will
consist of this list of pairs: [ [0.0,2], [1.4,3], [2.1,2], [4.9,1] ] The function timeAverage() would then
compute the value 2.06, as desired.

3.4.4 But I Recommend That You Not Use This Function

You should be careful, though. Properly keeping track of when to call timeAverage() is a bit delicate. Also,
this function only gives you a mean, not variances or other statistics.

Thus I recommend that you simply set up another thread whose sole purpose is to add periodic sampling to
estimate (2). This is simpler, more general and more flexible. To that end, here is a function you can use:

1 # PeriodicSampler.py
2

3 # creates a thread for periodic sampling, e.g. to be used for long-run
4 # queue length; the arguments Per, Mon and Fun are the sampling period,
5 # the monitor to be used, and the function to be called to get the data
6 # to be recorded
7

8 from SimPy.Simulation import *
9

10 class PerSmp(Process):
11 def __init__(self,Per,Mon,Fun):
12 Process.__init__(self)
13 self.Per = Per
14 self.Mon = Mon
15 self.Fun = Fun
16 def Run(self):
17 while 1:
18 yield hold,self,self.Per
19 Data = self.Fun()
20 self.Mon.observe(Data)

Here the argument Per allows us to sample with whatever frequency we like. A higher rate gives us more
statistical accuracy (due to taking more samples), while a lower rate means a somewhat faster program.

Note the need for the function argument Fun. We need to tell PerSmp what data item to record. If we had
made the argument that data, then we’d only get the first value of that data (probably 0 or None), rather than
the changing values over time.

Here is an example of use:

1 #!/usr/bin/env python
2

3 # PerSmpExample.py--illustration of usage of the PerSmp class
4

5 # single-server queue, with interarrival and service times having
6 # uniform distributions on (0,1) and (0,0.5), respectively
7

8 from SimPy.Simulation import *
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9 from random import Random,uniform
10 import sys
11 from PeriodicSampler import PerSmp
12

13 class G: # globals
14 Rnd = Random(12345)
15 S = None # our one disk
16

17 class Srvr(Resource):
18 def __init__(self):
19 Resource.__init__(self)
20 self.QMon = Monitor() # monitor queue lengths
21 self.PrSm = PerSmp(1.0,self.QMon,self.SMonFun)
22 activate(self.PrSm,self.PrSm.Run())
23 def SMonFun(self): # for PerSmp
24 return len(self.waitQ)
25

26 class Job(Process):
27 def __init__(self):
28 Process.__init__(self)
29 self.ArrivalTime = now()
30 def Run(self):
31 yield request,self,G.S
32 yield hold,self,G.Rnd.uniform(0,0.5)
33 yield release,self,G.S
34

35 class Arrivals(Process):
36 def __init__(self):
37 Process.__init__(self)
38 def Run(self):
39 while 1:
40 yield hold,self,G.Rnd.uniform(0,1)
41 J = Job()
42 activate(J,J.Run())
43

44 def main():
45 initialize()
46 A = Arrivals()
47 activate(A,A.Run())
48 G.S = Srvr()
49 MaxSimtime = 10000.0
50 simulate(until=MaxSimtime)
51 print ’mean queue length:’,G.S.QMon.mean()
52

53 if __name__ == ’__main__’: main()

3.4.5 Little’s Rule

Little’s Rule says,

mean queue length = arrival rate × mean wait

For First Come, First Served queues, an informal proof goes along the following lines: Imagine that you
have just gotten to the head of the queue and have started service, with a wait of 5 minutes, and that the
arrival rate is 2 jobs per minute. During your 5-minute wait, there would be an average of 5 × 2 = 10 jobs
arriving, thus an average of 10 jobs behind you now in the queue, i.e. the mean queue length should be 10.
Little’s Rule has been formally proved in quite broad generality, including for non-FCFS priority policies.

