
1
WHY R?

1.1 What Is R?

R is a scripting language for statistical data manipula-
tion and analysis. It was inspired by, and is mostly com-
patible with, the statistical language S developed by
AT&T. The name S, obviously standing for statistics,
was an allusion to another programming language de-
veloped at AT&T with a one-letter name, C. S later was
sold to a small firm, which added a GUI interface and
named the result S-Plus.

R has become more popular than S/S-Plus, both because it’s free and
because more people are contributing to it. R is sometimes called “GNU S,”
to reflect its open source nature. (GNU is a major collection of open source
software.)

1.2 Why Use R for Your Statistical Work?

Why use anything else? As the Cantonese say, yauh peng, yauh leng—“both
inexpensive and beautiful."

Its virtues:

• a public-domain implementation of the widely-regarded S statistical lan-
guage; R/S is the de facto standard among professional statisticians

• comparable, and often superior, in power to commercial products in
most senses

• available for Windows, Macs, Linux

• in addition to enabling statistical operations, it’s a general programming
language, so that you can automate your analyses and create new func-
tions

• object-oriented and functional programming structure

• your data sets are saved between sessions, so you don’t have to reload
each time

• open-software nature means it’s easy to get help from the user commu-
nity, and lots of new functions get contributed by users, many of whom
are prominent statisticians

I should warn you that one typically submits commands to R via text in
a terminal window, rather than mouse clicks in a Graphical User Interface
(GUI). If you can’t live without GUIs, you use one of the free GUIs that have
been developed for R, e.g. R Commander or JGR, or for programming, ESS,
but most users do not use a GUI. This is not to say that R doesn’t do graph-
ics. On the contrary, it produces excellent graphics. But the graphics are for
the output, e.g. plots, not for the input.

The terms object-oriented and functional programming may pique the in-
terests of computer scientists, but they may be foreign to other readers. Yet
they are actually quite relevant to anyone who uses R.

The term object-oriented can be explained by example, say statistical re-
gression. When you perform a regression analysis with other statistical pack-
ages, say SAS or SPSS, you get a mountain of output on the screen. By con-
trast, if you call the lm() regression function in R, the function returns an
object containing all the results—estimated coefficients, their standard er-
rors, residuals, etc. You then pick and choose which parts of that object to
extract, as you wish.

You will see that this makes programming much easier, partly because
there is a uniformity of access. This stems from the fact that R is polymor-
phic, which means that the same function can be applied to different types
of objects, with results tailored to the different object types. Such a func-
tion is called a generic function. (If you are a C++ programmer, you may have
seen the same concept in virtual functions.) Consider for instance the plot()

function. If you apply it to a simple list of numbers, you get a simple plot
of them, but if you apply it to the output of a regression analysis, you get a
set of plots of various aspects of the regression output. This is nice, since it
means that you, as a user, have fewer commands to remember! For instance,
you know that you can use the plot() function on just about any object pro-
duced by R.

The fact that R is a programming language rather than a collection of
discrete commands means that you can combine several commands, each

2 Chapter 1

one using the output of the last, with the resulting combination being quite
powerful and extremely flexible. (Linux users will recognize the similarity to
shell pipe commands.)

For example, consider this (compound) command

nrow(subset(x03,z==1))

First the subset() function takes the data frame x03, and extracts all those
records for which the variable z has the value 1. The resulting new frame is
then fed into the nrow() function, the function that counts the number of
rows in a frame. The net effect is to report a count of z = 1 in the original
frame.

R has many functional programming features, with important advan-
tages:

• Clearer, more compact code.

• Potentially much faster execution speed.

• Less debugging (since you write less code).

• Easier transition to parallel programming.

A common theme in R programming is the avoidance of writing explicit
loops. Instead, one exploits R’s functional programming and other features,
which do the loops internally. They are in some cases much more efficient,
which can make a huge timing difference when running R on large data
sets.

Why R? 3

2
GETTING STARTED

In this chapter you’ll get a quick introduction to R—
how to invoke it, what it can do and what files it uses.
We’ll develop just enough of the basics for use in ex-
amples in the next few chapters. Details will come later.

You may already have R installed on your machine, as for instance your
employer or university may have installed it. If not, see Chapter ?? for easy
installation instructions.

