Contents

1 Sorry for the Length ... 3

2 Important Dates and Deadlines 3

3 Required Course Materials 3
 3.1 Textbook .. 3
 3.2 R Manual .. 4

4 What Is This Course? .. 4

5 Workload .. 5

6 Prerequisites .. 5

7 Post-STA 131A Courses ... 6

8 Machines ... 6

9 Analytical Work Must Be Done in \LaTeX 6

10 Communication ... 7

11 Each Student Must Have His/Her Own Course Materials 7

12 Bring the Course Materials with You to Class 7

13 Quizzes ... 7
 13.1 Why Quizzes? .. 8
 13.2 PLEASE NOTE: There Are No Makeup Quizzes 8
 13.3 Group Quiz, Last Day of Lecture 8
13.4 Partial Credit on Quiz Problems ... 8
13.5 OMSI ... 8
13.6 Numeric Questions (ECS 132) ... 9
 13.6.1 It Must Be Real R ... 9
 13.6.2 Useful, Likely Crucial, R Functions 9
13.7 Open-Materials Policy ... 9
13.8 Electronic Devices ... 10
13.9 Re-assessment of Quiz Grading ... 10

14 Regarding Academic Dishonesty .. 10
 14.1 Quizzes .. 10
 14.2 Homework .. 11

15 Lecture Format .. 11
 15.1 I Seldom Write on the Blackboard .. 11
 15.2 You Will LEARN MORE This Way .. 11
 15.3 Bring the Materials to Lecture .. 12
 15.4 Use of Laptops During Lecture .. 12

16 The Discussion Section ... 12

17 Groups ... 12
 17.1 Forming Groups .. 12
 17.2 Group Participation: Your Responsibilities 13

18 Our Class Web Page and Blog ... 13

19 Homework .. 13
 19.1 Homework Due Dates .. 14
 19.2 Announcements .. 14
 19.3 Programming Work ... 14
 19.4 Submitting Homework .. 14
 19.5 Interactive Homework Grading ... 15
 19.6 If You Need Help, Hints, Etc ... 15
 19.7 Late Work ... 16

20 Term Project .. 16
1 Sorry for the Length

Yes, this document is absurdly long. But it contains information concerning almost any question you might have on course policy and procedure.

For example, when you are about to finish Homework I, this document will tell you how to submit it and how it will be graded, very important information.

2 Important Dates and Deadlines

- ordinary Quizzes: weekly
- Group Quiz: December 6
- Group Project due: scheduled final exam date

3 Required Course Materials

3.1 Textbook

You are required to print your own hard copy. It is required that you have a hard copy of the book, as it will be used during Quizzes and in lectures.

You can print the book anywhere, say at Copyland on G Street, but you may find it’s cheaper elsewhere. Cost, including binding, should be between $20 and $30. One student said she got her book from Digital Copy Printing on 3rd St. for just $16. (Note: When you talk to a vendor on this, be sure to distinguish between pages and sheets.) Just bring the store a copy of the correct PDF file, say on a memory stick.

PLEASE NOTE: Pagination matters! Quizzes (which are open book) will refer to specific pages in the book. So you need exactly the particular file stated above.
We will cover the entire book. Note, though, that it is actually an abridged version of http://heather.cs.ucdavis.edu/~matloff/132/PLN/probstatbook/ProbStatBook.pdf, shortened by removing chapters on advanced material. I continually revise the long version, and you may find that sometimes the revised material is helpful, but it is NOT required. By the way, in the abridged version you will see mysterious ‘??’ marks; these occur because they are links to material that is in the full version of the book but not the abridged one.

3.2 R Manual

This is not actually required, but unless you already know R well, you’ll find it very useful: http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf. This part of a VERY rough and partial draft of that my R book[^1]. It is only about 50% complete, has various errors, and presents a number of topics differently from the final version, but should be useful in R work for this class.

Note that there is a short R tutorial at the end of our textbook. This is required reading, and you should read it before the quarter gets into full swing.

I also have an optional R tutorial at http://github.com/matloff/fasteR. It’s intended for non-techies, but you’ll find it useful, again something to read at the start of the quarter.

4 What Is This Course?

This is intended to be a course in probability and statistics similar to STA 131A and MAT 135A. Like those courses, ECS 132 is mathematical in nature, but with the hugely important difference that it is tailored to computer science students and computer science applications. (Another important difference is that it covers both probability and statistics.)