The point is that if your simulation program is finding the mean wait anyway, you can get the mean queue
length from it via Little’s Rule, without any extra code.
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3.5 Another Example: Call Center

1 #!/usr/bin/env python
2

3 # patients call in, with exponential interarrivals with rate Lambda1;
4 # they queue up for a number of advice nurses which varies through time
5 # (initially 1); service time is exponential with rate Lambda2; if the
6 # system has been empty (i.e. no patients in the system, either being
7 # served or in the queue) for TO amount of time, the number of nurses
8 # is reduced by 1 (but it can never go below 1); a new TO period is then
9 # begun; when a new patient call comes in, if the new queue length is

10 # at least R the number of nurses is increased by 1, but it cannot go
11 # above K; here the newly-arrived patient is counted in the queue
12 # length
13

14 # usage:
15

16 # python PhoneCenter.py K, R, TO, Lambda1, Lambda2, MaxSimtime, Debug
17

18 from SimPy.Simulation import *
19 from random import Random,expovariate
20 import sys
21 import PeriodicSampler
22

23 # globals
24 class G:
25 Rnd = Random(12345)
26 NrsPl = None # nurse pool
27

28 class NursePool(Process):
29 def __init__(self,MOL,R,TO):
30 Process.__init__(self)
31 # the nurses:
32 self.Rsrc = Resource(capacity=MOL,qType=PriorityQ)
33 self.Mon = Monitor() # monitor numbers of nurses online
34 self.PrSm = PeriodicSampler.PerSmp(1.0,self.Mon,self.MonFun)
35 activate(self.PrSm,self.PrSm.Run())
36 self.MOL = MOL # maximum number of nurses online
37 self.R = R
38 self.TO = TO
39 self.NrsCurrOnline = 0 # current number of nurses online
40 self.TB = None # current timebomb thread, if any
41 def MonFun(self):
42 return self.NrsCurrOnline
43 def Run(self):
44 # want to start with only 1 nurse online, so take MOL-1 offline
45 for I in range(self.MOL-1):
46 yield request,self,self.Rsrc,100
47 self.NrsCurrOnline = 1
48 # queue starts empty, so start timebomb
49 self.TB = TimeBomb(self.TO,self)
50 activate(self.TB,self.TB.Run())
51 # this thread is a server, usually sleeping but occasionally being
52 # wakened to handle an event:
53 while True:
54 yield passivate,self # sleep until an event occurs:
55 if self.WakingEvent == ’arrival’:
56 # did this patient encounter an empty system?
57 if self.TB:
58 self.cancel(self.TB)
59 self.TB = None
60 else:
61 # check for need to expand pool
62 # how many in queue, including this new patient?
63 NewQL = len(self.Rsrc.waitQ) + 1
64 if NewQL >= self.R and self.NrsCurrOnline < self.MOL:
65 # bring a new nurse online
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66 yield release,self,self.Rsrc
67 self.NrsCurrOnline += 1
68 continue # go back to sleep
69 if self.WakingEvent == ’departure’:
70 if PtClass.NPtsInSystem == 0:
71 # start new timebomb
72 self.TB = TimeBomb(self.TO,self)
73 activate(self.TB,self.TB.Run())
74 continue # go back to sleep
75 if self.WakingEvent == ’timebomb exploded’:
76 if self.NrsCurrOnline > 1:
77 # must take 1 nurse offline
78 yield request,self,self.Rsrc,100
79 self.NrsCurrOnline -= 1
80 # start new timebomb
81 self.TB = TimeBomb(self.TO,self)
82 activate(self.TB,self.TB.Run())
83 continue # go back to sleep
84

85 class TimeBomb(Process):
86 def __init__(self,TO,NrsPl):
87 Process.__init__(self)
88 self.TO = TO # timeout period
89 self.NrsPl = NrsPl # nurse pool
90 self.TimeStarted = now() # for debugging
91 def Run(self):
92 yield hold,self,self.TO
93 self.NrsPl.WakingEvent = ’timebomb exploded’
94 if G.Debug: ShowStatus(’timebomb exploded’)
95 reactivate(self.NrsPl)
96

97 class PtClass(Process):
98 SrvRate = None # service rate
99 NPtsServed = 0 # total number of patients served so far