2.1 How to Run R

R has two modes, interactive and batch. The former is the typical one used.
You type in commands, get results, type further commands and so on. Batch
mode is useful for production jobs, in which the same program is run, say
once per day, and you want the process to be automated.

2.1.1 Interactive Mode

You start R by typing “R” on the command line in a Linux or Mac terminal
window. (The Macintosh operating system is basically Unix, and thus R’s
behavior is typically Unix-like, thus the same as Linux.) In a Windows, click
on the R icon. In any of these cases, you’ll get a greeting, and then the R
prompt, the > sign. The screen will look something like

R version 2.10.0 (2009-10-26)

Copyright (C) 2009 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

...

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

You can then execute R commands. The window in which all this appears is
called the R console.

For example, let’s find the mean absolute value of the N(0,1) distribu-
tion, based on a simulated sample of 100 N(0,1) variates:

> mean(abs(rnorm(100)))

[1] 0.7194236

The code generates the 100 random variates, then finds their absolute val-
ues, then finds the mean of those values.

The “[1]” here means in this row of output, the first item is item 1 of
that output. If there were say, two rows of output with six items per row, the
second row would be labeled [7]. Our output in this case consists of only
one row, but this notation helps users read voluminous output consisting of
many rows. Here is an example:

> rnorm(10)

[1] -0.6427784 -1.0416696 -1.4020476 -0.6718250 -0.9590894 -0.8684650

[7] -0.5974668 0.6877001 1.3577618 -2.2794378

There are 10 values in the output, and the label “[7]” in the second row is
telling us that, for instance, the eighth output item is 0.6877001.

You can also store some R commands in a file, say z.R. (By convention,
R code files have the suffix .R or .r.) You could then issue the command

> source("z.r")

which would execute the contents of that file.

2.1.2 Running R in Batch Mode

Sometimes it’s preferable to automate the process of running R. For exam-
ple, we may wish to run an R script that generates a graph output file, and
not have to bother with manually running R. Here’s how it could be done.

Let’s put our code into a file z.R, with contents

6 Chapter 2

pdf("xh.pdf") # set graphical output file

hist(rnorm(100)) # generate 100 N(0,1) variates and plot their histogram

dev.off() # close the graphical output file

The items marked with # are comments. They’re ignored by the R interpreter,
but serve as memos to ourselves, reminding us what we were doing. Here is
what the above code does:

• We call the pdf() function to inform R that we will want the graph we
create to be saved in the file xh.pdf.

• We call rnorm() (“random normal”) to generate 100 N(0,1) random vari-
ates.

• We call hist() on those variates, to draw a histogram of them.

• We call dev.off(), to close the graphical device we were using, in this
case the file xh.pdf. This is the mechanism that actually causes the file
contents to be written to disk.

We could run this code automatically, without entering R’s interactive
mode, by simply typing an operating system shell command (e.g. with the $
prompt common in Linux systems):

$ R CMD BATCH z.R

You can confirm that this worked by using your PDF viewer to display
the saved histogram.

2.2 A First R Example Session (5 Minutes)

Let’s make a simple data set, a vector in R parlance, consisting of the num-
bers 1, 2 and 4, and name it x:

> x <- c(1,2,4)

The standard assignment operator in R is <-. One can use =, but its use
is discouraged, as it does not work in some special situations.

Note that there are no types associated with variables. Here we’ve pointed
x to a vector, but later we could assign something of a different type to it.

The “c" stands for “concatenate." Here we are concatenating the num-
bers 1, 2 and 4. Or more precisely, we are concatenating three one-element
vectors consisting of those numbers. This is because any number is consid-
ered a one-element vector.

We can also do, for instance,

> q <- c(x,x,8)

which would set q to (1,2,4,1,2,4,8) (yes, including the duplicates).

Getting Started 7

Since “seeing is believing," we can confirm that the data is really in x;
to print the vector to the screen, simply type its name. If you type any vari-
able name, or more generally an expression, while in interactive mode, R
will print out the value of that variable or expression. (Programmers of some
other languages, such as Python, will find this feature familiar.) For exam-
ple,

> x

[1] 1 2 4

Yep, sure enough, x consists of the numbers 1, 2 and 4.
Individual elements of a vector are accessed via “[].” For instance, let’s

print out the third element of x:

> x[3]

[1] 4

As with other languages, that 3 is called the index or subscript. For those
familiar with ALGOL-family languages such as C/C++, note that R elements
begin at index 1, not 0.

