Name:

Directions: Work only on this sheet (on both sides,
if needed). DO NOT turn in any supplementary sheets
of paper. There is actually plenty of room for your an-
swers, as long as you organize yourself BEFORE starting
writing. When appropriate, SHOW YOUR WORK.

1. (15) Fill in the blanks in the following version of our
prime number finding program:

import sys,math,threading,Queue

class primefind(threading.Thread):
n = int(sys.argv[1])
prime = (n+1) * [1]
lim = int(math.sqrt(n)) + 1

for i in range(2,lim+1):

def __init__(self):

def run(self):
nk = 0
while True:
try:
k = primefind.nexti.get(block=False)
except:
break
nk += 1
if primefind.prime[k]:
r = primefind.n / k
for i in range(2,r+1): primefind.prime[i*k] = 0
print ’this thread handled’,nk,’values of k’

def main():
mythreads = []
for i in range(int(sys.argv[2])):
pf = primefind()
mythreads.append (pf)
pf.start()
for pf in mythreads: pf.join()
print reduce(lambda x,y: x+y, primefind.prime)-2,’primes’

if __name__ == ’__main__’: main()

2. (10) Sec. 2.4 of our PLN on iterators and generators
is titled, “Multiple Iterators from the Same Generator.”
Give an example in which we actually had such a situ-
ation, i.e. we had code in which several iterators from
the same generator function would be in existence at the
same time.

3. This question involves our thrd class for nonpreemp-
tive threads.

(a) (15) We could add an analog of the Queue class but
there would not be much point to it. Why not?

(b) (15) Give the line number in pp.17-19 that will be

executed immediately after line 33 on p.14.

(¢) (15) Suppose we are debugging the code on pp.14-
15 of our iterators/generators PLN (the one that il-
lustrates the capabilities of thrd). Give the PDB
command to set a conditional breakpoint at line 70,
p.17 (beginning of thrd.do_pause()), breaking only
if the function is triggered by a() in pp.14-15. (The

command set listed in our intro PLN if you need it.)

4. (15) In this problem, you will write a generator func-
tion il() that interleaves two iterators of the same length.

For example:

>>> a = range(3)
>>> b = [-2,6,8]
>>> d = il(a,b)

>>> d.next ()

0

>>> d.next()

-2

>>> d.next ()

>>> d.next()

We'll use the function itertools.izip(), which works like
zip(), but inputs two iterators and outputs a third one.
Fill in the blanks:

from itertools import *
def i1(i,j):

k = izip(i,j)

for

5. (15) Solve the mystery! We ran the Fibonacci number
iterator from our PLN on iterators and generators, and
though it ran correctly for a while, it got stuck on the
number 8!

>>> from fib import *
>>> f = fibnum()

>>> f.next()

>>> f.next()

>>> f.next()

>>> f.next()

>>> f.next()

>>> f.next()

>>> # here we executed a one-line Python statement (not shown)
>>> f.next()

>>> f.next()

What was that one-line Python mystery statement?
Solutions:

1.

nexti = Queue.Queue()

nexti.put(i)
threading.Thread.__init__(self)

2. Two examples were from discussions section, concern-
ing tree traversal and partitions of n.

3.a The main utility of Queue is that it automatically
handles locks for us. But we don’t need locks in the case
of thrd.

3.b 157
3.c

b 70, yv[0] == ’1’



(u,v) in k
yield u
yield v

5.

f.next = lambda :




