
Name:

Directions: Work only on this sheet (on both sides, if
needed); do not turn in any supplementary sheets of pa-
per. There is actually plenty of room for your answers, as
long as you organize yourself BEFORE starting writing.

10-POINT BONUS: See instructions on the black-
board.

You will write an R class, ”tfile”, whose basis is similar
to the contents of our handout text.R.

An object of this class will consist of three components:

• story, a vector of character strings, consisting of the
words in the input file, in the same sequence as the
file

• distinctwords, a vector of character strings, con-
sisting of all the distinct words in the file

• places, an R list, one element per distinct word in
the file, with that element being a vector of integers
showing where the word occurs in the file

You will write three functions:

• newtfile(): the constructor, with the input file name
as argument

• places(): argument is an object of class ”tfile”, out-
put is an R list as described in the places component
above; in fact, you must have your newtfile() call
this function

• ctxt(): prints the context of any word in a ”tfile”
object, printing out (on the same line) the given word
and the words immediately preceding and following
it in all cases in which the given word appears (if
you wish, you can be sloppy and assume you’ll never
have a case at one end or the other of the file, which
is why I got NAs below)

For convenience, assume that the class is case-insensitive
and that there is no punctuation in the file. For full
credit, your code must be loop-free.

For instance, say the input file infile consists of

how much wood
could a woodchuck chuck
if a woodchuck could chuck wood

Here is usage on that file:

> howmuch <− n e w t f i l e (” i n f i l e ”)
> howmuch$story

[1] ”how” ”much” ”wood”
” could ” ”a” ”woodchuck”

[7] ”chuck” ” i f ” ”a”
”woodchuck” ” could ” ”chuck”
[1 3] ”wood”

> howmuch$distinctwords
[1] ”how” ”much” ”wood”
” could ” ”a” ”woodchuck”
[7] ”chuck” ” i f ”
> howmuch$places [[” could ”]]
[1] 4 11
> c tx t (howmuch , ” wood”)
[1] ”much wood could ”
[1] ”chuck wood NA”

You may find the R function unique() useful:

> unique (c (5 , 12 , 13 , 12 , 5))
[1] 5 12 13

1

Solutions:

cons t ruc to r
n e w t f i l e <− f unc t i on (t f i l ename) {

tmp <− l i s t ()
vecto r o f a l l the words , in sequence o f the o r i g i n a l t ex t
tmp$story <− scan (t f i l ename , ” ”)
vecto r o f the d i s t i n c t words in the text
tmp$dist inctwords <− unique (tmp$story)
f o r each word , i t s va r i ous p o s i t i o n s with in the text
tmp$places <− p l a c e s (tmp)
c l a s s (tmp) <− ” t f i l e ”
re turn (tmp)

}

p l a c e s <− f unc t i on (t f i l e o b j) {
s <− t f i l e o b j $ s t o r y
s p l i t (1 : l ength (s) , s)

}

p r i n t s the context o f any word , p r i n t i n g the word be f o r e and the word a f t e r
the g iven one ; p r i n t s on the same l i n e ; assumes not at an end
ctxt <− f unc t i on (t f i l e o b j , word) {

pts <− t f i l e o b j $ p l a c e s [[word]]
s t o ry <− t f i l e o b j $ s t o r y
pct <− f unc t i on (i) {

pr in t (s to ry [(i −1) :(i +1)])
}
l app ly (pts , pct)

}

2

