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Preface

Regression analysis is both one of the oldest branches of statistics, with
least-squares analysis having been first proposed way back in 1805, and
also one of the newest areas, in the form of the machine learning techniques
being vigorously researched today. Not surprisingly, then, there is a vast
literature on the subject.

Well, then, why write yet another regression book? Many books are out
there already, with titles using words like regression, classification, predic-
tive analytics, machine learning and so on. They are written by authors
whom I greatly admire, and whose work I myself have found useful. Yet, I
did not feel that any existing books covered the material in a manner that
sufficiently provided insight for the practicing data analyst.

Merely including examples with real data is not enough to truly tell the
story in a way that will be useful in practice. Few if any books go much
beyond presenting the formulas and techniques, and thus the hapless prac-
titioner is largely left to his/her own devices. Too little is said in terms of
what the concepts really mean in a practical sense, what can be done with
regard to the inevitable imperfections of our models, which techniques are
too much the subject of “hype,” and so on.

This book aims to remedy this gaping deficit. It develops the material in
a manner that is precisely-stated yet always maintains as its top priority
— borrowing from a book title of the late Leo Breiman — “a view toward
applications.”

Examples of what is different here:

One of the many ways in which this book is different from all other regres-
sion books is its recurring interplay between parametric and nonparametric
methods. On the one hand, the book explains why parametric methods can
be much more powerful than their nonparametric cousins if a reasonable

xi



xii PREFACE

model can be developed, but on the other hand it shows how to use non-
parametric methods effectively in the absence of a good parametric model.
The book also shows how nonparametric analysis can help in parametric
model assessment. In the chapter on selection of predictor variables (Chap-
ter 9, Dimension Reduction), the relation of number of predictors to sample
size is discussed in both parametric and nonparametric realms.

Another example of how this book takes different paths than do others is its
treatment of the well-known point that in addition to the vital Prediction
goal of regression analysis, there is an equally-important Description goal.
The book devotes an entire chapter to the latter (Chapter 7, Measuring
Factor Effects). After an in-depth discussion of the interpretation of coef-
ficients in parametric regression models, and a detailed analysis (and even
a resolution) of Simpson’s Paradox, the chapter then turns to the problem
of comparing groups in the presence of covariates — updating the old anal-
ysis of covariance. Again, both parametric and nonparametric regression
approaches are presesnted.

A number of sections in the book are titled, “The Verdict,” suggesting
to the practitioner which among various competing methods might be the
most useful. Consider for instance the issue of heteroscedasticity, in which
the variance of the response variable is nonconstant across covariate values.
After showing that the effects on statistical inference are perhaps more
severe than many realize, the book presents various solutions: Weighted
least squares (including nonparametric estimation of weights); the Eickert-
White method; and variance-stabilizing transformations. The section titled
“The Verdict” then argues for opting for the Eickert-White model if the goal
is Description (and ignoring the problem if the goal is Prediction).

Note too that the book aims to take a unified approach to the various
aspects — regression and classification, parametric and nonparametric ap-
proaches, methodology developed in both the statistics and machine learn-
ing communities, and so on. The aforementioned use of nonparametrics to
help assess fit in parametric models exemplifies this.

Big Data:

These days there is much talk about Big Data. Though it is far from the
case that most data these days is Big Data, on the other hand it is true
that things today are indeed quite different from the days of “your father’s
regression book.”

Perhaps the most dramatic of these changes is the emergence of data sets
with very large numbers of predictor variables p, as a fraction of n, the
number of observations. Indeed, for some data sets p >> n, an extremely
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challenging situation. Chapter 9, Dimension Reduction, covers not only
“ordinary” issues of variable selection, but also this important newer type
of problem, for which many solutions have been proposed.

A comment on the field of machine learning:

Mention should be made of the fact that this book’s title includes both the
word regression and the phrase machine learning.

When China’s Deng Xiaoping was challenged on his then-controversial pol-
icy of introducing capitalist ideas to China’s economy, he famously said,
“Black cat, white cat, it doesn’t matter as long as it catches mice.” Statis-
ticians and machine learning users should take heed, and this book draws
upon both fields, which at core are not really different from each other
anyway.

My own view is that machine learning (ML) consists of the development of
regression models with the Prediction goal. Typically nonparametric meth-
ods are used. Classification models are more common than those for pre-
dicting continuous variables, and it is common that more than two classes
are involved, sometimes a great many classes. All in all, though, it’s still
regression analysis, involving the conditional mean of Y given X (reducing
to P (Y = 1|X) in the classification context).

One often-claimed distinction between statistics and ML is that the former
is based on the notion of a sample from a population whereas the latter
is concerned only with the content of the data itself. But this difference
is more perceived than real. The idea of cross-validation is central to ML
methods, and since that approach is intended to measure how well one’s
model generalizes beyond our own data, it is clear that ML people do think
in terms of samples after all.

So, at the end of the day, we all are doing regression analysis, and this book
takes this viewpoint.

Intended audience:

This book is aimed at both practicing professionals and use in the class-
room. Some minimal background is required (see below), but some readers
will have some background in some aspects of the coverage of the book. The
book aims to both accessible and valuable to such diversity of readership,
following the old advice of Samuel Johnson that an author “should make
the new familiar and the familiar new.”1

Minimal background: The reader must of course be familiar with terms

1Cited in N. Schenker, “Why Your Involvement Matters, JASA, April 2015.
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like confidence interval, significance test and normal distribution, and is
assumed to have knowledge of basic matrix algebra, along with some ex-
perience with R. Most readers will have had at least some prior exposure
to regression analysis, but this is not assumed, and the subject is devel-
oped from the beginning. Math stat is needed only for readers who wish to
pursue the Mathematical Complements sections at the end of most chap-
ters. Appendices provide brief introductions to R, matrices, math stat and
statistical miscellania (e.g. the notion of a standard error).

The book can be used as a text at either the undergraduate or graduate
level. For the latter, the Mathematical Complements sections would likely
be included, whereas for undergraduates they may be either covered lightly
or skipped, depending on whether the students have some math stat back-
ground.

Chapter outline:

Chapter 1: Setting the Stage: Regression as the conditional mean; para-
metric and nonparametric prediction models; Prediction and Description
goals; classification as a special case of regression; parametric/nonparamet-
ric tradeoff; the need for cross-validation analysis.

Chapter 2, The Linear Regression Model: Least-squares estimation; sta-
tistical properties; inference methods, including for linear combinations of
β; meaning and reliability of R2; departures from the normality and ho-
moscedasticity assumptions.

Chapter 4, Nonlinear Regression Models: Nonlinear modeling and com-
putation; Generalized Linear Model; iteratively reweighted least squares;
logistic model, motivations and interpretations; Poisson regression (includ-
ing overdispersion and application to log-linear model); others.

Chapter 8: Shrinkage Methods: Multicollinearity in linear and nonlinear
models; overview of James-Stein concepts; relation to non-full rank models;
ridge regression and Tychonov regularization; LASSO and variants.

Chapter 10, Smoothing-Based Nonparametric Estimation: Estimation via
k-nearest neighbor; kernel smoothing; choice of smoothing parameter; bias
near support boundaries.

Chapter 6, Model Fit Assessment: Checking propriety of both the regres-
sion model and ancillary aspects such as homoscedasticity; residual analysis;
nonparametric methods as “helpers”; a parallel-coordinates approach.

Chapter 9, Dimension Reduction: Precise discussion of overfitting; relation
of the number of variables p to n, the number of data points; extent to
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which the Curse of Dimensionality is a practical issue; PCA and newer
variants; clustering; classical variable-selection techniques, and new ones
such as sparsity-based models; possible approaches with very large p.

Chapter 7, Measuring Factor Effects: Description as a goal of regression
separate from Prediction; interpretation of coefficients in a linear model,
in the presence (and lack of same) of other predictors; Simpson’s Paradox,
and a framework for avoiding falling victim to the problem; measurement
of treatment effects, for instance those in a hospital quality-of-care example
presented in Chapter 1; brief discussion of instrumental variables.

Chapter 11, Boundary-Based Classification Methods: Major nonparamet-
ric classification methodologies that essentially boil down to estimating the
geometric boundary in X space between predicting Yes (Y = 1) and No
(Y = 0); includes methods developed by statisticians (Fisher linear discrim-
inant analysis, CART, random forests), and some developed in the machine
learning community, such as support vector machines and neural networks;
and brief discussion of bagging and boosting.

Chapter ??: Outlier-Resistant Methods: Leverage; quantile regression; ro-
bust regression.

Chapter 13: Miscellaneous Topics: Missing values; multiple inference; etc.

Appendices: Reviews of/quick intros to R and matrix algebra; odds and
ends from probability modeling, e.g. iterated expectation and properties
of covariance matrices; modeling of samples from populations, standard
errors, delta method, etc.

Those who wish to use the book as a course text should find that all their
favorite topics are here, just organized differently and presented in a fresh,
modern point of view.

There is little material on Bayesian methods (meaning subjective priors, as
opposed to empirical Bayes). This is partly due to author interest, but also
because the vast majority of R packages for regression and classification
do not take a Bayesian approach. However, armed with the solid general
insights into predictive statistics that this book hopes to provide, the reader
would find it easy to go Bayesian in this area.

Software:

The book also makes use of some of my research results and associated soft-
ware. The latter is in my package regtools, available from CRAN, GitHub
and http://heather.cs.ucdavis.edu/regress.html. Errata lists, sug-
gested data projects and so on may also be obtained there.

http://heather.cs.ucdavis.edu/regress.html
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In many cases, code is also displayed within the text, so as to make clear
exactly what the algorithms are doing.
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Chapter 1

Setting the Stage

This chapter will set the stage, previewing many of the major concepts to be
presented in later chapters. The material here will be referenced repeatedly
throughout the book.

1.1 Example: Predicting Bike-Sharing Activ-
ity

Let’s start with a well-known dataset, Bike Sharing, from the Machine
Learning Repository at the University of California, Irvine.1 Here we have
daily/hourly data on the number of riders, weather conditions, day-of-week,
month and so on. Regression analysis may turn out to be useful to us in
at least two ways:

• Prediction:

The managers of the bike-sharing system may wish to predict rider-
ship, say for the following question:

Tomorrow, Sunday, is expected to be sunny and cool, say
62 degrees Fahrenheit. We may wish to predict the number
of riders, so that we can get some idea as to how many bikes
will need repair. We may try to predict ridership, given the
weather conditions, day of the week, time of year and so
on.

1Available at https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

1

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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• Description:

We may be interested in determining what factors affect ridership.
How much effect, for instance, does wind speed have in influencing
whether people wish to borrow a bike?

These twin goals, Prediction and Description, will arise frequently in this
book. Choice of methodology will often depend on the goal in the given
application.

1.2 Example: Bodyfat Prediction

The great baseball player, Yogi Berra was often given to malapropisms, one
of which was supposedly his comment, “Prediction is difficult, especially
about the future.” But there is more than a grain of truth to this, because
indeed we may wish to “predict” the present or even the past.

For example, consiser the bodyfat data set, available in the R package,
mfp. Body fat is expensive and unwieldy to measure directly, as it in-
volves underwater weighing. Thus it would be highly desirable to “predict”
that quantity from easily measurable variables such as height, age, weight,
abdomen circumference and so on.

In scientific studies of ancient times, there may be similar situations in
which we “predict” unknown quantities from known ones.

1.3 Optimal Prediction

Even without any knowledge of statistics, many people would find it rea-
sonable to predict via subpopulation means. In the above bike-sharing
example, say, this would work as follows.

Think of the “population” of all days, past, present and future, and their
associated values of number of riders, weather variables and so on.2 Our
data set is considered a sample from this population. Now consider the
subpopulation consisting of all days with the given conditions: Sundays,
sunny skies and 62-degree-temperatures.

2This is a somewhat slippery notion, because there may be systemic differences from
the present and the distant past and distant future, but let’s suppose we’ve resolved that
by limiting our time range.