Starting in Fall 2009, ECS 132 has been required for CSE majors (and later required for CS as well), instead of the old requirement to take STA 131A or MAT 135A. This change was made (a) because some CS faculty thought an in-house course would be better, and (b) because ABET, the engineering accreditation agency also prefers that the course be in-house. Most engineering CS programs at UC campuses teach such a course in-house.

In addition to the CS applications setting, some other distinguishing features of this course include:

- By interweaving the theory with real-world applications, you will get a much better practical understanding of probability and statistics.

- You will get some introduction to some methodologies that are “hot” in the business world today, notably data and text mining, predictive analytics and machine learning. These and related techniques form the very heart of the technology in search engines like those of Google, and in Big Data applications. See the excellent *New York Times* article, at http://www.nytimes.com/2009/08/06/technology/06stats.html.

There are many other tech firms, big and small, that make extensive use of this material. There are even data mining contests, with big prizes (thousands and even millions of dollars)—see www.kaggle.com.

[^1]: The Art of R Programming, NSP, 2011.
• Your ability to put the theory into practice will be greatly enhanced by our use of the R statistical programming language. R is the standard real-world statistical computational tool in use today. (Some of you may have taken STA 32, which uses a bit of R; our usage will go much further than that level.) In fact, Google uses R extensively, and it has its own R coding style guidelines (http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html). They’re not to my taste, but you can see that R is a big deal at Google.

There was a nice New York Times article on R; see http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html.

• Probability and statistics play major roles in our daily lives, in everything from Lake Tahoe casinos to buying insurance to voting in elections. Understanding these concepts enhances our lives. ECS 132, as a more practical, data-oriented course, better achieves this goal.

5 Workload

There will be approximately four assignments, consisting of mathematical work plus some light programming work. The math will be intellectually similar in spirit to “word problems” in calculus (“Water is flowing into a conical tank with a 30 degree angle from the vertical, at a rate of...with leakage rate of...”).

IN ORDER TO ACHIEVE A DECENT GRADE, PLAN TO SPEND SIGNIFICANT TIME ON CAREFUL READING OF THE TEXT, SEVERAL HOURS PER WEEK.

All in all, the number of hours per week you’ll put in should be similar to something like ECS 60. Note, though, that much of this will be Group work.

6 Prerequisites

The required background is:

• \(\frac{d}{dt} \sin^2(t) = 2 \sin(t) \cos(t), \quad \int_0^\infty \lambda e^{-\lambda t} \, dt = 1, \quad \sum_{i=0}^{\infty} p^i = \frac{1}{1-p} \quad (|p| < 1) \)
 Derivatives, integrals, infinite series.

• \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} e \\ f \end{pmatrix} \)
 Basic matrix operations, i.e. addition, multiplication and inverse.

• if \((n > x+y) z = 168;\)
 Reasonable programming and debugging skill; basic awareness of the concepts of bits/bytes, memory addresses and data structures; experience in writing code to read and write files.

PLEASE NOTE: This is primarily a MATH course. Though we will do R programming throughout the course, especially in the Quizzes, you cannot do the R well without strong insight and intuition into the math, no matter how good you are at programming and no matter how well you know R.

The R language and LaTeXword processing software that we will use in this class are available for every major platform—Linux, Macs and Windows. However, I strongly prefer that you run on a Unix-family system, either Linux or a Mac. as that would make it easier for me to help you fix your bugs.
So, a basic background in Unix at the level of usage of ECS 40 would be helpful but not required. (See also Section 8 below.)

Prior background in R and \LaTeX themselves is NOT required, nor is any background in probability and statistics.

7 Post-STA 131A Courses

After successfully completing this course, you will be qualified to take any course which has STA 131A as a prerequisite, such as STA 131B (mathematical statistics) or MAT 135B (stochastic processes).

8 Machines

When you submit Homework code, it is not considered valid unless it works on the Linux PCs in CSIF.

HERE IS A SHOCK FOR SOME OF YOU: Most jobs obtained by UC graduates in the computer area are at firms that are either fully or partially based on Linux or some other kind of Unix, meaning Linux or Mac OS. Google is such a strong Linux shop that it once developed its own version of Ubuntu Linux, Goobuntu. You probably also know that Android, the popular OS for smartphones and tablets, is based on Linux. Apple’s OSs, ranging from Macs to iPads to iPhones, are also Unix-based.

Intel has complained that UCD grads don’t know Unix well. Of course, students from UC Berkeley know Unix thoroughly; why be at a disadvantage relative to them?

