Name: _____

Directions: MAKE SURE TO COPY YOUR AN-SWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (30) The table below contains analog pairs between Python and R. Fill in the blanks.

Python	R
>>>	>
list	vector
lambda function	blank (a)
dictionary	blank (b)
map	blank (c)

2. (15) Fill in the blank:

 $> f <- function(x) x^2$ > f $function(x) x^2$ > print(f) $function(x) x^2$ > p blank (f) $function(x) x^2$

3. (55) A graph *adjacency matrix* consists of 0s and 1s, with a 1 at element (i,j) meaning there is a link from i to j. The function **haslinks(adj,target)** determines which vertices in the graph have links to a given set of target vertices. Here are examples:

> m							
	[,1] [,2] [,3] [, 4]	[,5]		
[1,]	1	0	1	0	1		
[2,]	1	1	0	0	1		
[3,]	1	0	0	1	1		
[4,]	0	1	1	1	0		
[5,]	1	1	0	1	1		
> haslinks (m, c(1,4))							
[1] 3	5						
> haslinks (m, 4)							
[1] 3 4 5							
> haslinks (m, 1:2)							
[1] 2	5						
> haslinks (m, c (1, 3, 5))							
[1] 1							

In the first call, for instance, we ask which vertices have links to both vertex 1 and vertex 4, and the function reports that vertices 3 and 5 (rows 3 and 5 in the matrix) have that property.

Fill in the blanks:

```
haslinks <- function(adj,target) {
   canreachtarget <-
    function(outlinks) {
      which1s <- which( blank (a) )
      tmp <- blank (b) (target,which1s)
      as.integer( blank (c) (tmp,target))
   }
  tmp1 <- apply( blank (d) )
  which(tmp1 == 1)
}</pre>
```

Solutions:

 ${\bf 1.a}$ anonymous function

 $\mathbf{1.b} \text{ list}$

1.c apply

```
2. rint.function
```

3.

```
haslinks <- function(adj,target) {
    canreachtarget <-
    function(outlinks) {
        which1s <- which(outlinks == 1)
        tmp <- intersect(target,which1s)
        as.integer(setequal(tmp,target))
    }
    tmp1 <- apply(adj,1,canreachtarget)
    which(tmp1 == 1)
}</pre>
```