1.4. A NOTE ABOUT E(), SAMPLES AND POPULATIONS 3

It is intuitive that:

A reasonable prediction for tomorrow’s ridership would be the
mean ridership among all days in the subpopulation of Sundays
with sunny skies and 62-degree-temperatures.

In fact, such a strategy is optimal, in the sense that it minimizes our ex-
pected squared prediction error. We will defer the proof to Section 1.13.1
in the Mathematical Complements section at the end of this chapter, but
what is important for now is to note that in the above prediction rule, we
are dealing with conditional means: This is mean ridership, given day of
the week is Sunday, sky conditions are sunny, and temperature is 62.

1.4 A Note About E(), Samples and Popula-
tions

To make this more mathematically precise, keep in mind that in this book,
as with many other books, the expected value functional E() refers to popu-
lation mean. Say we are studying personal income, I, for some population,
and we choose a person at random from that population. Then E(I) is not
only the mean of that random variable, but much more importantly, it is
the mean income of all people in that population.

Similarly, we can define condition means, i.e., means of subpopulations.
Say G is gender. Then the conditional expected value, E(I | G = male) is
the mean income of all men in the population.

To illustrate this in the bike-sharing context, let’s define some variables:

• R, the number of riders

• W , the day of the week

• S, the sky conditions, e.g. sunny

• T , the temperature

We would like our prediction R̂ to be3 the conditional mean,

R̂ = E(R | W = Sunday, S = sunny, T = 62) (1.1)

3Note that the “hat” notation ˆ is the traditional one for “estimate of.”
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There is one major problem, though: We don’t know the value of the right-
hand side of (1.1). All we know is what is in our sample data, whereas the
right-side of (1.1) is a population value, and thus unknown.

The difference between sample and population is of course at the
very core of statistics. In an election opinion survey, for instance, we
wish to know p, the proportion of people in the population who plan to
vote for Candidate Jones. But typically only 1200 people are sampled, and
we calculate the proportion of Jones supporters among them, p̂, and then
use that as our estimate of p.

Similarly, though we would like to know the value of E(R |W = Sunday, S =
sunny, T = 62), it is an unknown population value, and thus must

be estimated from our sample data, which we’ll do later in this chap-
ter.

Readers will greatly profit from constantly keeping in mind this
distinction between populations and samples.

Before going on, a bit of terminology: We will refer to the quantity to be
predicted, e.g. R above, as the response variable, and the quantities used
in prediction, e.g. W , S and T above, as the predictor variables. (By the
way, the machine learning community uses the term features rather than
predictors.)

1.5 Example: Do Baseball Players Gain Weight
As They Age?

Though the bike-sharing data set is the main example in this chapter, it
is rather sophisticated for introductory material. Thus we will set it aside
temporarily, and bring in a simpler data set for now. We’ll return to the
bike-sharing example in Section 1.10.

This new dataset involves 1015 major league baseball players, courtesy of
the UCLA Statistics Department. You can obtain the data either from
the UCLA Web page, or as the data set mlb in freqparcoord, a CRAN
package authored by Yingkang Xie and myself. The variables of interest to
us here are player weight W , height H and age A, especially the first two.

Here are the first few records:

> l ibrary ( f r eqparcoord )
> data ( mlb )
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> head ( mlb )
Name Team Pos i t i on Height

1 Adam Donachie BAL Catcher 74
2 Paul Bako BAL Catcher 74
3 Ramon Hernandez BAL Catcher 72
4 Kevin Mi l l a r BAL F i r s t Baseman 72
5 Chris Gomez BAL F i r s t Baseman 73
6 Brian Roberts BAL Second Baseman 69

Weight Age PosCategory
1 180 22 .99 Catcher
2 215 34 .69 Catcher
3 210 30 .78 Catcher
4 210 35 .43 I n f i e l d e r
5 188 35 .71 I n f i e l d e r
6 176 29 .39 I n f i e l d e r

1.5.1 Prediction vs. Description

Recall the Prediction and Description goals of regression analysis, discussed
in Section 1.12.2. With the baseball player data, we may be more interested
in the Description goal, such as:

Ahtletes strive to keep physically fit. Yet even they may gain
weight over time, as do people in the general population. To
what degree does this occur with the baseball players? This
question can be answered by performing a regression analysis of
weight against height and age, which we’ll do in Section 1.7.1.2.

On the other hand, there doesn’t seem to be much of a Prediction goal
here. It is hard to imagine a need to predict a player’s weight. However,
for the purposes of explaining the concepts, we will often phrase things
in a Prediction context. This is somewhat artificial, but it will serve our
purpose of introducing the basic concepts in the very familiar setting of
human characteristics.

So, suppose we will have a continuing stream of players for whom we only
know height, and need to predict their weights. Again, we will use the
conditional mean to do so. For a player of height 72 inches, for example,
our prediction might be

Ŵ = E(W | H = 72) (1.2)
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Again, though, this is a population value, and all we have is sample data.
How will we estimate E(W | H = 72) from that data?

First, some important notation: Recalling that µ is the traditional Greek
letter to use for a population mean, let’s now use it to denote a function
that gives us subpopulation means:

For any height t, define

µ(t) = E(W | H = t) (1.3)

which is the mean weight of all people in the population who
are of height t.

Since we can vary t, this is indeed a function, and it is known
as the regression function of W on H.

So, µ(72.12) is the mean population weight of all players of height 72.12,
µ(73.88) is the mean population weight of all players of height 73.88, and
so on. These means are population values and thus unknown, but they do
exist.

So, to predict the weight of a 71.6-inch tall player, we would use µ(71.6) —
if we knew that value, which we don’t, since once again this is a population
value while we only have sample data. So, we need to estimate that value
from the (height, weight) pairs in our sample data, which we will denote
by (H1,W1), ...(H1015,W1015). How might we do that? In the next two
sections, we will explore ways to form our estimate, µ̂(t).

1.5.2 A First Estimator, Using a Nonparametric Ap-
proach

Our height data is only measured to the nearest inch, so instead of esti-
mating values like µ(71.6), we’ll settle for µ(72) and so on. A very natural
estimate for µ(72), again using the “hat” symbol to indicate “estimate of,”
is the mean weight among all players in our sample for whom height is 72,
i.e.

µ̂(72) = mean of all Wi such that Hi = 72 (1.4)

R’s tapply() can give us all the µ̂(t) at once:
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> l ibrary ( f r eqparcoord )
> data ( mlb )
> muhats <− tapply ( mlb$Weight , mlb$Height ,mean)
> muhats

67 68 69 70 71 72
172.5000 173.8571 179.9474 183.0980 190.3596 192.5600

73 74 75 76 77 78
196.7716 202.4566 208.7161 214.1386 216.7273 220.4444

79 80 81 82 83
218.0714 237.4000 245.0000 240.5000 260.0000

In case you are not familiar with tapply(), here is what just happened. We
asked R to partition the Weight variable into groups according to values
of the Height variable, and then compute the mean weight in each group.
So, the mean weight of people of height 72 in our sample was 190.3596. In
other words, we would set µ̂(72) = 190.3596, µ̂(74) = 202.4566, and so on.
(More detail on tapply() is given in the Code Complements section at the
end of this chapter.)

Since we are simply performing the elementary statistics operation of esti-
mating population means from samples, we can form confidence intervals
(CIs). For this, we’ll need the “n” and sample standard deviation for each
height group:

> tapply ( mlb$Weight , mlb$Height , length )
67 68 69 70 71 72 73 74 75 76 77 78

2 7 19 51 89 150 162 173 155 101 55 27
79 80 81 82 83
14 5 2 2 1

> tapply ( mlb$Weight , mlb$Height , sd )
67 68 69 70 71 72

10.60660 22.08641 15.32055 13.54143 16.43461 17.56349
73 74 75 76 77 78

16.41249 18.10418 18.27451 19.98151 18.48669 14.44974
79 80 81 82 83

28.17108 10.89954 21.21320 13.43503 NA

An approximate 95% CI for µ(72), for example, is then

190.3596± 1.96
17.56349√

150
(1.5)

or about (187.6,193.2).
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Figure 1.1: Plotted µ̂(t)

The above analysis takes what is called a nonparametric approach. To see
why, let’s proceed to a parametric one, in the next section.

1.5.3 A Possibly Better Estimator, Using a Linear Model

All models are wrong, but some are useful — famed statistician George Box

So far, we have assumed nothing about the shape of µ(t) would have, if it
were plotted on a graph. Again, it is unknown, but the function does exist,
and thus it does correspond to some curve. But we might consider making
an assumption on the shape of this unknown curve. That might seem odd,
but you’ll see below that this is a very powerful, intuitively reasonable idea.

Toward this end, let’s plot those values of µ̂(t) we found above. We run

> plot ( 6 7 : 8 3 , muhats )

producing Figure 1.1.
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Interestingly, the points in this plot seem to be near a straight line, sug-
gesting that our unknown function µ̂(t) has a linear form, i.e. that

µ(t) = c+ dt (1.6)

for some constants c and d, over the range of t appropriate to human heights.
Or, in English,

mean weight = c+ d× height (1.7)

Don’t forget the word mean here! We are assuming that the mean weights
in the various height subpopulations has the form (1.6), NOT that weight
itself is this function of height, which can’t be true.

This is called a parametric model for µ(t), with parameters c and d. We
will use this below to estimate µ(t).

Our earlier estimation approach, in Section 1.5.2, is called nonparametric.
It is also called assumption-free, since it made no assumption at all about
the shape of the µ(t) curve.

Note the following carefully:

• Figure 1.1 suggests that our straight-line model for µ̂(t) may be less
accurate at very small and very large values of t. This is hard to say,
though, since we have rather few data points in those two regions, as
seen in our earlier R calculations; there is only one person of height
83, for instance.

But again, in this chapter we are simply exploring, so let’s assume for
now that the straight-line model for µ̂(t) is reasonably accurate. We
will discuss in Chapter 6 how to assess the validity of this model.

• Since µ(t) is a population function, the constants c and d are popula-
tion values, thus unknown. However, we can estimate them from our
sample data. We do so using R’s lm() (“linear model”) function:4

> lmout <− lm( mlb$Weight ˜ mlb$Height )
> lmout
Call :
lm( formula = mlb$Weight ˜ mlb$Height )

4Details on how the estimation is done will be given in Chapter 2.
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C o e f f i c i e n t s :
( I n t e r c e p t ) mlb$Height
−151.133 4 .783

This gives ĉ = −151.133 and d̂ = 4.783.

We would then set, for instance (using the caret instead of the hat, so as
to distinguish from our previous estimator)

µ̌(72) = −151.133 + 4.783× 72 = 193.2666 (1.8)

We need not type this expression into R by hand. Writing it in matrix-
multiply form, it is

(−151.133, 4.783)

(
1

72

)
(1.9)

Be sure to see the need for that 1 in the second factor; it is used to multiply
the -151.133.

Or, conveniently in R,5 we can exploit the fact that R’s coef() function
fetches the coefficients c and d for us:

> coef ( lmout ) %∗% c (1 , 72 )
[ , 1 ]

[ 1 , ] 193.2666

We can form a confidence interval from this too. The standard error (Ap-
pendix ??) of µ̌(72) will be shown later to be obtainable using the R vcov()
function:

> tmp <− c (1 , 72 )
> sqrt (tmp %∗% vcov ( lmout ) %∗% tmp)

[ , 1 ]
[ 1 , ] 0 .6859655
> 193.2666 + 1.96 ∗ 0.6859655
[ 1 ] 194.6111
> 193.2666 − 1 .96 ∗ 0.6859655
[ 1 ] 191.9221

5In order to gain a more solid understanding of the concepts, we will refrain from
using R’s predict() function for now. It will be introduced later, though, in Section
4.4.4.
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(More detail on vcov() and coef() is presented in the Code Complements
section at the end of this chapter.)

So, an approximate 95% CI for µ(72) under this model would be about
(191.9,194.6).

