Name:

Directions: MAKE SURE TO COPY YOUR AN-
SWERS TO A SEPARATE SHEET FOR SENDING
ME AN ELECTRONIC COPY LATER.

1. (25) Consider line 27, p.70. Which of the statements
below is/are true?

(i) That line is normally part of a loop.

(ii) If the length of the test string in line 18, p.71 is less
than 1000000, a loop is not ncessary.

(iii) Neither (i) nor (ii) is necessarily true.

2. (75) Consider the textfile class (original ver-
sion), p.24. We add an instance method to that class,
getnlines1tf(). (This is what is known as a getter in
the OOP world. I generally think getters and setters
are silly, but it will be helpful here.)

In the following, the argument tfl (“textfile list”) is a
list of textfile objects, and k is a positive integer. Fill
in the blanks:

class textfile:
... as before
def getnlinesltf(self):
return self.nlines

return list , element i of which is
the number of lines in tfl[i]
def getnlines (tfl):

return map(blank (a))

return the total number of lines in all
the files in tfl
def totlines(tfl):

tmp = getnlines (tfl)

return blank (b)

return sublist of tfl, element i of which is

the i—th element of tfl that satisfies the
condition (number of lines > k)
def bigfiles (tfl ,k):

return blank (c)

sort tfl in—place, according to the number
of lines in each file
def tflsort (tfl):

blank (d)

def test ():
a = textfile (’x’)
b = textfile ('y’)
¢ = textfile(’z’)
tflist = [a,b,c]
print getnlines (tflist)
print totlines (tflist)
print tflist
print bigfiles (tflist ,3)
tflsort (tflist)
print tflist

Here in the input to the test case:

% cat x
a
bc

def

% cat y
1234
456

78

9

% cat z
alb2

c3

Here is the output:

% python tfclass.py

[3, 4, 2]

9

[<--main__.textfile instance at 0x1054b0290>,
<__main__.textfile instance at 0x1054b02d& >,
<_.main__.textfile instance at 0x1054b0320 >]

[<--main__.textfile instance at 0x1054b02d8>]

[<--main__.textfile instance at 0x1054b0320>,
<__main__.textfile instance at 0x1054b0290>,
<__main__.textfile instance at 0x1054b02d8>]

Solutions:

1. (i)
2.

class textfile:
ntfiles = 0 # count of number of textfile objects
def __init__(self ,fname):
textfile.ntfiles 4= 1

self .name = fname # name

self.fh = open(fname) # handle for the file
self.lines = self.fh.readlines ()

self.nlines = len(self.lines) # number of lines
self .nwords = 0 # number of words

self.wordcount ()
def wordcount (self):
”finds the number of words in the file”
for 1 in self.lines:
w = 1l.split ()
self .nwords += len (w)
def grep(self ,target):
?prints out all lines containing target”
for 1 in self.lines:
if 1.find (target) >= 0:
print 1
def getnlinesltf(self):
return self.nlines

def getnlines (tfl):
return map(lambda onetf: onetf.getnlinesltf (), tfl)

def totlines(tfl):
tmp = getnlines (tfl)

return reduce (lambda x,y: x+y,tmp)

def bigfiles (tfl ,k):
return filter (lambda x: x.nlines > k, tfl)

def tflsort (tfl):

tfl.sort (lambda x,y: x.nlines — y.nlines)
def test ():

a = textfile (’x’)

b = textfile (y’)

c = textfile(’z’)
tflist = [a,b,c]

print getnlines(tflist)
print totlines (tflist)
print tflist

print bigfiles (tflist ,3)
tflsort (tflist)

print tflist