A very important operation on vectors is subsetting. For example,

> x <- c(1,2,4)

> x[2:3]

[1] 2 4

The expression x[2:3] refers to the subvector of x consisting of elements
2 through 3, which are 2 and 4 here.

We can easily find the mean and standard deviation:

> mean(x)

[1] 2.333333

> sd(x)

[1] 1.527525

Note that this is again an example of R’s interactive mode feature in
which typing an expression results in printing the expression’s value. In the
first instance above, our expression is “mean(x),” which does have a value—
the return value of the function. Thus the value is printed automatically,
without our having to, say, call R’s print() function.

If we had wanted to save the mean in a variable instead of just printing it
to the screen, we could do, say,

> y <- mean(x)

Again, since you are learning, let’s confirm that y really does contain the
mean of x:

8 Chapter 2

> y

[1] 2.333333

As noted earlier, we use # to write comments.

> y # print out y

[1] 2.333333

These of course are especially useful when writing programs, but they
are useful for interactive use too, since R does record your command history
(see Section ??). The comments then help you remember what you were
doing when you later read that record.

As the last example in this quick introduction to R, let’s work with one
of R’s internal datasets, which it uses for demos. You can get a list of these
datasets by typing

> data()

One of the datasets is Nile, containing data on the flow of the Nile River.
Let’s again find the mean and standard deviation,

> mean(Nile)

[1] 919.35

> sd(Nile)

[1] 169.2275

and also plot a histogram of the data:

> hist(Nile)

A window pops up with the histogram in it, as seen in Figure ??. This
one is bare-bones simple, but R has all kinds of bells and whistles you can use
optionally. For instance, you can change the number of bins by specifying
the breaks variable; hist(z,breaks=12) would draw a histogram of the data z

with 12 bins. You can make nicer labels, and do many other things to make
the graph more informative and eye-appealing. When you become more
familiar with R, you’ll be able to construct complex rich color graphics of
striking beauty.

Well, that’s the end of this first 5-minute introduction. We leave by call-
ing the quit function (or optionally by hitting ctrl-d in Linux or a Mac):

> q()

Save workspace image? [y/n/c]: n

That last question asks whether we want to save our variables, so that
we can resume work later on. If we answer y, then the next time we run R,
all those objects will automatically be loaded. This is a very important fea-
ture, especially when working with large or numerous datasets; see more in

Getting Started 9

Histogram of Nile

Nile

F
re

qu
en

cy

400 600 800 1000 1200 1400

0
5

10
15

20
25

Figure 2-1: Nile data, nonfancy presentation

Section ??. Note that answering y here also results in our command history
being saved.

2.3 Functions: a Short Programming Example

As with most programming languages, the heart of R programming consists
of writing functions, groups of code that take inputs, compute something
with them, and then output a result.

In the following example, we first define a function oddcount() while in
R’s interactive mode. (Normally we would compose the function using a text
editor, but in this quick-and-dirty example, we enter it line by line in interac-
tive mode.) We then call the function on a couple of test cases.

The goal of the function is to count the number of odd numbers in its
argument vector.

counts the number of odd integers in x

> oddcount <- function(x) {

+ k <- 0 # assign 0 to k

+ for (n in x) {

10 Chapter 2

+ if (n %% 2 == 1) k <- k+1 # %% is the modulo operator

+ }

+ return(k)

+ }

> oddcount(c(1,3,5))

[1] 3

> oddcount(c(1,2,3,7,9))

[1] 4

Since there are three odd numbers in the vector (1,3,5), the call oddcount(c(1,3,5))
returned the value 3. There are four odd numbers in (1,2,3,7,9), so the call
returned 4.

Here is what happened when we defined the function above: We first
told R that we would define a function oddcount() of one argument x. The
left brace demarcates the start of the body of the function. We wrote one
R statement per line. Since we were still in the body of the function, R re-
minded us of that by using + as its prompt instead of the usual >. (Actually,
this is a line continuation character.) After we finally entered a right brace
to end the function body, R resumed the > prompt.