See an interesting Quora discussion on this at https://www.quora.com/Is-a-Mac-or-Windows-better-for-a-CS-student-or-developer

The general consensus was, use Linux or a Mac, not Windows. Note: This does not mean you should buy a Mac if you don’t have one; Linux is free.

In other words: If you’ve been using Windows to do your CS Homework, you’ve been limiting your future career opportunities! Not a smart strategy, right? Windows is used throughout the world with great effectiveness, but in the CS world it’s generally not considered to be the right tool.

So, if you don’t know Unix well, you should remedy that problem now, to enhance your future career prospects. And the ONLY way to learn it is to USE IT IN YOUR DAILY LIFE—not just for coursework, but also for e-mail, writing term papers, developing Web pages, video editing, and so on. And, make heavy use of the command line/shell.

Again, if you have a Mac, its OS is Unix-family, and that’s fine. But you need not buy one; Linux is free. I have a Linux installation and usage tutorial at http://heather.cs.ucdavis.edu/~matloff/linux.html If you are going to use Linux in your daily life, as again I urge you to do, then I recommend installing on a dual-boot basis. Otherwise, install on USB key or an external hard drive. Instructions are given in my tutorial.

9 Analytical Work Must Be Done in \LaTeX

Most of the Homework problems will be mathematical in nature. It is REQUIRED that you write these up in the \LaTeX word processing package.
\LaTeX is widely used in engineering and the physical sciences. And did you know that \LaTeX is used as the math typesetting vehicle in Wikipedia? This is a valuable skill for you to pick up.

You can learn enough \LaTeX for this course in just 15 minutes; start at \url{http://heather.cs.ucdavis.edu/~matloff/latex.html}. Also, keep in mind that the .tex source files for our textbook are located in the \texttt{PLN/} directory of our course Web site; if you see something in the book that you wish to see the \LaTeX code for, just look in the .tex file and make correspondences with the .pdf file.

Submit BOTH your .tex source file AND your .pdf file with your Homework.

You are urged NOT to appoint one of your group members as the “designated \LaTeX writer.” EVERYONE in the group should become familiar with the system. There have been huge problems in the past in which group members made changes that resulted in loss of important text, due to \LaTeX errors on the part of members not familiar with the system.

It is expected that you do a professional job on your writeups. It should look clean and organized. You should explain your steps in prose; \textbf{don’t just write a bunch of equations without explanation}. Use professional notation. For instance, the use of \texttt{*} for multiplication should be limited to program code—i.e. it should NOT be used in equations, as it is not math notation. Use juxtaposition (e.g. \texttt{xy}) or the \LaTeX \texttt{\cdot} (e.g. \texttt{x \cdot y}) instead.

\section{Communication}

You are welcome and encouraged to send me e-mail. When you do, please include \texttt{'[ecs x]'} in the Subject line, where \texttt{'x'} is the course number, e.g. \texttt{'[ecs 132]'}.

\section{Each Student Must Have His/Her Own Course Materials}

Note that Quizzes are open-book, and there is no sharing of books or other materials during Quizzes, nor are electronic devices allowed\footnote{An exception is the Group Quiz, given the last day of class.}. Thus every student must have his/her own hard copy of the textbook and any other course materials.

\section{Bring the Course Materials with You to Class}

Bring the entire textbook and other course materials to lectures, discussion sections and Quizzes.

If you forget to bring your book to a Quiz, the TA or instructor will lend you one; if several students forget, you’ll need to take turns.

\section{Quizzes}

A Quiz will be given almost every week in discussion section. Quizzes will not be announced; assume that there will be one each week.

Note for ECS 132: In numeric problems, exact answers are required, not simulation, unless the latter is specified.
All the old quizzes, with solutions, are available on our class Web page. It would be quite advantageous to you if you were to look through them, to see what kinds of questions are asked.

13.1 Why Quizzes?

This is a lot of work for me. For example, in Fall 2012, I was teaching two courses, one of which had two different discussion sections. That meant I needed to compose and grade 3 quizzes per week—yikes! But I do this for two reasons:

- It’s a natural way to ensure that you don’t fall behind, which is a serious problem for universities using the quarter system.
- It’s much better for the student, with far less pressure. Giving a midterm and a final is quite stressful to the students, as they count so much in a course grade. Giving Quizzes instead relieves that stress.
- It’s also better for your grade. In a final exam, you could be misgraded and never know it.