100 TotWait = 0.0 # total wait time of all patients served so far
101 NPtsInSystem = 0 # for debugging
102 def __init__(self):
103 Process.__init__(self)
104 self.ArrivalTime = now()
105 def Wakeup(self,Evt): # wake nurse pool manager
106 reactivate(G.NrsPl)
107 # state the cause
108 G.NrsPl.WakingEvent = Evt
109 def Run(self):
110 # changes which trigger expansion or contraction of the nurse pool
111 # occur at arrival points and departure points
112 PtClass.NPtsInSystem += 1
113 if G.Debug: ShowStatus(’arrival’)
114 self.Wakeup(’arrival’)
115 # dummy to give nurse pool thread a chance to wake up, possibly
116 # change the number of nurses, and reset the timebomb:
117 yield hold,self,0.00000000000001
118 yield request,self,G.NrsPl.Rsrc,1
119 if G.Debug: ShowStatus(’srv start’)
120 yield hold,self,G.Rnd.expovariate(PtClass.SrvRate)
121 yield release,self,G.NrsPl.Rsrc
122 PtClass.NPtsInSystem -= 1
123 if G.Debug: ShowStatus(’srv done’)
124 PtClass.NPtsServed += 1
125 Wait = now() - self.ArrivalTime
126 PtClass.TotWait += Wait
127 self.Wakeup(’departure’)
128

129 class ArrivalClass(Process):
130 ArvRate = None
131 def __init__(self):
132 Process.__init__(self)
133 def Run(self):
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134 while 1:
135 yield hold,self,G.Rnd.expovariate(ArrivalClass.ArvRate)
136 Pt = PtClass()
137 activate(Pt,Pt.Run())
138

139 def ShowStatus(Evt): # for debugging
140 print
141 print Evt, ’at time’, now()
142 print G.NrsPl.NrsCurrOnline, ’nurse(s) online’
143 print PtClass.NPtsInSystem, ’patient(s) in system’
144 if G.NrsPl.TB:
145 print ’timebomb started at time’, G.NrsPl.TB.TimeStarted
146 else: print ’no timebomb ticking’
147

148 def main():
149 K = int(sys.argv[1])
150 R = int(sys.argv[2])
151 TO = float(sys.argv[3])
152 initialize()
153 G.NrsPl = NursePool(K,R,TO)
154 activate(G.NrsPl,G.NrsPl.Run())
155 ArrivalClass.ArvRate = float(sys.argv[4])
156 PtClass.SrvRate = float(sys.argv[5])
157 A = ArrivalClass()
158 activate(A,A.Run())
159 MaxSimTime = float(sys.argv[6])
160 G.Debug = int(sys.argv[7])
161 simulate(until=MaxSimTime)
162 print ’mean wait =’,PtClass.TotWait/PtClass.NPtsServed
163 print ’mean number of nurses online =’,G.NrsPl.Mon.mean()
164

165 if __name__ == ’__main__’: main()

3.6 Debugging SimPy Programs

As with any other type of programming, do yourself a big favor and use a debugging tool, rather than
just adding print statements. See my debugging slide show for general tips on debugging, at http:
//heather.cs.ucdavis.edu/∼matloff/debug.html, and I have some points on Python de-
bugging in particular in my introductory Python tutorial, available at my Python tutorials page, http:
//heather.cs.ucdavis.edu/∼matloff/python.html.

This section then provides debugging tips specific to simulation programming, especially with SimPy.

3.6.1 Checking Your Simulation Program’s Correctness

In simulation situations, we typically do not have good test cases to use to check our code. After all, the
reason we are simulating the system in the first place is because we don’t know the quantity we are finding
via simulation.

So, in simulation contexts, the only way to really check whether your code is correct is to use your debugging
tool to step through the code for a certain amount of simulated time, verifying that the events which occur
jibe with the model being simulated.

What I recommend is that you add a special function to your code, named something like ShowStatus(),
which will print out all the current information. You should then have your debugging tool automatically
call this function every time you hit a breakpoint.
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I also recommend doing these checks first starting at time 0.0, and later again at some fairly large time, say
at the halfway point of the total amount of time you wish to simulate (i.e. half of the variable MaxSimTime
in our examples above). The latter is important, as some bugs only show up after the simulation has been
running for a long time.

3.6.2 PDB: Primitive, But a Must-Know

Python comes with its own debugger, PDB. It’s very primitive, but it can be made to work well, and it is
the basis for other more sophisticated debugging tools. In addition, some of my general remarks on SimPy
debugging will be presented in this section. So, this section is “must reading.” I assume here that you are
familiar with the material on PDB in the appendix on debugging in my Python tutorial.