As noted in the comment, in R %% is the “mod” operator, i.e. for remain-
der arithmetic. For example, 38 divided by 7 leaves a remainder of 3:

> 38 %% 7

[1] 3

By the way, C/C++ programmers might be tempted to write the above
loop as

for (i in 1:length(x)) {

if (x[i] %% 2 == 1) k <- k+1

}

Here length(x) is the number of elements in x. Say it’s 25. Then 1:length(x)

means 1:25, which in turn means 1,2,3,...,25. This would work, but one of
the major themes of R is to first avoid loops if possible, and if not, to keep
loops simple. Our original formulation

for (n in x) {

if (n %% 2 == 1) k <- k+1 # %% is the modulo operator

}

is simpler and cleaner, as we do not have to resort to using the length() func-
tion.

In general programming language terminology, x is referred to as the
formal argument (or formal parameter) of the function oddcount(). In the first
example call above, c(1,3,5) is referred to as the actual argument. These terms
allude to the fact that x is just a placeholder, while c(1,3,5) is the value ac-

Getting Started 11

tually used in the computation. In the second example, c(1,2,3,7,9) is the
actual argument.

A variable in effect only within a function body is said to be local to that
function. In oddcount() above, k and n are local variables. They disappear
when the function returns, e.g.

> oddcount(c(1,2,3,7,9))

[1] 4

> n

Error: object 'n' not found

It’s very important to note that function arguments in R are read-only.
Suppose we have the call

> z <- c(2,6,7)

> oddcount(z)

and suppose that the code in a different version of oddcount() were to change
x. Then z would not change. (This is because, internally R makes a copy of
each argument to an unseen local variable, and changes to an argument are
implemented as changes to the unseen local.) This will be discussed in detail
in Chapter ??.

Variables created outside functions are global, and are available within
functions as well:

> f <- function(x) return(x+y)

> y <- 3

> f(5)

[1] 8

Many programmers dislike using global variables, as they believe it makes
code hard to follow. I do not hold that view, and would point out that in fact
some situations, e.g. threads programming (Chapter ??), actually require use
of globals.

In any event, if one feels comfortable using global variables, a global can
be written to from within a function, using R’s superassignment operator,
<<-. This is discussed in Chapter ??.

R also makes frequent use of default arguments. In the (partial) function
definition

> g <- function(x,y=2,z=T)

y will be initialized to 2 if the programmer does not specify y in the call. Sim-
ilarly, z will have the default value TRUE. In the call

> g(12,z=FALSE)

12 Chapter 2

the value 12 will be the actual argument for x, and we are accepting the de-
fault value of 2 for y, but we are overriding the default for z, setting it to
FALSE.

Note that R allows one to abbreviate TRUE and FALSE to Tand F, which I of-
ten do. But this can cause trouble if the programmer has T or F as a variable
name, so you may wish to avoid abbreviating the boolean, i.e. logical, values.

2.4 Preview of Some Important R Data Structures

Here we browse through some of the most frequently-used R data structures.
This will give you a better overview of R before diving into the details, and
will also allow usage of these structures in examples without having “forward
references.”

2.4.1 Vectors, the R Workhorse

The vector type is really the core of R. It’s hard to imagine R code, or even
an R interactive session, that doesn’t involve vectors.

The elements of a vector must all have the same mode, i.e. data type.
One can have, say, a vector consisting of three character strings, i.e. three
elements of mode character, or three elements of integers (mode integer),
but not one integer element and two character string elements.

There is much more to say about vectors, but our examples of vectors in
the preceding sessions will suffice for now. So, let’s move on to the next type
of data, matrices.

2.4.2 Matrices

An R matrix corresponds to the mathematical concept of the same name,
i.e. a rectangular array of numbers. Technically, it is a vector, with two at-
tributes added—the numbers of rows and columns.

Here is some sample code:

> m <- rbind(c(1,4),c(2,2))

> m

[,1] [,2]

[1,] 1 4

[2,] 2 2

> m %*% c(1,1)

[,1]

[1,] 5

[2,] 4

First we used the rbind() (“row bind”) function to build a matrix from
two vectors, storing the result in m. We then typed that latter name, to con-
firm that we produced the intended matrix. Finally, we computed the matrix
product of the vector (5,4) and m. In order to get matrix multiplication of

Getting Started 13

the type many readers know from linear algebra courses, we used the %*% op-
erator.