1.6 Parametric vs. Nonparametric Models

Now here is a major point: The CI we obtained from our linear model,
(191.9,194.6), was narrower than the nonparametric approach gave us,
(187.6,193.2); the former has width of about 2.7, while the latter’s is 5.6.
In other words:

A parametric model is — if it is (approximately) valid — more
powerful than the nonparametric one, yielding estimates of a
regression function that tend to be more accurate than what
the nonparametric approach gives us. This should translate to
more accurate prediction as well.

Why should the linear model be more effective? Here is some intuition,
say for estimating µ(72): As will be seen in Chapter 2, the lm() function
uses all of the data to estimate the regression coefficients. In our case here,
all 1015 data points played a role in the computation of µ̌(72), whereas
only 150 of our observations were used in calculating our nonparametric
estimate µ̂(72). The former, being based on much more data, should tend
to be more accurate.6

On the other hand, in some settings it may be difficult to find a valid para-
metric model, in which case a nonparametric approach may be much more
effective. This interplay between parametric and nonparametric models will
be a recurring theme in this book.

1.7 Several Predictor Variables

Now let’s predict weight from height and age. We first need some notation.

6Note the phrase tend to here. As you know, in statistics one usually cannot say that
one estimator is always better than another, because anomalous samples do have some
nonzero probability of occurring.
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Say we are predicting a response variable Y from variables X(1), ..., X(k).
The regression function is now defined to be

µ(t1, ..., tk) = E(Y | X(1) = t1, ..., X
(k) = tk) (1.10)

In other words, µ(t1, ..., tk) is the mean Y among all units (people, cars,
whatever) in the population for which X(1) = t1, ..., X

(k) = tk.

In our baseball data, Y , X(1) and X(2) might be weight, height and age,
respectively. Then µ(72, 25) would be the population mean weight among
all players of height 72 and age 25.

We will often use a vector notation

µ(t) = E(Y | X = t) (1.11)

with t = (t1, ..., tk)′ and X = (X(1), ..., X(k))′, where ′ denotes matrix
transpose.7

1.7.1 Multipredictor Linear Models

Let’s consider a parametric model for the baseball data,

mean weight = c+ d× height + e× age (1.13)

1.7.1.1 Estimation of Coefficients

We can again use lm() to obtain sample estimates of c, d and e:

> lm( mlb$Weight ˜ mlb$Height + mlb$Age)
. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) mlb$Height mlb$Age
−187.6382 4 .9236 0 .9115

7Our vectors in this book are column vectors. However, since they occupy a lot of
space on a page, we will often show them as transposes of rows. For instance, we will
often write (5, 12, 13)′ instead of  5

12
13

 (1.12)
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Note that the notation mlb$Weight ˜mlb$Height + mlb$Age simply means
“predict weight from height and age.” The variable to be predicted is spec-
ified to the left of the tilde, and the predictor variables are written to the
right of it. The + does not mean addition.

For example, d̂ = 4.9236. Our estimated regression function is

µ̂(t1, t2) = −187.6382 + 4.9236 t1 + 0.9115 t2 (1.14)

where t1 and t2 are height and age, respectively.

Setting t1 = 72 and t2 = 25, we find that

µ̂(72, 25) = 189.6485 (1.15)

and we would predict the weight of a 72-inch tall, age 25 player to be about
190 pounds.

1.7.1.2 The Description Goal

It was mentioned in Section 1.12.2 that regression analysis generally has one
or both of two goals, Prediction and Description. In light of the lstter, some
brief comments on the magnitudes of the estimated coefficientsis would be
useful at this point:

• We estimate that, on average (a key qualifier), each extra inch in
height corresponds to almost 5 pounds of additional weight.

• We estimate that, on average, each extra year of age corresponds to
almost a pound in extra weight.

That second item is an example of the Description goal in regression anal-
ysis, We may be interested in whether baseball players gain weight as they
age, like “normal” people do. Athletes generally make great efforts to stay
fit, but we may ask how well they succeed in this. The data here seem to
indicate that baseball players indeed are prone to some degree of “weight
creep” over time.
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1.7.2 Nonparametric Regression Estimation: k-NN

Now let’s drop the linear model assumption (1.13), and estimate our re-
gression function “from scratch,” as we did in Section 1.5.2. But here we
will need to broaden our approach, as follows.

Again say we wish to estimate, using our data, the value of µ(72, 25). A
potential problem is that there likely will not be any data points in our
sample that exactly match those numbers, quite unlike the situation in
(1.4), where µ̂(72) was based on 150 data points. Let’s check:

> z <− mlb [ mlb$Height == 72 & mlb$Age == 2 5 , ]
> z
[ 1 ] Name Team Pos i t i on
[ 4 ] Height Weight Age
[ 7 ] PosCategory
<0 rows> ( or 0−length row .names)

So, indeed there were no data points matching the 72 and 25 numbers.
Since the ages are recorded to the nearest 0.01 year, this result is not
suprising. But at any rate we thus we cannot set µ̂(72, 25) to be the mean
weight among our sample data points satisfying those conditions, as we did
in Section 1.5.2. And even if we had had a few data points of that nature,
that would not have been enough to obtain an accurate estimate µ̂(72, 25).

Instead, what is done is use data points that are close to the desired pre-
diction point. Again taking the weight/height/age case as a first example,
this means that we would estimate µ(72, 25) by the average weight in our
sample data among those data points for which height is near 72 and age
is near 25.

1.7.3 Measures of Nearness

Nearness is generally defined as Euclidean distance:

distance[(s1, s2, ..., sk), (t1, t2, ..., tk)] =
√

((s1 − t1)2 + ...+ (sk − tk)2

(1.16)

For instance, the distance from a player in our sample of height 72.5 and
age 24.2 to the point (72,25( would be

√
(72.5− 72)2 + (24.2− 25)2 = 0.9434 (1.17)
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The k-Nearest Neighbor (k-NN) method for estimating regression functions
is simple: Find the k data points in our sample that are closest to the
desired prediction point, and average their Y values.

1.7.4 The Code

Here is code to perform k-NN regression estimation:

# arguments :
#
# xydata : matrix or data frame o f f u l l (X,Y) data ,
# Y in l a s t column
# r e g e s t p t s : matrix or data frame o f X v e c t o r s
# at which to e s t i m a t e the r e g r e s s i o n f t n
# k : number o f n e a r e s t n e i g h b o r s
# s c a l e f i r s t : c a l l s c a l e ( ) on the data f i r s t
#
# v a l u e : e s t imated reg . f t n . a t the g iven X v a l u e s

knnest <−
function ( xydata , r eg e s tp t s , k , s c a l e f i r s t=FALSE) {

require (FNN)
i f ( i s . vector ( r e g e s t p t s ) )

r e g e s t p t s <− matrix ( r eg e s tp t s ,nrow=1)
yco l <− ncol ( xydata )
x <− xydata [ ,− ycol , drop = F]
i f ( s c a l e f i r s t ) {

tmp <− rbind (x , r e g e s t p t s )
tmp <− scale (tmp)
x <− tmp [ 1 : nrow( x ) , ]
r e g e s t p t s <− tmp [ ( nrow( x )+1):nrow(tmp ) , ]

}
colnames ( r e g e s t p t s ) <− colnames ( x )
y <− xydata [ , yco l ]
i f ( ! i s . matrix ( r e g e s t p t s ) )

r e g e s t p t s <− matrix ( r eg e s tp t s ,nrow=1)
tmp <− get . knnx (data=x , query=rege s tp t s , k=k )
idx <− tmp$nn . index
meannear <− function ( idxrow ) mean( y [ idxrow ] )
apply ( idx , 1 , meannear )

}
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Each row of regestpts is a point at which we wish to estimate the regression
function. For example, let’s estimate µ(72, 25), based on the 20 nearest
neighbors at each point:

> knnest ( mlb [ , c ( 4 , 6 , 5 ) ] , c (72 , 25 ) , 20 , s c a l e f i r s t=TRUE)
[ 1 ] 188 .9

So we would predict the weight of a 72-inches tall, age 25 player to be
about 189 pounds, not much different — in this instance — from what we
obtained earlier with the linear model.

The call to the built-in R function scale() is useful if our predictor vari-
ables are of widely different magnitudes. In such a setting, the larger-
magnitude variables are in essence being given heavier weightings in the
distance computation. However, rerunning the above analysis without scal-
ing (not shown) produces the same result.

1.8 After Fitting a Model, How Do We Use
It for Prediction?

As noted, our goal in regression analysis could be either Prediction or De-
scription (or both). How specifically does the former case work?

1.8.1 Parametric Settings

The parametric case is the simpler one. We fit our data, write down the
result, and then use that result in the future whenever we are called upon
to do a prediction.

Recall Section 1.7.1.1. It was mentioned there that in that setting, we prob-
ably are not interested in the Prediction goal, but just as an illustration,
suppose we do wish to predict. We fit our model to our data — called
our training data — resulting in our estimated regression function, (1.14).
From now on, whenever we need to predict a player’s weight, given his
height and age, we simply plug those values into (1.14).

1.8.2 Nonparametric Settings

The nonparametric case is a little more involved, because we have no explicit
equation like (1.14). Nevertheless, we use our training data in the same way.
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For instance, say we need to predict the weight of a player whose height
and age are 73.2 and 26.5, respectively. Our predicted value will be then
µ̂(73.2, 26.5). To obtain that, we go back to our training data, find the k
nearest points to (73.2,25.5), and average the weights of those k players.
We would go through this process each time we are called upon to perform
a prediction.

A variation:

A slightly different approach, which we will use here, is as follows. Denote
our training set data as (X1, Y1), ..., (Xn, Ym), where again the Xi are typi-
cally vectors, e.g. (height,age). We estimate our regression function at each
of the points Xi, forming µ̂(Xi), i = 1, ..., n. Then, when faced with a new
case (X,Y ) for which Y is unknown, we find the single closest Xi to X,
and guess Y to be 1 or 0, depending on whether µ̂(Xi) > 0.5.

1.9 Overfitting, Bias and Variance

One major concern in model development is overfitting, meaning to fit such
an elaborate model that it “captures the noise rather than the signal.” This
vague description is not satisfactory, and it will be discussed in a precise
manner in Chapter 9. But for now the point is that, after fitting our model,
we are concerned that it may fit our training data well but not predict well
on new data in the future.8

1.9.1 Intuition

To see how overfitting may occur, consider the famous bias-variance trade-
off, illustrated in the following example. Again, keep in mind that the
treatment will at this point just be intuitive, not mathematical.

Long ago, when I was just finishing my doctoral study, I had my first
experience in statistical consulting. A chain of hospitals was interested
in comparing the levels of quality of care given to heart attack patients
at its various locations. A problem was noticed by the chain regarding
straight comparison of raw survival rates: One of the locations served a
largely elderly population, and since this demographic presumably has more
difficulty surviving a heart attack, this particular hospital may misleadingly
appear to be giving inferior care.

8Note that this assumes that nothing changes in the system under study between the
time we collect our training data and the time we do future predictions.
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An analyst who may not realize the age issue here would thus be biasing
the results. The term “bias” here doesn’t mean deliberate distortion of
the analysis, just that one is using a less accurate model then one should,
actually “skewed” in the common vernacular. And it is permanent bias, in
the sense that it won’t disappear, no matter how large a sample we take.
Accordingly, by adding more predictor variables in a regression model, we
are reducing bias.

Or, suppose we use a regression model which is linear in our predictors,
but the true regression function is nonlinear. This is bias too, and again it
won’t go away even if we make the sample size huge.

On the other hand, we must keep in mind that our data consists is a sample
from a population. In the hospital example, for instance, the patients
on which we have data can be considered a sample from the (somewhat
conceptual) population of all patients at this hospital, past, present and
future. A different sample would produce different regression coefficient
estimates. In other words, there is variability in those coefficients from one
sample to another, i.e. variance. We hope that that variance is small, which
gives us confidence that the sample we have is representative.

But the more predictor variables we have, the more variability there is in
the inputs to our regression calculations, and thus the larger the variances
of the estimated coefficients.9

In other words:

In deciding how many (and which) predictors to use, we have
a tradeoff. The richer our model, the less bias, but the more
variance.

