mmlsim <- function() {
 initglbls()
 # create simulation
 newsim()
 # get things going, generating and scheduling first arrival event
 arvtime <- rexp(1, rate=arvrate)
 schedevnt(arvtime, arvtype, arvtime)
 mainloop(10000.0)
 return(totwait/njobsdone)
}

application: M/M/1 queue, arrival rate 0.5, service rate 1.0; we must
set the globals and the function reactevnt() for this application

initializes the global variables
initglbls <- function() {
 # globals
 rates
 arvrate <- 0.5 # arrival rate
 srvrate <- 1.0 # service rate
 # event types
 arvtype <- 1 # arrival type
 srvdotype <- 2 # service done type
 # server queue, consisting of arrival times of queued jobs
 srvq <- vector(length=0)
 # statistics
 njobsdone <- 0 # jobs done so far
 totwait <- 0.0 # total wait time so far
}

application-specific event processing function required by mainloop()

in the general DES library above
reactevnt <- function(head) {
 if (head == arvtype) {
 if (length(srvq) == 0) {
 # if server free, start service, else add to queue
 srvq <- c(head)
 } else {
 # generate next arrival
 arvtime <- sim$curntime + rexp(1, arvrate)
 schedevnt(arvtime, arvtype, arvtime)
 return(head)
 }
 }
 else {
 # process job that just finished
 # do accounting
 njobsdone <- njobsdone + 1
 totwait <- totwait + sim$curntime - head
 # remove from queue
 srvq <- c(srvq[-1])
 # more still in the queue?
 if (length(srvq) > 0) {
 # schedule new service
 srvdonetim <- sim$curntime + rexp(1, srvrate)
 schedevnt(srvdonetim, srvdotype, srvq[1])
 }
 }
}

mmldes.R Fri Nov 12 08:41:12 2010 1
if (y < x[hi]) return(hi)
return(hi+1)