13.2 PLEASE NOTE: There Are No Makeup Quizzes

Life is complicated. You may miss a Quiz due to illness, a job interview or whatever. If you miss a Quiz, for whatever reason, it simply will become one of the two Quizzes you exclude from your grade.

There are no makeup Quizzes, and no early or late ones.

13.3 Group Quiz, Last Day of Lecture

The last Quiz, given in lecture on the last day of class, will consist of an in-class Group effort, i.e. you will work on the Quiz with your Group.

(Please note: Unforeseen circumstances may result in this becoming an ordinary individual Quiz.)

13.4 Partial Credit on Quiz Problems

Quiz problems will be short answer, but you still may be able to get partial credit, in the case of arithmetic or algebra errors, or in the case of code, spelling or syntax errors. In fact, you will probably get full credit in those situations. But it is your responsibility to bring it to my attention after the grades are out.

If a problem has a mathematical answer, do NOT submit it in simplified form. For instance, write $2(3^2 - 1)$ rather than 16. This will increase your chances of getting partial credit. Note conversely that SIMPLIFIED ANSWERS MIGHT NOT GET CREDIT, EVEN IF CORRECT.

13.5 OMSI

You will use the OMSI system, http://github.com/matloff/omsi, to take the Quizzes, on your laptop computer in class. It does NOT need to be a fancy laptop; an old, slow machine is fine.

You must read the material at the above link, and the OMSI rules, http://heather.cs.ucdavis.edu/OMSIrules.html THOROUGHLY before the first Quiz.
13.6 Numeric Questions (ECS 132)

You will use R to answer any Quiz problem that requires a numerical answer. (Use of R code enables automatic grading of math problems.) And it must be real R! Here are some examples of non-R:

$1 + 2 = 3$
2×2
$3 \text{ over } 2$
$five$
the matrix has 5 rows

OMSI will run your code, and obviously non-R will cause an error.

13.6.1 It Must Be Real R

In the case of questions with numerical answers, write them in program style, using R syntax, e.g. using * for multiplication, ^ (carat) for exponentiation, %% for the mod operator, etc. Call \texttt{exp()} for evaluating powers of e = 2.71... and \texttt{pi} for 3.14...

Use the concatenate function, \texttt{c()} if a numerical problem asks for more than one number, e.g.

\begin{verbatim}
> c(1.2, 88.6)
[1] 1.2 88.0 6.0
\end{verbatim}

13.6.2 Useful, Likely Crucial, R Functions

Here are examples of R functions you may find useful: \texttt{length()}, \texttt{choose()}, \texttt{combn()}, \texttt{sum()}, \texttt{min()}, \texttt{max()}, \texttt{exp()}, \texttt{log()}, \texttt{integrate()}.

Here are examples of \texttt{integrate()}:

\begin{verbatim}
> integrate(function(t) 2*t/15, 2.5, 4) $value
[1] 0.65
> integrate(function(t) 2*t^2/15, 1, 4) $value
[1] 2.8
> integrate(function(t) sqrt(abs(t)) * dnorm(t, mean=10, sd=2.1), -Inf, Inf) $value
[1] 3.144017
\end{verbatim}

Did you notice the "$value" above? Without it, the class object is printed--in English--and thus not readable by my grading script.

13.7 Open-Materials Policy

\textbf{TESTS ARE TAKEN ON AN OPEN-MATERIALS BASIS.} Bring the textbook and other course materials with you to each Quiz. You are also welcome to bring whatever other materials you wish, e.g. technical books, dictionaries, whatever you want. Whatever you bring, \textbf{make absolutely sure that you remember to bring all your course materials, as many of the Quiz questions will refer to specific pages in them.}

OMSI has a PDF viewing feature. You may use that to view your textbook, providing it fills your computer screen while you are using it.
Please note that in program code on the Quizzes you are only allowed to use language, functions, etc. constructs presented so far in our course.

13.8 **Electronic Devices**

Other than using your laptop with OMSI, you are not allowed to use any electronic devices, INCLUDING CALCULATORS, during Quizzes.

13.9 **Re-assessment of Quiz Grading**

If you believe you deserve more points on a Quiz problem, I am happy to look at it again – PROVIDED you submit a request to me within two weeks of my sending out grades.