The trick is somehow to find a “happy medium,” easier said than done.
Chapter 9 will cover this in depth, but for now, we introduce a common
method for approaching the problem:

1.9.2 Rough Rule of Thumb

The issue of how many predictors to use to simultaneously avoid overfitting
and still produce a good model is nuanced, and in fact this is still not fully
resolved. Chapter 9 will be devoted to this complex matter.

Until then, though it is worth using the following:

9I wish to thank Ariel Shin for this interpretation.
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Rough Rule of Thumb (Tukey): For a data set consisting
of n observations, use fewer than

√
(n) predictors.

1.9.3 Cross-Validation

Toward that end, it is common to artificially create a set of “new” data and
try things out. Instead of using all of our collected data as our training set,
we set aside part of it to serve as simulated “new” data. This is called the
validation set or test set. The remainder will be our actual training data.
In other words, we randomly partition our original data, taking one part as
our training set and the other part to play the role of new data. We fit our
model, or models, to the training set, then do prediction on the test set,
pretending its response variable values are unknown. We then compare to
the real values. This will give us an idea of how well our models will predict
in the future. This is called cross-validation.

The above description is a little vague, and since there is nothing like code
to clarify the meaning of an algorithm, let’s develop some. Here first is
code to do the random partitioning of data, with a proportion p to go to
the training set:

xva lpar t <− function (data , p ) {
n <− nrow(data )
n t ra in <− round(p∗n)
t r a i n i d x s <− sample ( 1 : n , ntra in , replace=FALSE)
v a l i d i d x s <− setd i f f ( 1 : n , t r a i n i d x s )
l i s t ( t r a i n=data [ t r a i n i d x s , ] , v a l i d=data [ v a l i d idx s , ] )

}

Now to perform cross-validation, we’ll consider the parametric and non-
parametric cases separately, in the next two sections.

1.9.4 Linear Model Case

To do cross-validation for linear models, we could use this code.10

1.9.4.1 The Code

10There are sophisticated packages on CRAN for this, such as cvTools. But to keep
things simple, and to better understand the concepts, we will write our own code. Sim-
ilarly, as mentioned, we will not use R’s predict() function for the time being.
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# arguments :
#
# data : f u l l data
# y c o l : column number o f resp . var .
# predvars : column numbers o f p r e d i c t o r s
# p : prop . f o r t r a i n i n g s e t
# meanabs : see ’ va lue ’ be low

# v a l u e : i f meanabs i s TRUE, the mean a b s o l u t e
# p r e d i c t i o n err or ; o therwise , an R l i s t
# c o n t a i n i n g pred . , r e a l Y

xvallm <− function (data , ycol , predvars , p , meanabs=TRUE){
tmp <− xva lpar t (data , p )
t r a i n <− tmp$ t r a i n
v a l i d <− tmp$ v a l i d
# f i t model to t r a i n i n g data
t r a iny <− t r a i n [ , yco l ]
t r a i n p r e d s <− t r a i n [ , predvars ]
# we ’ l l be us ing matrices , e . g . in lm ( )
t r a i n p r e d s <− as . matrix ( t r a i n p r e d s )
lmout <− lm( t r a iny ˜ t r a i n p r e d s )
# app ly f i t t e d model to v a l i d a t i o n data
va l i d p r ed s <− as . matrix ( v a l i d [ , predvars ] )
predy <− cbind (1 , va l i dp r ed s )%∗% coef ( lmout )
r e a l y <− v a l i d [ , yco l ]
i f ( meanabs ) return (mean(abs ( predy − r e a l y ) ) )
l i s t ( predy = predy , r e a l y = r e a l y )

}

1.9.4.2 Matrix Partitioning

Note that in the line

predy <− cbind (1 , va l i dp r ed s )%∗% coef ( lmout )

we have exploited the same matrix multiplication property as in (1.9). Here,
though, we have applied it at the matrix level. Such operations will become
common in some parts of this book, so a brief digression will be worthwhile.
For a concrete numerical example, consider the vector

(
(−1, 2)(3, 8)′

(2, 5)(3, 8)′

)
=

(
13
46

)
(1.18)
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The reader should verify that “distributing out” that common (3, 8)′ factor
is valid algebra:

(
−1 2

2 5

)(
3
8

)
=

(
13
46

)
(1.19)

1.9.4.3 Applying the Code

Let’s try cross-validtion on the weight/height/age data, using mean abso-
lute prediction error as our criterion for prediction accuracy:

> xvallm (mlb , 5 , c ( 4 , 6 ) , 2 /3)
[ 1 ] 12 .94553

So, on average we would be off by about 13 pounds. We might improve
upon this by using the data’s Position variable, but we’ll leave that for
later.

1.9.5 k-NN Case

Here is the code for performing cross-validation for k-NN:

# arguments :
#
# data : f u l l data
# y c o l : column number o f resp . var .
# predvars : column numbers o f p r e d i c t o r s
# k : number o f n e a r e s t n e i g h b o r s
# p : prop . f o r t r a i n i n g s e t
# meanabs : see ’ va lue ’ be low

# v a l u e : i f meanabs i s TRUE, the mean a b s o l u t e
# p r e d i c t i o n err or ; o therwise , an R l i s t
# c o n t a i n i n g pred . , r e a l Y

xvalknn <−
function (data , ycol , predvars , k , p , meanabs=TRUE){

tmp <− xva lpar t (data , p )
t r a i n <− tmp$ t r a i n
v a l i d <− tmp$ v a l i d
t ra inxy <− data [ , c ( predvars , yco l ) ]
va l i dx <− v a l i d [ , predvars ]
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va l idx <− as . matrix ( va l i dx )
predy <− knnest ( tra inxy , va l idx , k )
r e a l y <− v a l i d [ , yco l ]
i f ( meanabs ) return (mean(abs ( predy − r e a l y ) ) )
l i s t ( predy = predy , r e a l y = r e a l y )

}

So, how well does k-NN predict?

> xvallm (mlb , 5 , c ( 4 , 6 ) , 2 /3)
[ 1 ] 12 .94553

The two methods gave similar results. However, this depended on choosing
a value of 20 for k, the number of nearest neighbors. We could have tried
other values of k, and in fact could have used cross-validation to choose the
“best” value.

1.9.6 Choosing the Partition Sizes

One other problem, of course, is that we did have a random partition of
our data. A different one might have given substantially different results.

In addition, there is the matter of choosing the sizes of the training and
validation sets (e.g. via the argument p in xvalpart()). We have a classical
tradeoff at work here: Let k be the size of our training set. If we make k
too large, the validation set will be too small for an accurate measure of
prediction accuracy. We won’t have that problem if we set k to a smaller
size, but then we are masuring the predictive ability of only k observations,
whereas in the end we will be using all n observations for predicting new
data.

The Leaving One-Out Method solves this problem, albeit at the expense of
much more computation. It will be presented in Section 2.7.5.

1.10 Example: Bike-Sharing Data

We now return to the bike-sharing data. Our little excursion to the simpler
data set, involving baseball player weights and heights, helped introduce
the concepts in a less complex setting. The bike-sharing data set is more
complicated in several ways:

• Complication (a): It has more potential predictor variables.
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• Complication (b): It includes some nominal variables, such as Day
of Week. The latter is technically numeric, 0 through 6, but those
codes are just names.11 There is no reason, for instance, that Sun-
day, Thursday and Friday should have an ordinal relation in terms of
ridership just because 0 < 4 < 5.

• Complication (c): It has some potentially nonlinear relations. For
instance, people don’t like to ride bikes in freezing weather, but they
are not keen on riding on really hot days either. Thus we might
suspect that the relation of ridership to temperature rises at first,
eventually reaching a peak, but declines somewhat as the temperature
increases further.

Now that we know some of the basic issues from analyzing the baseball
data, we can treat this more complicated data set.

Let’s read in the bike-sharing data. We’ll restrict attention to the first
year,12 and since we will focus on the registered riders, let’s shorten the
name for convenience:

> shar <− read . csv ( ”day . csv ” , header=T)
> shar <− shar [ 1 : 3 6 5 , ]
> names( shar ) [ 1 5 ] <− ” reg ”

1.10.1 Linear Modeling of µ(t)

In view of Complication (c) above, the inclusion of the word linear in the
title of our current section might seem contradictory. But one must look
carefully at what is linear or not, and we will see shortly that, yes, we can
use linear models to analyze nonlinear relations.

Let’s first check whether the ridership/temperature relation seems nonlin-
ear, as we have speculated:

plot ( shar$temp , shar$ reg )

The result is shown in Figure 1.2.

There seem to be some interesting groupings among the data, likely due
to the other variables, but putting those aside for now, the plot does seem

11Hence the term nominal.
12There appears to have been some systemic change in the second year, and while this

could be modeled, we’ll keep things simple by considering only the first year.
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Figure 1.2:
Ridership vs. Temperature

to suggest that ridership is somewhat associated with temperature in the
“first up, then later down” form as we had guessed.

Thus a linear model of the form

mean ridership = c+ d× temperature (1.20)

would seem inappropriate. But don’t give up so quickly! A model like

mean ridership = c+ d× temperature + e× temperature2 (1.21)

i.e., with a temperature-squared term added, might work fine. A negative
value for e would give us the “first up, then later down” behavior we want
our model to have.

And there is good news — the model (1.21) is actually linear! We say that
the expression is linear in the parameters, even though it is nonlinear with
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respect to the temperature variable. This means that if we multiply each
of c, d and e by, say, 8, then the values of the left and right sides of the
equation both increase eightfold.

Anotber way to see this is that in calling lm(), we can simply regard
squared temperature as a new variable:

> shar$temp2 <− shar$tempˆ2
> lm( shar$ reg ˜ shar$temp + shar$temp2 )

Call :
lm( formula = shar$ reg ˜ shar$temp + shar$temp2 )

C o e f f i c i e n t s :
( I n t e r c e p t ) shar$temp shar$temp2

−1058 16133 −11756

And note that, sure enough, the coefficient of the squared term, ê =
−11756, did indeed turn out to be negative.

Of course, we want to predict from many variables, not just temperature,
so let’s now turn to Complication (b) cited earlier, the presence of nominal
data. This is not much of a problem either.

Such situations are generally handled by setting up what are called indicator
variables or dummy variables. The former term alludes to the fact that our
variable will indicate whether a certain condition holds or not, with 1 coding
the yes case and 0 indicating no.

We could, for instance, set up such a variable for Tuesday data:

> shar$ tues <− as . integer ( shar$weekday == 2)

Indeed, we could define six variables like this, one for each of the days
Monday through Saturday. Note that Sunday would then be indicated
indirectly, via the other variables all having the value 0. A direct Sun-
day variable would be redundant, and in fact would present mathematical
problems, as we’ll see in Chapter 8.

However, let’s opt for a simpler analysis, in which we distinguish only be-
tween weekend days and week days, i.e. define a dummy variable that is 1
for Monday through Friday, and 0 for the other days. Actually, those who
assembled the data set already defined such a variable, which they named
workingday.13

13More specifically, a value of 1 for this variable indicates that the day is in the
Monday-Friday range and it is not a holiday.
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We incorporate this into our linear model:

mean reg = c+ d× temp + e× temp2 + f workingday (1.22)

There are several other dummy variables that we could add to our model,
but for this introductory example let’s define just one more:

> shar$ c l ea rday <− as . integer ( shar$weathe r s i t == 1)

So, our regression model will be

mean reg = β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday (1.23)

As is traditional, here we have used subscripted versions of the Greek letter
β to denote our equation coefficients, rather than c, d and so on.

So, let’s run this through lm():

> lmout <− lm( reg ˜ temp+temp2+workingday+clearday ,
data = shar [ t e s t , ] )

(The use of the data argument saved typing of the data set name shar and
clutter.)