Subscripting is done similarly to C/C++ (though again subscripts start at
1 instead of 0):

> m[1,2]

[1] 4

> m[2,2]

[1] 2

An extremely useful feature is that we can extract submatrices, similarly
to our extraction of subvectors from vectors. For example,

> m[1,] # row 1

[1] 1 4

> m[,2] # column 2

[1] 4 2

Details are in Chapter ??.

2.4.3 Lists

An R list is a container whose contents can be items of diverse data types, as
opposed to them being, say, all numbers, as in a vector. (C/C++ program-
mers will note the analogy to a C struct.)

List members (which in C are delimited with periods) are indicated with
dollar signs in R. Here’s a quick toy example:

> x <- list(u=2, v="abc")

> x

$u

[1] 2

$v

[1] "abc"

> x$u

[1] 2

Here x$u is the u component in the list x.
A common usage of lists is to package the return values of elaborate

statistical functions. As an example, consider R’s basic histogram function
hist(), introduced earlier in Section ??. There we call the function on R’s
built-in Nile River data set:

> hist(Nile)

14 Chapter 2

This produced a graph, of course, but hist() actually does return a value,
which we could save:

> hn <- hist(Nile)

What’s in hn? Let’s take a look:

> print(hn)

$breaks

[1] 400 500 600 700 800 900 1000 1100 1200 1300 1400

$counts

[1] 1 0 5 20 25 19 12 11 6 1

$intensities

[1] 9.999998e-05 0.000000e+00 5.000000e-04 2.000000e-03 2.500000e-03

[6] 1.900000e-03 1.200000e-03 1.100000e-03 6.000000e-04 1.000000e-04

$density

[1] 9.999998e-05 0.000000e+00 5.000000e-04 2.000000e-03 2.500000e-03

[6] 1.900000e-03 1.200000e-03 1.100000e-03 6.000000e-04 1.000000e-04

$mids

[1] 450 550 650 750 850 950 1050 1150 1250 1350

$xname

[1] "Nile"

$equidist

[1] TRUE

attr(,"class")

[1] "histogram"

Don’t try to understand all of that, but consider for instance the breaks

component. This tells us where the bins in the histogram start and end. The
counts component is of course the numbers of observations in each bin.

Again, the details are not important here, but the point is that the de-
signers of R decided to package all of the output of hist() into a single R list,
whose individual components are accessible via the dollar sign.

2.4.4 Data Frames

A typical data set contains data of diverse modes. In an employee data set,
for example, we might have character string data such as employee names,
and numeric data such as salaries. So, while a data set of, say, 50 employees
with 4 variables per worker, has the “look and feel” of a 50x4 matrix, it does

Getting Started 15

not qualify as such in R if it mixes types. Instead of a matrix, we use an R
data frame.

A data frame is technically a list, with each component of the list being
a vector corresponding to a column in our data “matrix.” In fact, one can
actually create data frames using this idea:

> d <- data.frame(list(kids=c("Jack","Jill"),ages=c(12,10)))

> d

kids ages

1 Jack 12

2 Jill 10

> d$ages

[1] 12 10

Typically, though, data frames are created by reading in a data set from
a file.

2.4.5 Classes

Again, R is an object-oriented language. The objects are instances of a pro-
gramming data type called a class.

Classes are a bit more abstract than the data types we’ve presented so
far, so we’ll postpone the details until Chapter ??. But as it’s impossible to
discuss R without at least mentioning the word “class” occasionally, we’ll go
through a very brief overview here.

R’s S3 classes, on which most of R is based, are exceedingly simple: They
are simply R lists—but with an extra attribute, which is the class.

For example, we noted in Section ?? that the (nongraphical) output
of the hist() histogram function is a list, with components such as breaks,
counts. There was also an attribute, the class of the list, “histogram”:

> print(hn)

$breaks

[1] 400 500 600 700 800 900 1000 1100 1200 1300 1400

$counts

[1] 1 0 5 20 25 19 12 11 6 1

...

...

attr(,"class")

[1] "histogram"

Some readers at this point might be asking, “If a class is just a list, why
do we need two concepts, list and class?” The answer lies in something called
generic functions.