14 **Regarding Academic Dishonesty**

IMPORTANT NOTICE: Starting Fall 2018, all UCD instructors are required to explicitly inform students that they are subject to the Code of Academic Conduct, http://sja.ucdavis.edu/files/cac.pdf. Another change, effective Fall 2018, is that “...authority [is granted] for instructors to assign a student a maximum grade penalty of ‘F’ for a course — as opposed to an ‘F’ only on the examination or assignment in question — when academic misconduct is admitted or is determined by adjudication to have occurred” (e-mail message from Academic Senate Office, Sept. 27, 2018).

An embarrassing subject which nevertheless must be mentioned is academic dishonesty, i.e. cheating.

If a student is found to be cheating, it will be treated as a VERY SERIOUS matter, not a harmless prank, AND WILL BE REFERRED TO STUDENT JUDICIAL AFFAIRS. It will harm his/her standing at the university, and also possibly make it difficult for him/her to get a job when seeking employment after graduation.

14.1 **Quizzes**

Official university policy\(^3\) forbids

> “Wandering eyes,” talking during exams...or leaving the exam room without permission.

Please work as follows during Quizzes:

- **To avoid the appearance of cheating, MAKE SURE THAT THE OMSI APP FILLS YOUR ENTIRE SCREEN AT ALL TIMES.**
- Try to sit in alternate seats if possible.
- **ABSOlutely NO TALKING** to classmates at any time during the Quiz.
- Keep your Quiz paper covered when you are not actually writing, so that it will not be so exposed to view.

\(^3\) See the Class Schedule and Registration Guide.
• It would be greatly appreciated if you **USE THE RESTROOM BEFORE THE EXAM STARTS, RATHER THAN DURING THE EXAM.**

And never leave the exam room without permission. **If you do need to use the restroom, you must leave your paper with the proctor.**

Thanks very much for your help.

Please note that in the case of larger classes, students may be photographed, including video.

Please do not wear hats during Quizzes.

14.2 Homework

Outright copying of homework, whether in the form of code or algorithm or math, is of course an extremely serious violation of university policy and personal ethics. Similarly, asking for advice on the Internet, paying people to do your work, or otherwise improper consultation, is again an extremely serious violation of university policy and personal ethics.

However, you are welcome, and indeed encouraged, to trade tips with people in other Groups. You may also on rare occasions ask people whom you know outside the class for hints, say friends or relatives who have some knowledge of the field, on a very limited basis.

You are also welcome to make reasonable use of the Web. For example, I’m a big fan of Wikipedia and there is a ton of material on there.

15 Lecture Format

My lecture style is very nontraditional.

15.1 I Seldom Write on the Blackboard

Instead, I talk about what’s in the textbook. I typically will ask you to open to a certain page, and then will call your attention to various sentences, examples and pictures on that page. **The lectures will consist mainly of discussion and amplification of the examples in the textbook, with additional explanation.**

This is just like using PowerPoint, except that the information is in front of you in your book, rather than on a screen at the front of the class.

15.2 You Will LEARN MORE This Way

Traditionally, the professor writes on the board (or shows slides), and the students copy down what he/she says. That’s a waste of time! Instead, what I do is give you in print what I would have written on the board.

Since the textbook already contains my lecture, you don’t take notes (other than miscellaneous comments in the margin). This frees your attention to ask questions and to engage in class discussion.

The latter aspect, discussion, is key. You are very much encouraged to bring up any questions you might have. Please don’t be shy about asking questions; there is no such thing as a “dumb” question.
Similarly, listen carefully to the questions the other students ask; this can be a very valuable source of insight, to which you should pay special attention.

Note carefully: Often points that arise spontaneously during lecture wind up as Quiz questions!

This is a lecture style which you may not be accustomed to, but you will LEARN MORE this way.

15.3 Bring the Materials to Lecture

Make sure you bring the textbook to every lecture. It will play a very active role in the lectures.

15.4 Use of Laptops During Lecture

Really, this is rude. And though it has become commonplace, I (and many other professors) do not like it, and surveys have shown that many of your fellow students are annoyed by it too. It is very distracting. If you wish to use a laptop in class, PLEASE SIT IN THE BACK OF THE ROOM.

Use of tablets is OK (during lectures, not Quizzes), as long as you do so quietly, with the device lying flat on the desk.

16 The Discussion Section

The discussion section is required. It will be used for the purpose of giving Quizzes, and occasionally for presenting material not covered in lecture. (That material will appear on Quizzes.)

17 Groups

The following will be done in Groups:

- Homework
- the last Quiz of the quarter, in lecture
- the take-home Term Project

So, get to be very good friends with your Group, as you will be working with them constantly!