The return value of lm(), assigned here to lmout, is a very complicated R
object, of class ”lm”. We shouldn’t inspect it in detail now, but let’s at
least print the object, which in R’s interactive mode can be done simply by
typing the name, which automatically calls print() on the object:14

> lmout
. . .
. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) temp temp2

−2310.3 17342.2 −13434.7
workingday c l ea rday

988 .5 760 .3

14If you know about dispatch in R, invoking print() will cause a class-specfic function
to be run, in this case print.lm().
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Remember, the population function µ(t) is unnown, so the βi are unknown.
The above coefficients are merely sample-based estimates. For example,
using our usual “hat” notation to mean “estimate of,” we have that

β̂3 = 988.5 (1.24)

In other words, estimated regression function is

µ̂(t1, t2, t3, t4) = −2310.3+17342.2t1−13434.7t2+988.5t3+760.3t4 (1.25)

where t2 = t21.

So, what should we predict for number of riders on the type of day described
at the outset of this chapter — Sunday, sunny, 62 degrees Fahrenheit? First,
note that the temp variable is scaled to [0,1], as

Celsius temperature−minimum

maximum = minimum
(1.26)

where the minimum and maximum here were -8 and 39, respectively. A
Fahrenheit temperature of 62 degrees corresponds to a scaled value of 0.525.
So, our predicted number of riders is

−2310.3+17342.2×0.525−13434.7×0.5252 +988.5×0+760.3×1 (1.27)

which as before we can conveniently evaluate as

> coef ( lmout ) %∗% c ( 1 , 0 . 5 2 5 , 0 . 5 2 5 ˆ 2 , 0 , 1 )
[ , 1 ]

[ 1 , ] 3851.673

So, our predicted number of riders for sunny, 62-degree Sundays will be
about 3852.

One can also form confidence intervals and perform significance tests on
the βi. We’ll go into this in Chapter 2, but some brief comments on the
magnitudes and signs of the β̂i is useful at this point:

• As noted, the estimated coefficient of temp2 is negative, consistent
with our intuition. Note, though, that it is actually more negative
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than when we predicted reg from only temperature and its square.
This is typical, and will be discussed in detail in Chapter 7.

• The estimated coefficient for workingday is positive. This too matches
our intuition, as presumably many of the registered riders use the
bikes to commute to work. The value of the estimate here, 988.5, in-
dicates that, for fixed temperature and weather conditions, weekdays
tend to have close to 1000 more registered riders than weekends.

• Similarly, the coefficient of clearday suggests that for fixed temper-
ature and day of the week, there are about 760 more riders on clear
days than on other days.

1.10.2 Nonparametric Analysis

Let’s see what k-NN gives us as our predicted value for sunny, 62-degree
Sundays, say with values of 20 and 50 for k:

> knnest ( shar [ , c ( 1 0 , 8 , 1 7 , 1 5 ) ] , matrix ( c ( 0 . 5 2 5 , 0 , 1 ) ,
nrow=1) ,20)

[ 1 ] 2881 .8
> knnest ( shar [ , c ( 1 0 , 8 , 1 7 , 1 5 ) ] , matrix ( c ( 0 . 5 2 5 , 0 , 1 ) ,

nrow=1) ,10)
[ 1 ] 3049 .7

This is quite different from what the linear model gave us. Let’s see how
the two approaches compare in cross-validation:

> xvallm ( shar , 1 5 , c (10 , 18 , 8 , 17 ) , 2/3)
[ 1 ] 519 .8701
> xvalknn ( shar , 1 5 , c (10 , 8 , 17 ) , 20 , 2/3)
[ 1 ] 461 .2426
> xvalknn ( shar , 1 5 , c (10 , 8 , 17 ) , 10 , 2/3)
[ 1 ] 498 .3115

The nonparametric approach did substantially better, possibly indicating
that our linear model was not valid. Of course, there still is the problems
of not knowing what value to use for k, the fact that our partition was
random and so on. These issues will be discussed in detail in succeeding
chapters.
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1.11 Interaction Terms

Let’s take another look at (1.23), specifically the term involving the variable
workingday, a dummy indicating a nonholiday Monday through Friday.
Our estimate for β3 turned out to be 988.5, meaning that, holding tem-
perature and the other variables fixed, there are 988.5 additional riders on
workingdays.

But implicit in this model is that the workingday effect is the same on
low-temprerature days as on warmer days. For a broader model that does
not make this assumption, we could add an interaction term, consisting of
a product of workingday and temp:

mean reg = β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday (1.28)

+ β5 temp × workingday (1.29)

How does this model work? Let’s illustrate it with a new data set.

1.11.1 Example: Salaries of Female Programmers and
Engineers

This data is from the 2000 U.S. Census, consisting of 20,090 programmers
and engineers in the Silicon Valley area. The data set is included in the
freqparcoord package on CRAN. Suppose we are working toward a De-
scription goal, specifically the effects of gender on wage income.

As with our bike-sharing data, we’ll add a quadratic term, in this case
on the age variable, reflecting the fact that many older programmers and
engineers encounter trouble finding work after age 35 or so. Let’s restrict
our analysis to workers having at least a Bachelor’s degree, and look at
the variables age, age2, sex (coded 1 for male, 2 for female), wkswrked
(number of weeks worked), ms, phd and wageinc:

> l ibrary ( f r eqparcoord )
> data ( prgeng )
> prgeng$age2 <− prgeng$age ˆ2
> edu <− prgeng$educ
> prgeng$ms <− as . integer ( edu == 14)
> prgeng$phd <− as . integer ( edu == 16)
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> prgeng$fem <− prgeng$ sex − 1
> tmp <− prgeng [ edu >= 1 3 , ]
> pe <− tmp [ , c ( 1 , 1 2 , 9 , 1 3 , 1 4 , 1 5 , 8 ) ]
> pe <− as . matrix ( pe )

Our model is

mean wageinc = β0 + β1 age + β2 age2 + β3 wkswrkd

+ β4 ms + β5 phd

+ β6 fem (1.30)

We find the following:

> summary(lm( pe [ , 7 ] ˜ pe [ , −7 ] ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value
( I n t e r c e p t ) −87162.556 4716.088 −18.482
pe [ , −7] age 4189.304 234.335 17 .877
pe [ , −7] age2 −43.479 2 .668 −16.293
pe [ , −7]wkswrkd 1312.234 29 .325 44 .748
pe [ , −7]ms 9845.719 843.128 11 .678
pe [ , −7]phd 17403.523 1762.154 9 .876
pe [ , −7]fem −11176.740 912.206 −12.252

Pr(>| t | )
( I n t e r c e p t ) <2e−16 ∗∗∗
pe [ , −7] age <2e−16 ∗∗∗
pe [ , −7] age2 <2e−16 ∗∗∗
pe [ , −7]wkswrkd <2e−16 ∗∗∗
pe [ , −7]ms <2e−16 ∗∗∗
pe [ , −7]phd <2e−16 ∗∗∗
pe [ , −7]fem <2e−16 ∗∗∗
. . .

The results are striking in terms of gender: With age, education and so on
held constant, women are estimated to have incomes about $11,177 lower
than comparable men.

But this analysis implicitly assumes that the female wage deficit is, for
instance, uniform across educational levels. To see this, consider (1.30).
Being female makes a β6 difference, no matter what the values of ms and
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phd are. To generalize our model in this regard, let’s define two interaction
variables:15

> msfem <− pe [ , 4 ] ∗ pe [ , 6 ]
> phdfem <− pe [ , 5 ] ∗ pe [ , 6 ]
> pe <− cbind ( pe , msfem , phdfem )

Our model is now

mean wageinc = β0 + β1 age + β2 age2 + β3 wkswrkd

+ β4 ms + β5 phd

+ β6 fem + β7 msfem + β8 phdfem (1.31)

So, now instead of there being a single number for the “female effect,” β6,
we how have two:

• Female effect for Master’s degree holders: β6 + β7

• Female effect for PhD degree holders β6 + β8

So, let’s rerun the regression analysis:

> summary(lm( pe [ , 7 ] ˜ pe [ , −7 ] ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value
( I n t e r c e p t ) −87499.793 4715.343 −18.556
pe [ , −7] age 4183.402 234.244 17 .859
pe [ , −7] age2 −43.439 2 .667 −16.285
pe [ , −7]wkswrkd 1312.160 29 .313 44 .763
pe [ , −7]ms 11060.653 965.016 11 .462
pe [ , −7]phd 19726.664 1907.382 10 .342
pe [ , −7]fem −9091.230 1121.816 −8.104
pe [ , −7]msfem −5088.779 1975.841 −2.575
pe [ , −7]phdfem −14831.582 4957.859 −2.992

Pr(>| t | )
( I n t e r c e p t ) < 2e−16 ∗∗∗

15Rather than creating the interaction terms “manually” as is done here, one can use
R colon operator, which automates the process. This is not done here, so as to ensure
that the reader fully understands the meaning of interaction terms. For information on
the colon operator, type ?formula at the R prompt.
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pe [ , −7] age < 2e−16 ∗∗∗
pe [ , −7] age2 < 2e−16 ∗∗∗
pe [ , −7]wkswrkd < 2e−16 ∗∗∗
pe [ , −7]ms < 2e−16 ∗∗∗
pe [ , −7]phd < 2e−16 ∗∗∗
pe [ , −7]fem 5.75 e−16 ∗∗∗
pe [ , −7]msfem 0.01002 ∗
pe [ , −7]phdfem 0.00278 ∗∗
. . .

The estimated values of the two female effects are -9091.230 -5088.779 =
-14180.01, and 9091.230 -14831.582 = -23922.81. A few points jump out
here:

• Once one factors in educational level, the gender gap is seen to be
even worse than before.

• The gap is worse at the PhD level than the Master’s, likely because
of the generally higher wages for the latter.

Thus we still have many questions to answer, especially since we haven’t
consider other types of interactions yet. This story is not over yet, and will
be pursued in detail in Chapter 7.

1.12 Classification Techniques

Recall the hospital example in Section 1.9.1. There the response variable
is nominal, represented by a dummy variable taking the values 1 and 0,
depending on whether the patient survives or not. This is referred to as
a classification problem, because we are trying to predict which class the
population unit belongs to — in this case, whether the patient will belong
to the survival or nonsurvival class. We could set up dummy variables
for each of the hospital branches, and use these to assess whether some
were doing a better job than others, while correcting for variations in age
distribution from one branch to another. (Thus our goal here is Description
rather than directly Prediction itself.)

This will be explained in detail in Chapter 4, but the point is that we are
predicting a 1-0 variable. In a marketing context, we might be predicting
which customers are more likely to purchase a certain product. In a com-
puter vision context, we may want to predict whether an image contains a
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certain object. In the future, if we are fortunate enough to develop relevant
data, we might even try our hand at predicting earthquakes.

Classification applications are extremely common. And in many cases there
are more than two classes, such as in indentifying many different printed
characters in computer vision.

In a number of applications, it is desirable to actually convert a problem
with a numeric response variable into a classification problem. For instance,
there may be some legal or contractural aspect that comes into play when
our variable V is above a certain level c, and we are only interested in
whether the requirement is satisfied. We could replace V with a new vari-
able

Y =

{
1, if V > c

0, if V ≤ c
(1.32)

Classification methods will play a major role in this book.

1.12.1 It’s a Regression Problem!

Recall that the regression function is the conditional mean:

µ(t) = E(Y | X = t) (1.33)

(As usual, X and t may be vector-valued.) In the classification case, Y
is an indicator variable, so from Appendx ??, we know its mean is the
probability that Y = 1. In other words,

µ(t) = P (Y = 1 | X = t) (1.34)

The great implication of this is that the extensive knowledge about regression
analysis developed over the years can be applied to the classification problem.

An intuitive strategy — but, as we’ll see, NOT the only appropriate one —
would be to guess that Y = 1 if the conditional probability of 1 is greater
than 0.5, and guess 0 otherwise. In other words,

guess for Y =

{
1, if µ(X) > 0.5

0, if µ(X) ≤ 0.5
(1.35)
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It turns out that this strategy is optimal, in that it minimizes the overall
misclassification error rate (see Section 1.13.2 in the Mathematical Com-
plements portion of this chapter). However, it should be noted that this
is not the only possible criterion that might be used. We’ll return to this
issue in Chapter 5.

