
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary
sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself
BEFORE starting writing. Do not use any Python constructs which were not introduced either in
lecture, discussion section or our written materials.

1. (20) Write a generator analog of the cq iterator class for “circular queues” in our PLN on iterators and generators.
Use no more than four lines:

def cq(q):

______________________________

______________________________

______________________________

______________________________

2. (20) The class atominc, usable with the thread module, will store variables that can be atomically incremented
without the user having to deal him/herself with locks. The value being stored is in the val member variable of the
class. For example:

i = atominc()

...

i.inc()

would add 1 to i.val in an atomic manner.

print i.val

would print out the latest value stored (though of course it could be “old” by the time we get it).

We would still need to lock/unlock ourselves for operations other than incrementing. For instance, if we needed to
perform some operations atomically if the stored value is 8, we’d write:

...

i.lock()

if i.val == 8:

...

i.unlock()

Fill in the gaps below.

class atominc():

def __init__(self,initval):

self.vallock = _______________

self.val = initval

def inc(self):

_______________

_______________

_______________

def lock(self):

_______________

def unlock(self):

_______________

3. (10) Consider the primes finder code in Sec. 5 of our PLN on threading. Show a single line of code which we
could insert somewhere early in main() which would result in better load balancing.

4. (20) Consider the functions ones() and ints() presented in an example in discussion section. Suppose they are
in the source file s.py, and we execute the following:

>>> from s import *

>>> i = ints()

>>> for j in i:

... if j > 3: break

Then the execution of these statements will result in a total of iterators being created.

5. (20) The function mrgitrs() below takes as its argument a list of several iterators, each of which produces an
ascending-order sorted sequence (finite or infinite). The function outputs the merge of them, as a generator. It is
assumed that each iterator will return at least one item.

1



The variable ins will be such that ins[2], for instance, will initially consist of [x,y,2], where y is itrs[2] and x is the
first element of the sequence produced by y.

Note that the built-in Python function min() does work lexicographically where appropriate; e.g. min([4,’abc’],[8,5],[3,200])
is [3,200].

Fill in the gaps. (In some cases it is possible to use fewer lines than allotted.)

def mrgitrs(itrs):

tmp = [______________________________]

ins = [______________________________]

while ins != []:

[val,itr,j] = min(ins)

try:

______________________________

______________________________

except ______________________________:

______________________________

______________________________

6. (10) Again consider the cq iterator class for “circular queues” in our PLN on iterators and generators. One
problem with it is that if the input list is modified in code external to the class, the change won’t be reflected in the
class’ version of the list. For example:

>>> import cq

>>> x = [5,12,8]

>>> c = cq.cq(x)

>>> c.next()

5

>>> c.next()

12

>>> c.next()

8

>>> c.next()

5

>>> x[1] = ’abc’

>>> x

[5, ’abc’, 8]

>>> c.next()

12

>>> c.next()

8

Show how to remedy this problem by changing just one portion of one line in the original class.

Solutions:

1.

def cq(q):

while True:

q[0:] = q[1:] + [q[0]]

yield q[-1]

2.

class atominc():

def __init__(self,initval):

self.vallock = thread_allocate_lock()

self.val = initval

def inc(self):

self.vallock.acquire()

self.val += 1

self.vallock.release()

def lock(self):

self.vallock.acquire()

def unlock(self):

self.vallock.release()

3. For example,

setcheckinterval(5)

2



(Any value less than 10 is an acceptable answer.)

4. There are a total of 9 iterators created. One determines this simply by tracing through the recursion, and
remembering that the functions are not actually called at the time the iterators are created; the call occurs when
the .next() functions in the iterators are called.

5. The original intended solution was

def mrgitrs(itrs):

tmp = [[i.next(),i] for i in itrs]

ins = [tmp[j]+[j] for j in range(len(itrs))]

while ins != []:

[val,itr,j] = min(ins)

try:

v = itr.next()

ins[j] = [v,itr,j]

except StopIteration:

del(ins[j])

yield val

However, this does not work if there is a finite iterator and it is not the last element of itrs. Full credit was given if
the student’s code worked in the case in which all input interators are infinite.

6.

self.q[0:] = self.q[1:] + [self.q[0]]

3