A generic function is actually a placeholder for a family of functions hav-
ing similar actions but each one appropriate to a specific class. A common
such function is summary(). An R user who is trying a new statistical function

16 Chapter 2

but who is unsure of how to deal with its output (which can be voluminous),
can simply call summary() on the output. That function is actually a family
of functions, each for a different class. When the user calls summary(), R will
then search for a summary function appropriate to the class at hand. Simi-
larly, an R user can call plot() on an object of a class that is new to him/her,
and R will find a plotting function appropriate for that class.

2.4.6 Character Strings

Character strings are actually single-element vectors, of mode character rather
than numeric:

> x <- c(5,12,13)

> x

[1] 5 12 13

> length(x)

[1] 3

> mode(x)

[1] "numeric"

> y <- "abc"

> y

[1] "abc"

> length(y)

[1] 1

> mode(y)

[1] "character"

> z <- c("abc","29 88")

> length(z)

[1] 2

> mode(z)

[1] "character"

In the first example above, we create a vector x of numbers, thus of mode
numeric. Then we create vectors of mode character, with y being a one-element,
i.e. one-string, vector, and z consisting of three strings.

R has various string-manipulation functions. Many deal with putting
strings together or taking them apart, such as:

> u <- paste("abc","de","f") # concatenate the strings

> u

[1] "abc de f"

> v <- strsplit(u," ") # split the string according to blanks

> v

[[1]]

[1] "abc" "de" "f"

Getting Started 17

2.5 Extended Example: Regression Analysis of Exam Grades

For our second introductory example, we walk through a brief statistical re-
gression analysis. There won’t be much actual programming in this exam-
ple, but it will illustrate usage of some of the data types from the last section,
including R’s S3 objects, and will serve as the basis for several of our pro-
gramming examples in subsequent chapters.

Here I have a file, ExamsQuiz.txt of grades from a class I taught. The
first few lines are

2 3.3 4

3.3 2 3.7

4 4.3 4

2.3 0 3.3

...

The numbers correspond to letter grades on a four-point scale, so that
3.3, for instance, is a B+. Each line contains the data for one student, con-
sisting of the midterm examination grade, final examination grade, and the
average quiz grade. One might be interested in seeing how well the midterm
and quiz grades predict the student’s grade on the final examination.

Let’s first read in the file:

> examsquiz <- read.table("ExamsQuiz.txt",header=FALSE)

Our file had no header line, i.e. no line naming each of the variables, so
we specified header=FALSE, an example of the default arguments mentioned
in Section ??. Actually, the default value of that argument is FALSE anyway, as
can be checked by R’s online help facility for read.table(). Thus we didn’t
need to specify the header argument, but it’s clearer if we do.

So, our data is now in examsquiz, an R object of class “data.frame”:

> class(examsquiz)

[1] "data.frame"

Just to check that the file was read in correctly, let’s take a look at the
first few rows:

> head(examsquiz)

V1 V2 V3

1 2.0 3.3 4.0

2 3.3 2.0 3.7

3 4.0 4.3 4.0

4 2.3 0.0 3.3

5 2.3 1.0 3.3

6 3.3 3.7 4.0

18 Chapter 2

Lacking a header for the data, R named the columns V1, V2 and V3.
Row numbers appear on the left. (Actually, it is better to have a header in
our data file, with meaningful names such as Exam1. We will usually specify
names in later examples.)

Let’s try to predict Exam 2 (second column of examsquiz) from Exam 1
(first column):

lma <- lm(examsquiz[,2] ~ examsquiz[,1])

The lm() (“linear model”) function call here instructs R to fit the predic-
tion equation

predicted Exam 2 = β0 + β1Exam 1 (2.1)

using least squares. Note that Exam 1, being stored in column of our data
frame, is referred to collectively as examsquiz[,1]. Here the lack of the first
subscript, i.e. row number, means that we are referring to the entire col-
umn, and similarly for Exam 2.

We also could have written

lma <- lm(examsquiz$V2 ~ examsquiz$V1)

recalling that a data frame is a special cases of a list, with each column being
one element of the list.