As before, note that (1.34) is a population quantity. We’ll need to estimate
it from our sample data.

1.12.2 Example: Bike-Sharing Data

Let’s take as our example the situation in which ridership is above 3,500
bikes, which we will call HighUsage:

> shar$highuse <− as . integer ( shar$ reg > 3500)

We’ll try to predict that variable. Let’s again use our earlier example, of
a Sunday, clear weather, 62 degrees. Should we guess that this will be a
High Usage day?

We can use our k-NN approach just as before:

> knnest ( shar [ , c ( 1 0 , 8 , 1 8 , 1 9 ) ] , c ( 0 . 5 2 5 , 0 , 1 ) , 2 0 )
[ 1 ] 0 . 1

We estimat that there is a 10% chance of that day having HighUsage.

The parametric case is a little more involved. A model like

probability of HighUsage = β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday (1.36)

could be used, but would not be very satisfying. The left-hand side of
(1.36), as a probability, should be in [0,1], but the right-hand side could in
principle fall far outside that range.

Instead, the most common model for conditional probability is logistic re-
gression:

probability of HighUsage = `(β0 + β1 temp + β2 temp2

+ β3 workingday + β4 clearday) (1.37)
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Figure 1.3: Logistic Function

where `(s) is the logistic function,

`(s) =
1

1 + e−s
(1.38)

Our model, then is

µ(t1, t2, t3, t4) =
1

1 + e−(β0+β1t1+β2t2+β3t3+β4t4)
(1.39)

where t1 is temperature, t2 is the square of temperature, and so on. We
wish to estimate µ(62, 622, 0, 1).

Note the form of the curve, shown in Figure 1.3 The appeal of this model
is clear at a glance: First, the logistic function produces a value in [0,1], as
appropriate for modeling a probability. Second, it is a monotone increasing
function in each of the variables in (1.37), just as was the case in (1.23)
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for predicting our numeric variable, reg. Other motivations for using the
logistic model will be discussed in Chapter 4.

R provides the glm() (“generalized linear model”) function for several non-
linear model families, including the logistic,16, which is designated via fam-
ily = binomial:

> glmout <− glm( h ighuse ˜
temp+temp2+workingday+clearday ,
data=shar , family=binomial )

> glmout
. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) temp temp2

−18.263 45 .909 −36.231
workingday c l ea rday

3 .570 1 .961
. . .
> tmp <− coef ( glmout ) %∗% c ( 1 , 0 . 5 2 5 , 0 . 5 2 5 ˆ 2 , 0 , 1 )
> 1/(1+exp(−tmp ) )

[ , 1 ]
[ 1 , ] 0 .1010449

So, our parametric model gives an almost identical result here to the one
arising from k-NN, about a 10% probability of HighUsage.

We can perform cross-validation too, and will do so in later chapters. For
now, note that our accuracy criterion should change, say to the proportion
of misclassified data points.

1.13 Mathematical Complements

Certain claims of optimality were made in this chapter. Let’s prove them.

1.13.1 µ(t) Minimizes Mean Squared Prediction Error

Claim: Consider all the functions f() with which we might predict Y from

X, i.e., Ŷ = f(X). The one that minimizes mean squared prediction error,
E[(Y − f(X))2], is the regression function, µ(t) = E(Y | X = t).

16Often called “logit,” by the way.
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(Note that the above involves population quantities, not samples. Consider
the quantity E[(Y −f(X))2], for instance. It is the mean squared prediction
over all (X,Y ) pairs in the population.)

To derive this, first ask, for any (finite-variance) random variable W , what
number c that minimizes the quantity E[(W−c)2]? The answer is c = EW .
To see this, write

E[(W − c)2] = E(W 2 − 2cW + c2] = E(W 2)− 2cEW + c2 (1.40)

Setting to 0 the derivative of the right-hand side with respect to c, we find
that indeed, c = EW .

Now to show the original claim, use iterated expectation (Appendix ??) to
write

E[(Y − f(X))2] = E
[
E((Y − f(X))2|X)

]
(1.41)

In the inner expectation, X is a constant, and from the above we know that
the minimizing value of f(X) is “EW,” in this case E(Y |X), i.e. µ(X). Since
that minimizes the inner expectation for any X, the overall expectation is
minimized too.

1.13.2 µ(t) Minimizes the Misclassification Rate

This result concerns the classification context. It shows that if we know the
population distribution — we don’t, but are going through this exercise to
guide our intuition — the conditional mean provides the optimal action in
the classification context.

Remember, in this context, µ(t) = P (Y | X = t), i.e. the conditional mean
reduces to the conditional probability. Now plug in X for t, and we have
the following.

Claim: Consider all rules based on X that produce a guess Ŷ , taking on
values 0 and 1. The one that minimizes the overall misclassification rate
P (Ŷ 6= Y ) is

Ŷ =

{
1, if µ(X) > 0.5

0, if µ(X) ≤ 0.5
(1.42)
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The claim is completely intuitive, almost trivial: After observing X, how
should we guess Y ? If conditionally Y has a greater than 50% chance of
being 1, then guess it to be 1!

(Note: In some settings, a “false positive” may be worse than a “false
negative,” or vice versa. The reader should ponder how to modify the
material here for such a situation. We’ll return to this issue in Chapter 5.)

Think of this simple situation: There is a biased coin, with known prob-
ability of heads p. The coin will be tossed once, and we are supposed to
guess the outcome.

Let’s name your guess g (a nonrandom constant), and let C denote the
as-yet-unknown outcome of the toss (1 for heads, 0 for tails). Then the
reader should check that, no matter whether we choose 0 or 1 for g, the
probability that we guess correctly is

P (C = g) = P (C = 1)g + P (C = 0)(1− g) (1.43)

= pg + (1− p)(1− g) (1.44)

= [2p− 1]g + 1− p (1.45)

Now remember, p is known. How should we choose g, 0 or 1, in order
to maximize (1.45), the probability that our guess is correct? Inspecting
(1.45) shows that maximizing that expression will depend on whether 2p−1
is positive or negative, i.e., whether p > 0.5 or not. In the former case we
should choose g = 1, while in the latter case g should be chosen to be 0.

The above reasoning gives us the very intuitive — actually trivial, when
expressed in English — result:

If the coin is biased toward heads, we should guess heads. If the
coin is biased toward tails, we should guess tails.

Now returning to our original claim, write

P (Ŷ = Y ) = E
[
P (Ŷ = Y | X)

]
(1.46)

In that inner probability, “p” is

P (Y = 1 | X) = µ(X) (1.47)

which completes the proof.
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1.14 Code Complements

1.14.1 The Functions tapply() and Its Cousins

In Section 1.5.2 we had occasion to use R’s tapply(), a hihgly useful feature
of the language. To explain it, let’s start with useful function, split().

Consider this tiny data frame:

> x
gender he ight
1 m 66
2 f 67
3 m 72
4 f 63

Now let’s split by gender:

> xs <− sp l i t (x , x$gender )
> xs
$ f

gender he ight
2 f 67
4 f 63
5 f 63

$m
gender he ight

1 m 66
3 m 72

Note the types of the objects:

• xs is an R list

• xs$f and xs$m are data frames, the male and female subsets of x

We could then find the mean heights in each gender:

> mean( xs$ f $he ight )
[ 1 ] 64 .33333
> mean( xs$m$he ight )
[ 1 ] 69
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But with tapply(), we can combine the two operations:

> tapply ( x$height , x$gender ,mean)
f m

64.33333 69.00000

The first argument of tapply() must be a vector, but the function that is
applied can be vector-valued. Say we want to find not only the mean but
also the standard deviation. We can do this:

> tapply ( x$height , x$gender , function (w) c (mean(w) , sd (w) ) )
$ f
[ 1 ] 64 .333333 2.309401

$m
[ 1 ] 69.000000 4.242641

Here, our function (which we defined “on the spot,” within our call to
tapply(), produces a vector of two components. We asked tapply() to
call that function on our vector of heights, doing so separately for
each gender.

1.15 Function Dispatch

The return value from a call to lm() is an object of R’s S3 class structure;
the class, not surprisingly, is named ”lm”. It turns out that the functions
coef() and vcov() mentioned in this chapter are actually related to this
class, as follows.

Recall our usage, on the baseball player data:

> lmout <− lm(\ lambda$Weight ˜ \ lambda$Height )
> coef ( lmout ) %∗% c (1 , 72 )

[ , 1 ]
[ 1 , ] 193.2666

The call to coef extracted the vector of estimated regression coefficents
(which we also could have obtained as lmout$coefficents). But here is
what happened behind the scenes:

The R function coef() is a generic function, which means it’s just a place-
holder, not a “real” function. When we call it, the R interpreter says,
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This is a generic function, so I need to relay this call to the one
associated with this class, ”lm”. That means I need to check
whether we have a function coef.lm(). Oh, yes we do, so let’s
call that.

That relaying action is referred to in R terminology as the original call
being dispatched to coef.lm().

This is a nice convenience. Consider another generic R function, plot().
No matter what object we are working with, the odds are that some kind
of plotting function has been written for it. We can just call plot() on the
given object, and leave it to R to find the proper call. (This includes the
”lm” class; try it on our lmout above!)

Similarly, there are a number of R classes on which coef() is defined, and
the same is true for vcov().

Exercises

1. Consider the bodyfat data mentioned in Section 1.2. Use lm() to form
a prediction equation for density from the other variables (skipping the
first three), and comment on whether use of indirect methods in this way
seems feasible.

2. Suppose the joint density of (X,Y ) is 3s2e−st, 1 < s < 2, 0 < t < −∞.
Find the regression function µ(s) = E(Y |X = s).

3. For (X,Y ) in the notation of Section 1.13.1, show that the predicted
value µ(X) and the predicton error Y − µ(X) are uncorrelated.

4. Suppose X is a scalar random variable with density g. We are interested
in the nearest neighbors to a point t, based on a random sample X1, ..., Xn

from g. Find Lk denote the cumulative distribution function of the distance
of the kth-nearest neighbor to t.
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Chapter 2

Linear Regression Models

In this chapter we go into the details of linear models. Let’s first set some
notation, to be used here and in the succeeding chapters.

2.1 Notation

Let Y be our response variable, and let X = (X(1), X(2), ..., X(p)))′ de-
note the vector of our p predictor variables. Using our weight/height/age
baseball player example from Chapter 1 as our running example here, we
would have p = 2, and Y , X(1) and X(2) would be weight, height and age,
respectively.

Our sample consists of n data points, X1, X2, ..., Xn, each a p-element pre-
dictor vector, and Y1, Y2, ..., Yn, associated scalars. In the baseball example,
n was 1015. Also, the third player had height 72, was of age 30.78, and
weighed 210. So,

X3 =

(
72

30.78

)
(2.1)

and

Y3 = 210 (2.2)

43
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Write the Xi in terms of their components:

Xi = (X
(1)
i , ..., X

(p)
i )′ (2.3)

X = (X(1), ..., X(p))′ (2.4)

So, again using the baseball player example, the height, age and weight of

the third player would be X
(1)
3 , X

(2)
3 and Y3, respectively.

And just one more piece of notation: We sometimes will need to augment
a vector with a 1 element at the top, such as we did in (1.9). Our notation
for this will consist of a tilde above the symbol,

For instance,

X̃3 =

 1
72

30.78

 (2.5)

So, our linear model is, for a p-element vector t = (t1, ..., tp)
′,

µ(t) = β0 + β1 t1 + ....+ βp tp = t̃ ′ β (2.6)

In the baseball example, with both height and weight as predictors:

µ((height,age) = β0 + β1 height + β2 age (2.7)

= (1,height, age)′

 β0
β1
β2

 (2.8)

2.2 Random- vs. Fixed-X Cases

We will usually consider the Xi and Yi to be random samples from some
population, so that (X1, Y1), ..., (Xn, Yn) are independent and identically
distributed (i.i.d.) according to the population. This is a random-X setting,
meaning that both the Xi and Yi are random. There are some situations
in which the X-values are fixed by design, known as a fixed-X setting. This
might be the case in chemistry research, in which we decide in advance to
perform experiments at specific levels of concentration of some chemicals.
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2.3 Least-Squares Estimation

Linear regression analysis is sometimes called least-squares estimation. Let’s
first look at how this evolved.