17.1 Forming Groups

Group size must be at least three (two if the class enrollment is under 25), and no more than four.

During the first week of class, the TA will ask you to either state the membership of a Group you formed on your own, or state that you will to be placed into a Group. If you and someone else in the class wish to form a Group, then ask the TA to assign one or two more people to your Group.
17.2 Group Participation: Your Responsibilities

YOUR HOMEWORK PARTNERS DEPEND ON YOU.

Repeated failure to work cooperatively with your Group may result in a substantial penalty being applied to your course grade, which could drop to an F.

Please do not allow things to deteriorate to the point at which I send you an e-mail message titled, “Your course grade is in jeopardy.”

You must show up at agreed-upon meetings of your Group, or arrange virtual meetings through e-mail, Skype, Google+ Hangouts etc.

It is not acceptable to say something like “You do this assignment and I’ll do the next.” Each student in a group is expected to participate in every assignment.

Within an assignment, you may wish to divide the work among your Group members. However, you are responsible for the entire work you submit, and will be tested on it during grading.

IT IS EQUALLY UNACCEPTABLE for one or more Group members to simply take on all the work themselves, excluding the rest of the Group. In a programming class, for instance, every member of the Group must write part of the program. Maybe some will write bigger parts and some smaller, but everyone must be involved.

If one or more Group members repeatedly fail to comply with the above, they will be placed in separate, one-person Groups. This means not only the Homework but also the Group Quizzes and, most importantly, the Term Project.

18 Our Class Web Page and Blog

Our class Web page is at http://heather.cs.ucdavis.edu/~matloff/xxx.html, where xxx is our course number, e.g. 132 for ECS 132. It contains information on office hours and the like.

Our class Blog is linked to from our class Web page. IT IS REQUIRED THAT YOU READ THE BLOG EVERY DAY; it’s used to announce Homework assignments (including clarifications), hints for Quizzes, and so on.

Any information disseminated on the Blog is considered part of official course materials. This means for example that it may be needed in Quizzes.

I will try to send an e-mail message informing you that a new blog post has been made, but cannot guarantee it.

19 Homework

We will have approximately three to five Homework assignments through the quarter, depending on the course and other factors.
19.1 Homework Due Dates

The term *due date* means 11:59 p.m. of the stated date.

19.2 Announcements

Homework assignments will be announced in the class Blog. (Note: An assignment is not official until it is announced on the Blog, even though it may appear on the Web before then.) The Homework specs themselves will be on the course Web site, so look there when an assignment is announced on the Blog.

Occasionally there will be news about a current Homework assignment, such as clarifications, hints and so on. These will be announced in the Blog.

19.3 Programming Work

In general, you will not be docked points for poor style—indentation, comments, etc. But you should do these things FOR YOURSELF, to help organize your thinking, and to be able to understand your program two months from now.

Use a debugging tool! Learn my Principle of Confirmation! Don’t flail for hours when you can actually shorten your debugging time by a large fraction.

19.4 Submitting Homework

If the assignment includes mathematical work, e.g. as in ECS 132, you must write up your solutions in LaTeX, in detailed, clear form. Don’t just write down equations; *explain* them.

It is REQUIRED that you use the Unix `tar` command to package all of your files. In a course with math content, this means your `.tex` and `.pdf`, and image files if any.

For a programming course, this will be just your source code files, except in the Term Project, where you will follow the above rule for math courses.

The file name will be `email1.email2....tar` where the “email” fields are the official UCD e-mail addresses of the members of your Group, e.g. `jsmith.agutierrez.streddy.tjwong.tar`. Be sure to get those addresses exactly correct, to avoid a situation in which your team member doesn’t get credit. **Be sure to use the proper e-mail address, NOT a different one based on your UCD login. Your official address is the one used by the TA and me in mailing you; check your records.**

In submitting your `.tar` file, make SURE not to make subdirectories. When the grading script unpacks your `.tar` file, it will expect to see all your work files in the same directory from which the script invokes the `.tar` command.

You then submit your `.tar` file to the TA (not to me), using `handin` on CSIF.

```
handin taUserName hwkName yourMailAddresses.tar
```

(The TA will announce `hwkName`.)
19.5 Interactive Homework Grading

We will use interactive grading. The TA will announce Homework grading times, and each Group will sign up for a time slot. All members of the Group must be present during the grading time.