The results are returned in the object we’ve named lma of class “lm”. We
can see the various components of that object by calling attributes():

> attributes(lma)

$names

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

$class

[1] "lm"

For instance, the estimated values of the βi are stored in lma$coefficients.
As usual, we can print them, by typing the name.

And by the way save some typing by abbreviating, as long as we don’t
shorten a component’s name to the point of confusing it with other com-
ponents. If a list consists (only) of the components, say, xyz, xywa and xbcde,
then the second and third ones can be abbreviated to xyw and xb, respec-
tively.

Thus we can type

> lma$coef

(Intercept) examsquiz[, 1]

1.1205209 0.5899803

Getting Started 19

Since lma$coefficients is a vector, printing it is simple. But consider what
happens when we print the object lma itself:

> lma

Call:

lm(formula = examsquiz[, 2] ~ examsquiz[, 1])

Coefficients:

(Intercept) examsquiz[, 1]

1.121 0.590

How did R know to print only these items, and not the other compo-
nents of lma? The answer is that print() is another example of R’s generic
functions. As explained earlier in Section ??, print(), actually hands off the
work to a print function that has been declared to be the one associated with
objects of class “lm”, namely print.lm().

We can get a more detailed printout of the contents of lma by calling
summary(), our earlier example of a generic function. It in this case triggers
a call to summary.lm() behind the scenes. Thus we get a regression-specific
summary, which is:

> summary(lma)

Call:

lm(formula = examsquiz[, 2] ~ examsquiz[, 1])

Residuals:

Min 1Q Median 3Q Max

-3.4804 -0.1239 0.3426 0.7261 1.2225

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1205 0.6375 1.758 0.08709 .

examsquiz[, 1] 0.5900 0.2030 2.907 0.00614 **
...

A number of other generic functions are defined for this class. See the
online help (Section ??) for lm() for details.

To estimate a prediction equation for Exam 2 from both Exam 1 and
the Quiz score, we would use the ‘+’ notation:

> lmb <- lm(examsquiz[,2] ~ examsquiz[,1] + examsquiz[,3])

20 Chapter 2

2.6 Startup and Shutdown

Like any sophisticated application, R can be customized for your conve-
nience with startup files. In addition, it can save all or part of your session,
such as a record of what you did, to an output file.

If there are R commands you would like to have executed at the begin-
ning of every R session, you can place them in a file .Rprofile either in your
home directory or in the directory from which you are running R. The latter
directory is searched for such a file first, which allows you to customize for a
particular project.

For example, one might place in .Rprofile the line

options(editor="/usr/bin/vim")

to set one’s text editor for R to invoke if we call edit().
In .Rprofile on my machine at home, I have a line

.libPaths("/home/nm/R")

which automatically adds to my R search path a directory in which I keep my
auxiliary packages. In that file I also have quite a few lines of startup material
needed running Rmpi, a parallel processing package for R.

Like most programs, R has the notion of your current working directory.
Upon startup, this will be the directory from which you started R, if you’re
using Linux or a Mac. For Windows, it will probably be your Documents

folder. In any case, you can always check your current directory by typing

> getwd()

You can change your working directory by calling setwd() with the desired
directory as a quoted argument.

As you proceed through an interactive R session, R will record the com-
mands you submit. And as you long as you answer yes to the question “Save
workspace image?" put to you when you quit the session, R will save all the
objects you created in that session, and restore them in your next session.
You thus do not have to recreate the objects again from scratch if you wish
to continue work from before. The saved workspace file is named .Rdata,
and is located either in the directory from which you invoked this R session
(Linux) or in the R installation directory (Windows).

If you wish to have a speedier startup/shutdown you can skip loading all
those files, and save your session at the end, by running R with the vanilla

option:

R --vanilla

There are various intermediate options. Type
Other information on startup files is available by querying R’s online

help facility:

Getting Started 21

> ?Startup

2.7 Getting Help

There is a plethora of resources one can draw upon to learn more about R.
These include several facilities within R itself, and of course on the Web.

2.7.1 R’s Internal Help Facilities

Much work has gone into making R self-documenting. The next few subsec-
tions will present some of R’s help facilities.