2.3.1 Motivation

As noted in Section 1.13, µ(X) minimizes the mean squared prediction
error,

E[(Y − f(X))2] (2.9)

over all functions f . And since our assumption is that µ(X) = X̃ ′β, we
can also say that setting b = β minimizes

E[(Y − X̃ ′b))2] (2.10)

over all vectors b.

If W1, ...,Wn is a sample from a population having mean EW, the sample
analog of EW is W = (

∑n
i=1Wi)/n; one is the average value of W in the

population, and the other is the average value of W in the sample. Let’s
write this correspondence as

EW ←→W (2.11)

It will be crucial to always keep in mind the distinction between population
values and their sample estimates, especially when we discuss overfitting in
detail.

Similarly, for any fixed b, (2.10) is a population quantity, the average
squared error using b for prediction in the population (recall Section 1.4).
The population/sample correspondence here is

E[(Y − X̃ ′b))2]←→ 1

n

n∑
i=1

(Yi − X̃i

′
b)2 (2.12)

where the right-hand side is the the average squared error using b for pre-
diction in the sample.
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So, since β is the value of b minimizing (2.10), it is intuitive to take our

estimate, β̂, to be the value of b that minimizes (2.12). Hence the term
least squares.

To find the minimizing b, we could apply calculus, taking the partial deriva-
tives of (2.12) with respect to bi, i = 0, 1, ..., p, set them to 0 and solve.
Fortunately, R’s lm() does all that for us, but it’s good to know what is
happening inside. Also, this will give the reader more practice with matrix
expressions, which will be important in some parts of the book.

2.3.2 Matrix Formulations

Use of matrix notation in linear regression analysis greatly compactifies
and clarifies the presentation. You may find that this requires a period of
adjustment at first, but it will be well worth the effort.

Let A denote the n× p matrix of X values in our sample,

A =


X̃1

′

X̃2

′

...

X̃p

′

 (2.13)

and let D be the n× 1 vector of Y values,

D =


Y1
Y2
...
Yn

 (2.14)

In the baseball example, row 3 of A is

(1, 30.78, 72) (2.15)

and the third element of D is 210.
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2.3.3 (2.12) in Matrix Terms

Our first order of business will be to recast (2.12) as a matrix expression.

To start, look at the quantities X̃i

′
b, i = 1, ..., n there in (2.12). Stringing

them together in matrix form as we did in (1.19), we get


X̃1

′

X̃2

′

...

X̃n

′

 b = Ab (2.16)

Now consider the n summands in (2.12), before squaring. Stringing them
into a vector, we get

D −Ab (2.17)

We need just one more step: Recall that for a vector a = (a1, ..., ak)′,

k∑
i=1

a2k = a′a (2.18)

In other words, (2.12) (except for the 1/n factor) is actually

(D −Ab)′(D −Ab) (2.19)

Now that we have this in matrix form, we can go about finding the optimal
b.

2.3.4 Using Matrix Operations to Minimize (2.12)

Remember, we will set β̂ to whatever value of b minimizes (2.19). Thus we
need to take the derivative of that expression with respect to b, and set the
result to 0. There is a theory of matrix derivatives, not covered here, but
the point is that the derivative of (2.19) with respect to b can be shown to
be

−2A′(D −Ab) (2.20)
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(Intuitively, this is the multivariate analog of

∂

∂b
(d− ab)2 = −2(d− ab)a (2.21)

for scalar d, a, b.)

Setting this to 0, we have

A′D = A′Ab (2.22)

Solving for b we have our answer:

β̂ = (A′A)−1A′D (2.23)

This is what lm() calculates!1

2.4 A Closer Look at lm() Output

Since the last section was rather abstract, let’s get our bearings by taking
a closer look at the output in the baseball example:2

> lmout <− lm( mlb$Weight ˜ mlb$Height + mlb$Age)
> summary( lmout )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −187.6382 17.9447 −10.46 < 2e−16
mlb$Height 4 .9236 0 .2344 21 .00 < 2e−16
mlb$Age 0.9115 0 .1257 7 .25 8 .25 e−13

( I n t e r c e p t ) ∗∗∗
mlb$Height ∗∗∗
mlb$Age ∗∗∗
−−−
S i g n i f . codes :

0 ∗∗∗ 0 .001 ∗∗ 0 .01

1For the purpose of reducing roundoff error, it uses the QR decomposition in place of
the actual matrix inversion. But algoritthmically they are equivalent.

2Note the use of the ellipsis . . ., indicating that portions of the output have been
omitted, for clarity.
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∗ 0 .05 . 0 . 1 1
. . .
Mult ip l e R−squared : 0 . 318 ,
Adjusted R−squared : 0 .3166
. . .

There is a lot here! Let’s get an overview, so that the material in the coming
sections will be better motivated.

2.4.1 Statistical Inference

The lm() output is heavily focused on ststistical inference — forming confi-
dence intervals and performing significance tests — and the first thing you
may notice is all those asterisks: The estimates of the intercept, the height
coefficient and the age coefficient all are marked with three stars, indicating
a p-value of less than 0.001. The test of the hypothesis

H0 : β1 = 0 (2.24)

would be resoundingly rejected, and one could say, “Height has a significant
effect on weight.” Not surprising at all, though the finding for age might be
more interesting, in that we expect athletes to keep fit, even as they age.

We could form a confidence interval for β2, for instance, by adding and
subtracting 1.96 times the associated standard error,3 which is 0.1257 in
this case. Our resulting CI would be about (0.66,1.16), indicating that the
average player gains between 0.66 and 1.16 pounts per year; even baseball
players gain weight over time.

2.4.2 Assumptions

But where did this come from? Surely there must be some assumptions
underlying these statistical inference procedures. What are those assump-
tions? The classical ones, to which the reader may have some prior expo-
sure, are:4

3The standard error of an estimate θ̂ is the estimated standard deviation of that
estimator. More on this coming soon.

4Of course, an assumption not listed here is that the linear model (2.6) is correct, at
least to reasonable accuracy.



50 CHAPTER 2. LINEAR REGRESSION MODELS

• Normality: The assumption is that, conditional on the vector of
predictor variables X, the response variable Y has a normal distribu-
tion.

In the weight/height/age example, this would mean, for instance, that
within the subpopulation of all baseball players of height 72 and age
25, weight is normally distributed.

• Homoscedasticity: Just as we define the regression function in
terms of the conditional mean,

µ(t) = E(Y | X = t) (2.25)

we can define the conditional variance function

σ2(t) = V ar(Y | X = t) (2.26)

The homoscedasticity assumption is that σ2(t) does not depend on t.

In the weight/height/age example, this would say that the variance
in weight among, say, 70-inches-tall 22-year-olds is the same as that
among the subpopulation of those of height 75 inches and age 32.

That first assumption is often fairly good, though we’ll see that it doesn’t
matter much anyway. But the second assumption is just the opposite — it
rarely holds even in an approximate sense, and in fact it turns out that it
does matter. More on this in Chapter ??.

The “R-squared” values will be discussed in Section 2.7.

2.5 Unbiasedness and Consistency

We will begin by discussing two properties of the least-squares estimator β̂.

2.5.1 β̂ Is Unbiased

One of the central concepts in the early development of statistics was un-
biasedness. As you’ll see, to some degree it is only historical baggage, but
on the other hand it does become quite relevant in some contexts here.

To explain the concept, say we are estimating some population value θ,
using an estimator θ̂ based on our sample. Remember, θ̂ is a random
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variable — if we take a new sample, we get a new value of θ̂. So, some
samples will yield a θ̂ that overestimates θ, while in other samples θ̂ will
come out too low.

The pioneers of statistics believed that a nice property for θ̂ to have would
be that on average, i.e., averaged over all possible samples, θ̂ comes out
“just right”:

Eθ̂ = θ (2.27)

This seems like a reasonable criterion for an estimator to have, and sure
enough, our least-squares estimator has that property:

Eβ̂ = β (2.28)

Note that since this is a vector equation, the unbiasedness is meant for the
individual components. In other words, (2.28) is a compact way of saying

Eβ̂j = βj , j = 0, 1, ..., p (2.29)

This is derived in the Mathematical Complements portion of this chapter,
Section 2.10.2.

2.5.2 Bias As an Issue/Nonissue

Arguably the pioneers of statistics shouldn’t have placed so much emphasis
on unbiasednedness. Most statistiical estitmators have some degree of bias,
though it is usually small and goes to 0 as the sample size n grows. Other
than least-squares, none of the regression function estimators in common
use is unbiased.

Indeed, there is a common estimator, learned in elementary statistics courses,
that is arguably wrongly heralded as unbiased. This is the sample variance
based on W1, ...,Wn,

S2 =
1

n− 1

n∑
i=1

(Wi −W )2 (2.30)

estimating a population variance η2.
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The “natural,” sample-analog divisor in (2.30) would be n, not n−1. Using
our “correspondence” notation,

η2 ←→ 1

n

n∑
i=1

(Wi −W )2 (2.31)

But as the reader may be aware, use of n as the divisor would result in a
biased estimate of η2. The n − 1 divisor is then a “fudge factor” that can
be shown to produce an unbiased estimator.

Yet even that is illusory. While it is true that S2 (with the n− 1 divisor) is
an unbiased estimate of η2, we actually don’t have much use for S2. Instead,
we use S, as in the familiar t-statistic, (2.38) for inference on means. And
lo and behold, S is a biased estimator of η! It is shown in Section (2.10.4)
that

ES < η (2.32)

Thus one should indeed not be obsessive in pursuing unbiasedness.

However, the issue of bias does play an important role in various aspects of
regression analysis. It will arise often in this book, including in the present
chapter.

2.5.3 β̂ Is Consistent

In contrast to unbiasedness, which as argued above may not be a general
goodness criterion for an estimator, there is a more basic property that we
would insist that almost any estimator to have, consistency: As the sample
size n goes to infinity, then the sample estimate θ̂ goes to θ. This is not a
very strong property, but it is a minimal one. It is shown in Section 2.10.3
that the least-squares estimator β̂ is indeed a consistent estimator of β.

2.6 Inference under Homoscedasticity

Let’s see what the homoscedasticity assumption gives us.
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2.6.1 Review: Classical Inference on a Single Mean

You may have noticed the familiar Student-t distribution mentioned in the
output of lm() above. Before proceeding, it will be helpful to review this
situation from elementary statistics.

We have a random sample W1, ...,Wn from a population hav-
ing mean ν = EW and variance η2. Suppose W is normally
distributed in the population. Form

W =
1

n

n∑
i=1

Wi (2.33)

and

S2 =
1

n− 1

n∑
i=1

(Wi −W )2 (2.34)

(It is customary to use the lower-case s instead of S in 2.34, but
the capital letter is used here so as to distinguish from the s2

quantity in the linear model, (2.47).)

Then

T =
W − ν
S/
√
n

(2.35)

has a Student-t distribution with n− 1 degrees of freedom (df).

This is then used for statistical inference on ν. We can form a
95% confidence interval by adding and subtracting c×S/

√
n to

W , where c is the point of the upper-0.025 area for the Student-t
distribution with n− 1 df.

Under the normality assumption, such inference is exact; a 95%
confidence interval, say, has exactly 0.95 probability of contain-
ing ν.

The normal distribution model is just that, a model, not expected to be
exact. It rarely happens, if ever at all, that a population distribution is
exactly normal. Human weight, for instance, cannot be negative and cannot
be a million pounds; it is bounded, unlike normal distributions, whose
support is (−∞,∞). So “exact” inference using the Student-t distribution
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as above is not exact after all. (Though the following discussion might have
been postponed to Chapter 3, it’s important to get the issue out of the way
earlier, right here.)