During a Group’s time slot, the TA will ask each member of the Group questions about their Homework submission, such as “What if the problem had asked...”, “Explain in detail why you did it this way...”, “What if you were to do it this way instead...” The purpose of these questions is to ensure that all partners are actively involved in all the work. The TA will also ask questions about the general course material.

The TA will assign separate grades for each Group member. In some cases, these grades will be identical, but if there is a disparity in the levels of understanding the different Group members have regarding the assignment, the TA will assign different grades to each member.

It’s not expected that all members of a Group are equally proficient in programming or math, and thus it’s not expected that everyone contributed equally to their submitted work. However, it IS expected that everyone was very actively involved.

You must be prepared to speak cogently about the ENTIRE assignment. In particular, if you worked on one part of the assignment and Johnnie worked on another, it is NOT acceptable to answer the TA’s question about Johnnie’s part by saying “Oh, I don’t know about that part, because Johnnie did it.”

The TA will e-mail me a report after grading an assignment, with tentative grades for my approval. Below are samples of what the TA might say.

Example 1:

Group 3, John, Jim and Mary: All three students seemed to have actively contributed to this assignment, and all three answered my questions well. The program worked fine. Tentative grades—John A, Jim A, Mary A.

Example 2:

Group 3, John, Jim and Mary: The program worked fine, but Mary seems to have done most of the work. John had some trouble answering my questions, and Jim could answer almost nothing. Tentative grades—John C, Jim F, Mary A.

Example 3:

Group 3, John, Jim and Mary: The program worked mostly OK, but failed when I tried the input combination 8, 88 and 168. All three Group members did answer my questions well. Tentative grades—John A-, Jim A-, Mary A-.

In the case of ECS 132, there will be similar reports for math problems.

19.6 If You Need Help, Hints, Etc.

Please note that Homework assignments here will NOT lay out a detailed recipe, with tons of hints, telling you how to do the problems.

The work is designed to be challenging and thought-provoking. This thought-provoking nature of the assignments is the vehicle by which you get to really understand the concepts. You are not necessarily expected to
see right away how to do an assignment. Instead, you are expected to spend a considerable amount of time pondering the assignment, gradually seeing more and more, until you finally see how to do the whole thing. It is through that thought process that will develop insight into the course material.

The TA and I will be quite happy to help you, definitely including giving you hints—but only if, after giving a matter considerable thought, you still don’t see what to do. Once you have reached the point where you cannot go any further, we very much encourage you to seek help from us. We want you to do well on the Homework!

19.7 Late Work

An assignment is late if it is submitted to the TA after the due date. If you are late, you will be assessed a 5% penalty the first late day, and 10%-per-day penalty after that in your grade for that assignment. (Since `handin` is available every day, each of the seven days of the week counts as one day.) The maximum total penalty is 50%.

Each Group will be allowed a total of 2 late days over the quarter, time which is not penalized. You can use this as being late 2 days with no penalty on one assignment, or as being late 1 day with no penalty in each of two assignments.

Don’t squander your grace period days in the first assignment! The subsequent ones will almost certainly be more difficult, so save your grace time for then.

The TA will keep the appropriate records as to how many days of grace period you have used.

20 Term Project

In lieu of a Final Exam, we have a Term Project, which also serves as the last Homework assignment. It will be take-home and collaborative with your Group, just as with your earlier assignments. It will be very different from regular assignments, though:

- It will be of a different nature, notably in its requirement that you submit a written report.
- It will involve work approximately 2 times that of a regular assignment, and will be weighted accordingly, especially given the dual role of the Project as both Homework and a replacement for a final exam.
- An especially good Term Project may be given heavy Extra Credit, substantially boosting your course grade, much more than a regular assignment would. **This boost could be as much as a full letter grade, e.g. bumping what would have been a B- for the course up to an A-.**
- No late Term Projects will be accepted. I highly recommend that, during the course of your work on the Project, you periodically submit what you have to `handin`. That way, if you do miss the deadline, at least you will have something submitted for grading.

You submit your Project reports in the same manner as for Homework, as detailed in Section 19.4. Make sure to heed the point about subdirectories. You use `handin`, in my directory (not the TA’s) on CSIF, using the subdirectory `xproject`, e.g. `50project`:

```
handin matloff xproject yourMailAddresses.tar
```
Note these Project requirements:

- Do a good, professional job.
- Correct grammar and spelling, clarity/fluidity of the writing, etc., do count — a LOT.
- You must use LaTeX.
- Use bold font for program variables in text.
- Use the listings package or similar for displayed code listings.
- Full code listings must be included in an appendix.
- Use Bibtex for references. Note: Lots of materials already have Bibtex entries available online, saving you work. In referencing a Web page, include at least the title and URL.