Know How Control Transfers in SimPy Programs:

Your ability to debug SimPy programs will be greatly enhanced by having some degree of familiarity with
SimPy’s internal operations. You should review the overview section of this SimPy tutorial, concerning how
control transfers among various SimPy functions, and always keep this in mind. Consider for example what
happens when you execute your code in PDB, and reach a line like

yield hold,self,Rnd.expovariate(ArrvRate)

Let’s see what will now happen with the debugging tool. First let’s issue PDB’s n (”next”) command, which
skips over function calls, so as to skip over the call to expovariate(). We will still be on the yield line:

(Pdb) n
--Return--
> /usr/home/matloff/Tmp/tmp6/HwkIII1.py(14)Run()->(1234, yield hold,self,Rnd.expovariate(ArrvRate)

If we were to issue the n command again, the hold operation would be started, which causes us to enter
SimPy’s holdfunc() method:

(Pdb) n
> /usr/local/SimPy/Simulation.py(388)holdfunc()
-
. holdfunc(a):

This presents a problem. We don’t want to traipse through all that SimPy internals code.

One way around this would be to put breakpoints after every yield, and then simply issue the continue
command, c, each time we hit a yield.

Another possibility would be to use the debugger’s command which allows us to exit a function from within.
In the case of PDB, this is the r (”return”) command. We issue the command twice:

(Pdb) r
--Return--
> /usr/local/SimPy/Simulation.py(389)holdfunc()->None
-> a[0][1]._hold(a)
(Pdb) r
> /usr/home/matloff/Tmp/tmp6/HwkIII1.py(29)Run()->(1234, , 0.45785058071658913)
-> yield hold,self,Rnd.expovariate(ExpRate)
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Ah, there, we’re finally out of that bewildering territory.

Always Know What (Simulated) Time It Is:

Again, PDB is not a fancy debugging tool, but it really can be effective if used well. Here for instance is
something I recommend you use within PDB when debugging a SimPy application:

alias c c;;now()

This replaces PDB’s continue command by the sequence: continue; print out the current simulated time. Try
it! I think you’ll find it very useful. If so, you might put it in your .pdbrc startup file, say in each directory
in which you are doing SimPy work.16

Of course, you can also change the alias temporarily to automatically call your function which I suggested
earlier:

alias c c;;ShowStatus()

and make sure that when you write the function you include a call to now().

Starting Over:

During your debugging process, you will often need to start the program over again, even though you have
not finished. To do this, first stop the simulation:

(Pdb) stopSimulation()

Then hit c a couple of times to continue, which will restart the program.

If your program runs into an execution error, hit c in this case as well.

Repeatability:

The debugging process will be much easier if it is repeatable, i.e. if successive runs of the program give
the same output. In order to have this occur, you need to use random.Random() to initialize the seed for
Python’s random number generator, as we have done in our examples here.

Peeking at the SimPy’s Internal Event List:

Here is another trick which you may find useful. You can print out SimPy’s internal event list with the
following code in each of your PEMs:17

from SimPy.Simulation import _e

(Note that if a Python name begins with , you must explicitly ask for access; the wildcard form of
from...import... doesn’t pick up such variables.)

The internal events list is e.events, and is implemented as a Python dictionary type, showing the events
(address of threads) for each simulated time in the future. For example,

16Or, put it in one special directory, say your home directory, and run a link from each other directory where you use it.
17As of this writing, I don’t see why the statement doesn’t work if written globally.
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(Pdb) _e.events
{4.9862113069200458: [<SimPy.Simulation._Action instance at
0x4043334c>], 3.3343289782218619: [<SimPy.Simulation._Action instance at
0x4043332c>]}

And as mentioned earlier, you can print out the wait queue for a Resource object, etc.

3.6.3 Emacs and DDD

Both of these give a nicer interface to PDB. Again, see my Python tutorial for details on how to use them.

Since both of them use PDB, remarks made above for PDB apply. In particular, I strongly recommend that
you use the alias

(Pdb) alias c c;;now()

or even

(Pdb) alias c c;;now());;_e.events

DDD has a nice feature whereby specified variables can be displayed constantly at the top of the screen.
Make liberal use of it.

3.6.4 SimPy’s Tracing Library

SimPy includes a special version of the file Simulation.py, called SimulationTrace.py, which you may
find useful in your debugging sessions. Largely, what these do is to formalize and automate some of the tips
I’ve given above.

3.7 Online Documentation for SimPy

Remember that Python includes documentation which is accessible in interactive mode, via dir(), help()
and PyDoc. See my Python tutorial for details.

Of course, you can also look in the SimPy source code.
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