2.7.1.1 The help() Function

For online help, invoke help(). For example, to get information on the seq()

function, type

> help(seq)

The shortcut to help() is a question mark, such as

> ?seq

Special characters and some reserved words must be quoted. For in-
stance, type

> ?"<"

to get help on the < operator, and

> ?"for"

to see what the manual has to say about for loops.

2.7.1.2 The example() Function

Each of the help entries comes with examples. One really nice feature is that
the example() function will actually run thus examples for you. For instance:

> example(seq)

seq> seq(0, 1, length.out=11)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

seq> seq(stats::rnorm(20))

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

seq> seq(1, 9, by = 2) # match

22 Chapter 2

[1] 1 3 5 7 9

seq> seq(1, 9, by = pi)# stay below

[1] 1.000000 4.141593 7.283185

seq> seq(1, 6, by = 3)

[1] 1 4

seq> seq(1.575, 5.125, by=0.05)

[1] 1.575 1.625 1.675 1.725 1.775 1.825 1.875 1.925 1.975 2.025 2.075 2.125

[13] 2.175 2.225 2.275 2.325 2.375 2.425 2.475 2.525 2.575 2.625 2.675 2.725

[25] 2.775 2.825 2.875 2.925 2.975 3.025 3.075 3.125 3.175 3.225 3.275 3.325

[37] 3.375 3.425 3.475 3.525 3.575 3.625 3.675 3.725 3.775 3.825 3.875 3.925

[49] 3.975 4.025 4.075 4.125 4.175 4.225 4.275 4.325 4.375 4.425 4.475 4.525

[61] 4.575 4.625 4.675 4.725 4.775 4.825 4.875 4.925 4.975 5.025 5.075 5.125

seq> seq(17) # same as 1:17

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Imagine how useful this is for graphics! To get a quick and very nice
example, the reader is urged to run the following RIGHT NOW:

> example(persp)

A series of example graphs for the persp (“perspective”) function will be dis-
played. Hit the Enter key in the R console when you want to go to the next
one. Note by the way that the code for each example is shown in the con-
sole, so you can experiment, tweaking the arguments. One of the graphs
displayed is shown in Figure ??.

You should also look into demo(), e.g. calling demo(persp).

2.7.1.3 If You Don’t Know Quite What You’re Looking for

You can use the function help.search() to do a “Google”-style search through
R’s documentation in order to determine which function will play a desired
role. For instance, say you need a function to generate random variates from
multivariate normal distributions. To determine what function, if any, does
this, you could type

> help.search("multivariate normal")

getting a response which contains this excerpt:

mvrnorm(MASS) Simulate from a Multivariate Normal

Distribution

This tells us that the function mvrnorm() will do the job, and it is in the pack-
age MASS.

Again, there is a question mark-based shortcut:

Getting Started 23

Arithmetic

Comparison

Control

Dates

Extract

Math

Memory

NA

NULL

NumericaConstants

Paren

Quotes

Startup

Syntax

You may find browsing through these even without a specific need to be edu-
cational.

2.7.1.5 Help for Batch Mode

Recall from Section ?? that R has many batch commands. To obtain help on
the batch command cmd, type

R CMD cmd --help

For example:

R CMD INSTALL --help

to learn all the options associated with INSTALL (which installs new R pack-
ages; see Chapter ??.

2.7.2 Help on the Internet

There are many excellent resources on R on the Internet. Here are a few:

• The R Project’s own manuals are available at the R home page, http://cran.r-
project.org. Click on “Manuals.”

• Various R search engines are listed on the R home page; http://www.r-
project.org. Click on “Search.”

• The sos package offers highly sophisticated searching of R materials.
Again, see Chapter ?? on how to install R packages.

• I use the RSeek search engine quite often, http://www.rseek.org.

• You can post your R questions to r-help, the R listserve. You can obtain
information on this and other R listserves at http://www.r-project.org/mail.html.
There are various interfaces one can use; I like GMANE.

Getting Started 25

• Given its single-letter name, R is difficult to search for when using gen-
eral search engines such as Google. But there are definitely tricks one
can employ.
One approach is to use Google’s filetype criterion. To search for R
scripts, i.e. those with a .R suffix, that pertain to, say, permutations, en-
ter

filetype:R permutations -rebol

That last term asks Google to exclude pages with the word “rebol,” as
the REBOL programming language uses the same suffix.

26 Chapter 2

