
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper.
There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing. In
order to get full credit, SHOW YOUR WORK.

1. This problem concerns the Curses PLN.

(a) (10) What member variable of the curses class stores the number of rows in the window?

The remaining parts of this problem concern the psax program.

(b) (10) The window will initially be blank. Give the number of the line of code at which the window ceases to be
all blank.

(c) (10) Give a function call that could be inserted into psax in order to move the highlighting to the top row of
the window.

2. (5) Fill in the blank with an official term from our course: Consider the port scanner example. We could have each
thread check b consecutive ports, rather than just 1, for better efficiency due to reduced thread startup overhead.
But if we make b too large, we will likely have a problem.

3. (20) I wrote a program that I use to produce roll sheets for each class I teach. It inputs the student list I
receive from the Registrar, and outputs the same list but with only some information retained. Specifically, the
input variables are number on the roll sheet (1, 2, 3, ...), student ID, surname, first name, middle name if any, class
(FR, SO, JR, SR, etc.), major (ECSE, LCSI, etc.), enrollment status (RE for enrolled, WL for wait list, etc.) and
UCD e-mail address (e.g. jjones). I retain just the last name, first name, middle name if any, class level and major.
The input file name is the first command line argument. The output file name will have the form GradesXXX.txt,
e.g GradesS07.txt; the XXX part is the second command line argument. Fill in the blanks in my code:

import _____________
infilename = open(sys.argv[1])
outfilename = ______________________
g = open(_____________________)
for l in infilename:

w = l.split()
del w[len(w)_________________]
del w[:2]
g.________________

4. (15) Suppose we wish to be able to sort strings, with the sort criterion being dictionary order within length.
In other words, the primary sort criterion is string length, and the secondary criterion is ordinary string ordering.
For example, ’eas’ would be considered > ’et’ while the latter would be < ’eu’. Fill in the blanks for the function
llcmp(), to be used as an argument to sort() in the list class:

def llcmp(x,y):
if x == y: return 0
elif len(x) != len(y): return _________________________
elif ________________________: __________________________
return 1

Note: The member functions lt (), le (), etc. in the string class do the ordinary compare, in which for
instance ’eas’ < ’eb’.

5. (10) Our program will generate a random matrix. The command-line arguments consist of the number of rows
and columns. Fill in the blank:

(rows,cols) = _________________________________________________

6. (20) This problem deals with our homework program which implemented the A Priori algorithm for rule finding
in data mining. Recall that the rules were stored in a dictionary, with the keys being tuples of the form (antecedents,
consequent) and the values being tuples of the form (support, confidence). For instance, if the value for the key
(0,2,7) is (0.24, 0.66), then the rule 0,2 => 7 has support 0.24 and confidence 0.66. Say the variable for our dictionary
is ruled.

1



Say we also have a dictionary freqd containing all itemsets with frequency at least equal to minsupp × minconf,
the product of the minimum support and confidence levels. The keys are tuples for the itemsets and the values are
the support levels. So for example if we have a key (3,4) with value 0.51, then 0.51 of the records in the database
contain both items 3 and 4.

But support and confidence may not be the only criteria which are of practical value. Suppose for instance the
singleton (7) has support (0.60). Then knowing that 0 and 2 occurred makes 7 only slightly more likely to occur
than if we don’t know whether 0 and 2 occurred. The likelihood ratio here is 0.66/0.60 = 1.10. This is called the lift.

The code below will compute a list z of all rules in ruled that have lift at least equal to minlift.

z = []
for (rule,suppconf) in ruled:

if ____________________________:
z.append(rule)

1.a curses.LINES

1.b 65 (when refresh() is called)

1.c updown(-gb.winrow

2. load balancing

3.

sys
Grades + sys.argv[2] + ’.txt’
outfilename, ’w’
-2:
write(outfilename,’ ’.join(w) + ’\n’

4.

len(x) - len(y)
x.__lt__(y): return -1

5.

(int(sysargv[1]), int(sysargv[2]))

or

map(int,sysargv[1:])

6.

suppconf[1] >= minlift * freqd[rule[-1]:]

2