Details will be given later. If you are curious now, though, you can find model examples in files with names of the form “Exemplarx” on our class Web site, e.g. http://heather.cs.ucdavis.edu~matloff/132/.

21 Grading

Grading is noncompetitive (there is no “curve”), so it is possible for everyone to do well.

21.1 Weighting

The formula used is

\[
\text{course grade} = 0.70 \times \text{Quizzes grade} + 0.30 \times \text{Homework grade}
\]

where the Homework and Quizzes grades are each on the 4-point scale (4 for an A, 3 for a B, etc., with + adding 0.3 and - subtracting 0.3).

Remember, the Term Project is assigned in lieu of a final exam. If this is missing, or if you do almost no work on it, it will not merely be treated as an F. Instead, you will be imposed a heavy penalty on your course grade, and in fact possibly receive an I (Incomplete) grade. To make up the I, you will be required to do a new project, by yourself.

On the other hand, as noted in Section 20, an especially good Term Project may be given heavy Extra Credit, substantially boosting your course grade, much more than a regular assignment would.

21.2 + and - Grades

The threshold for a grade of n is (n-1)\(1.85\); the threshold for an ‘n-’ grade is (n-1)\(1.6\); the threshold for a ‘+’ grade is n\(2\). So, for example, if your weighted average from the above formula is between 2.6 and 2.84, your course grade is B-; if the average is between 2.85 and 3.19, your course grade is B; if the average is between 3.2 and 3.59, your grade is B+.
21.3 Quizzes Grade

You will get a letter grade on each Quiz.

In recognition of the fact that on (rare) occasions — for whatever reason — you will not be able to attend discussion section, or you simply will have an “off day,” your lowest two (letter) Quiz grades will be thrown out. Your other Quiz letter grades will be averaged to produce your overall Quizzes grade.

If you miss many quizzes, your course grade will be reduced, possibly to an F, regardless of overall grades on the Quizzes, and Homework.

21.4 Getting Feedback from the TA

My agreement with the TA is that he/she must grade Homework within one week. TAs are students themselves, so this shouldn’t be a completely firm rule, but if you find that the TA is consistently slow in grading, please remind him/her, and let me know as well.

21.5 Intangibles in Your Course Grade

This is not “CHEM 1A-style grading,” calculated purely by formula, in which falling 0.5% below the cutoff point for an A results in a grade of B. The grade as determined above is just a lower bound. I can and often do use intangibles to increase your grade above that that the formula in Section 21 would give. I would estimate this occurs in 20-25% of all the course grades I assign. Here are examples (note that I use many of these in writing letters of recommendation too):

- Student has been making a really strong effort in the class (or not).
- TA’s detailed reports to me of the student’s performance in the interactive Homework grading sessions show that the student has better insight than his/her Quiz scores show.
- Student’s group has an exceptionally good Project, and it is clear that the student made substantial contributions to this (e.g. because the student also got good Homework grades).
- “All’s well that ends well”-student showed a marked improvement in Quiz grades as the quarter progressed.
- Student’s insightful comments in class.
- Student got one or more really difficult Quiz problems right that few or no other students got.

Negatives can be an obstacle. Those who miss Quizzes (except for medical or similar reasons) will probably not receive the benefit of such intangibles, for instance. A pattern of missing many Quizzes, or lack of involvement in the Homework may produce a grade below what the rules of the course provide.

21.6 Failure to Participate

If you miss a large number of the Quizzes, or do not actively participate with your group in the Homework and Project, you may receive a course grade lower than what the above formula computes, even an F.
21.7 Letters of Recommendation and Job References

I am happy to write letters of recommendation to grad school for students who did well in my course. Actually, I claim to have a good track record. I will take into account grades, insights shown in class, performance on especially difficult Quiz questions and so on, as well as my personal experience with the student.

I am similarly happy to serve as a job reference. It is important to note the following: By the time an employer contacts me, they have already assessed your technical capabilities. What they want to know from me is what I know of your character, questions such as: Are responsible and ethical? Do you work well with your fellow students?

22 I Do Care!

I wish to emphasize that I care very much that you succeed in this course, and I look forward to getting to know all of you.