If n is large, the assumption of a normal population becomes irrelevant:
The Central Limit Theorem (CLT, Appendix ??) tells us that

W − ν
η/
√
n

(2.36)

has an approximate N(0,1) distribution even though the distribution of W
is not normal. We then must show that if we replace η by S in (2.36),
the result will still be approximately normal. This follows from Slutsky’s
Theorem and the fact that S goes to η as n → ∞.5 Thus we can per-
form approximate) statistical inference on ν using (2.35) and N(0,1), again
without assuming that W has a normal distribution.

For instance, since the upper 2.5% tail of the N(0,1) distribution starts at
1.96, an approximate 95% confidence interval for ν would be

W ± 1.96
S√
n

(2.37)

What if n is small? We could use the Student-t distribution anyway, but
we would have no idea how accurate it would be. We could not even use
the data to assess the normality assumption on which the t-distribution is
based, as we would have too little data to do so.

The normality assumption for the Wi, then, is of rather little value, and as
explained in the next section, is of even less value in the regression context.

One possible virtue, though, of using Student-t would be that it gives a
wider interval than does N(0,1). For example, for n = 28, our confidence
interval would be

W ± 2.04
s√
n

(2.38)

instead of (2.37). The importance of this is that using S instead of η adds
further variability to (2.35), which goes away as n → ∞ but makes (2.36)

5In its simpler form, the theorem says that if Un converges to a normal distribution
and Vn → v as n→∞, then Un/Vn also is asymptotically normal.
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overly narrow. Using a Student-t value might compensate for that, though
it may also overcompensate.

In general:

If θ̂ is an approximately normally-distributed estimator of a
population value θ, then an approximate 95% confidence inter-
val for θ is

θ̂ ± 1.96 s.e.(θ̂) (2.39)

where the notation s.e.() denotes “standard error of.” (The
standard error usually comes from a theoretical derivation, as
we will see.)

2.6.2 Extension to the Regression Case

The discussion in the last section concerning inference for a mean. What
about inference for regression functions (which are conditional means)?

The first point to note is this:

The distribution of the least-squares estimator β̂ is approxi-
mately (p+ 1)-variate normal, without assuming normality.6

This again follows from the CLT. Consider for instance a typical component
of A′D in (2.23),

n∑
i=1

X
(j)
i Yi (2.40)

This is a sum of i.i.d. terms, thus approximately normal. The delta method
(Appendix ??) says that smooth (i.e. differentiable) functions of asymp-

totically normal random variables are again asymptotically normal. So, β̂
has an asymptotic (p + 1)−variate normal distribution. (A more formal
derivation is presented in Section 2.10.6.)

However, to perform statistical inference, we need the approximate covari-
ance matrix of β̂, from which we can obtain standard errors of the β̂j . The
standard way to do this is by assuming homoscedasticity.

6The statement is true even without assuming homoscedasticity, but we won’t drop
that assumption until the next chapter.
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So, lm() assumes that in (2.26), the function σ2(t) is constant in t. For
brevity, then, we will simply refer to it as σ2. Note that this plus our
independence assumption implies

Cov(D|A) = σ2I (2.41)

where I is the identity matrix.

To avoid (much) clutter, let C = (A′A)−1A′. Then by the properties of
covariance matrices (Appendix ??),

Cov(β̂ |A) = Cov(CD) (2.42)

= C Cov(D|A) C ′ (2.43)

= σ2CC ′ (2.44)

Fortunately, the various properties of matrix transpose (Appendix ??) can
be used to show that

CC ′ = (A′A)−1 (2.45)

Thus

Cov(β̂) = σ2(A′A)−1 (2.46)

That’s a nice (surprisingly) compact expression, but the quantity σ2 is an
unknown population value. It thus must be estimated, as we estimated η2

by S2 in Section 2.6.1. And again, an unbiased estimator is available. So,
we take as our estimator of σ2

s2 =
1

n− p− 1

n∑
i=1

(Yi − X̃ ′iβ̂)2 (2.47)

which can be shown to be unbiased.

If the normality assumption were to hold, then quantities like

β̂i − βi
s
√
aii

(2.48)
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would have an exact Student-t distribution with n−p−1 degrees of freedom,
where aii is the (i, i) element of (A′A)−1.7

But as noted, this is usually an unrealistic assumption, and we instead rely
on the CLT. Putting the above together, we have:

The conditional distribution of the least-squares estimator β̂,
given A, is approximately multivariate normal distribution with
mean β and approximate covariance matrix

s2(A′A)−1 (2.49)

Thus the standard error of β̂j is the square root of element j
of this matrix (counting the top-left element as being in row 0,
column 0).

Similarly, suppose we are interested in some linear combination
λ′β of the elements of β, estimating it by λ′β̂. The standard
error is the square root of

s2λ′(A′A)−1λ (2.50)

And as before, we might as well calculate s2 with a denominator of n, as
opposed to the n− p− 1 expression above.

Recall from Chapter 1, by the way, that R’s vcov() function gives us the
matrix (3.3), both for lm() and also for some other regression modeling
functions that we will encounter later.

Before going to some examples, note that the conditional nature of the
statements above is not an issue. Say for instance we form a 95% confidence
interval for some quantity, conditional on A. Let V be an indicator variable
for the event that the interval contains the quantity of interest. Then

P (V = 1) = E[P (V = 1 | A)] = E(0.95) = 0.95 (2.51)

Thus the unconditional coverage probability is still 0.95.

7A common interpretation of the number of degrees of freedom here is, “We have n
data points, but must subtract one degree of freedom for each of the p + 1 estimated
parameters.”
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2.6.3 Example: Bike-Sharing Data

Let’s form some confidence intervals from the bike-sharing data.

> lmout <− lm( reg ˜ temp+temp2+workingday+clearday ,
data=shar )

> summary( lmout )
. . . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −1362.56 232 .82 −5.852 1 .09 e−08
temp 11059.20 988 .08 11 .193 < 2e−16
temp2 −7636.40 1013.90 −7.532 4 .08 e−13
workingday 685 .99 71 .00 9 .661 < 2e−16
c l ea rday 518 .95 69 .52 7 .465 6 .34 e−13
. . .
Mult ip l e R−squared : 0 .6548 , Adjusted R−squared : 0 .651

We estimate that a working day adds about 686 riders to the day’s ridership.
An approximate 95% confidence interval for the population value for this
effect is

685.99± 1.96 · 71.00 = (546.83, 825.15) (2.52)

This is a disappointingly wide interval, but it shouldn’t surprise us. After
all, it is based on only 365 data points.

Given the nonlinear effect of temperature in our model, finding a relevant
confidence interval here is a little more involved. Let’s compare the mean
ridership for our example in the last chapter — 62 degree weather, a Sunday
and sunny — with the same setting but with 75 degrees.

The difference in (population!) mean ridership levels between these two
settings is

(β0+β10.679+β20.6792+β30+β11)−(β0+β10.525+β20.5252+β30+β11)

= β10.154 + β20.186

Our sample estimate for that difference in mean ridership between the two
types of days is then obtained as follows:
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> lamb <− c ( 0 , 0 . 1 5 4 , 0 . 1 8 6 , 0 , 0 )
> t ( lamb ) %∗% coef ( lmout )

[ , 1 ]
[ 1 , ] 282.7453

or about 283 more riders on the warmer day. For a confidence interval, we
need a standard error. So, in (3.4), take λ = (0, 0.154, 0.186, 0, 0)′. Our
standard error is then obtained via

> sqrt ( t ( lamb ) %∗% vcov ( lmout ) %∗% lamb )
[ , 1 ]

[ 1 , ] 47 .16063

Our confidence interval for the difference between 75-degree and 62-degree
days is

282.75± 1.96 · 47.16 = (190.32, 375.18) (2.53)

Again, a very wide interval, but it does appear that a lot more riders show
up on the warmer days.

The value of s is itself probably not of major interest, as its use is usually in-
direct, in (3.3). However, we can determine it if need be, as lmout$residuals
contains the residuals, i.e. the sample prediction errors

Yi − X̃i

′
β̂, i = 1, 2, ..., n (2.54)

Using (2.47), we can find s:

> s <− sqrt (sum( lmout$residuals ˆ2) / (365−4−1))
> s
> s
[ 1 ] 626 .303

2.7 Collective Predictive Strength of the X(j)

The R2 quantity in the output of lm() is a measure of how well our model

predicts Y . Yet, just as β̂, a sample quantity, estimates the population
quantity β, one would reason that the R2 value printed out by lm() must
estimate a population quantity too. In this section, we’ll make that concept
precise, and deal with a troubling bias problem.
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We will also introduce an alternative form of the cross-validation notion
discussed in Section 1.9.3.

2.7.1 Basic Properties

Note carefully that we are working with population quantities here, gen-
erally unknown, but existent nonetheless. Note too that, for now, we are
NOT assuming normality or homoscedasticity. In fact, even the assumption
of having a linear regression function will be dropped for the moment.

Suppose we somehow knew the exact population regression function µ(t).
Whenever we would encounter a person/item/day/etc. with a known X
but unknown Y , we would predict the latter by µ(X). Define ε to be the
prediction error

ε = Y − µ(X) (2.55)

It can be shown (Section 2.10.5) that µ(X) and ε are uncorrelated, i.e.,
have zero covariance. We can thus write

V ar(Y ) = V ar[µ(X)] + V ar(ε) (2.56)

With this partitioning, it makes sense to say:

The quantity

ω =
V ar[µ(X)]

V ar(Y )
(2.57)

is the proportion of variation of Y explainable by X.

Section 2.10.5 goes further:

Define

ρ =
√
ω (2.58)

Then ρ is the correlation between our prodicted value µ(X) and
the actual Y .
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Again, the normality and homoscedasticity assumptions are NOT needed
for these results. In fact, they hold for any regression function, not just one
satisfying the linear model.

2.7.2 Definition of R2

The quantity R2 output by lm() is the sample analog of ρ2:

R2 is the squared sample correlation between the actual re-
sponse values Yi and the predicted values X̃ ′i β̂. Also, R2 is a
consistent estimator of ρ2.

Exactly how is R2 defined? From (2.56) and (2.57), we see that

ρ2 = 1− V ar[ε]

V ar(Y )
(2.59)

Since Eε = 0, we have

V ar(ε) = E(ε2) (2.60)

The latter is the average squared prediction error in the population, whose
sample analog is the average squared error in our sample. In other words,
using our “correspondence” notation from before,

E(ε2)←→ 1

n

n∑
i=1

(Yi − X̃ ′iβ̂)2 (2.61)

Now considering the denominator in (2.59), the sample analog is

V ar(Y )←→ 1

n

n∑
i=1

(Yi − Y )2 (2.62)

where of course Y = (
∑n
i=1 Yi)/n.

And that is R2:

R2 = 1−
1
n

∑n
i=1(Yi − X̃ ′iβ̂)2

1
n

∑n
i=1(Yi − Y )2

(2.63)
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(Yes, the 1/n factors do cancel, but it will be useful to leave them there.)

As a sample estimate of the population ρ2, the quantity R2 would appear
to be a very useful measure of the collective predictive ability of the X(j).
However, the story is not so simple, and curiously, the problem is actually
bias.

2.7.3 Bias Issues

R2 can be shown to be biased upward, not surprising in light of the fact
that we are predicting on the same data that we had used to calculate β̂. In
the extreme, we could fit an n− 1 degree polynomial in a single predictor,
with the curve passing through each data point, producing R2 = 1, even
though our ability to predict future data would likely be very weak.

The bias can be severe if p is a substantial portion of n. (In the above
polynomial example, we would have p = n − 1, even though we started
with p = 1.) This is the overfitting problem mentioned in the last chapter,
and to be treated in depth in a later chapter. But for now, let’s see how
bad the bias can be, using the following simulation code:

s imr2 <− function (n , p , nreps ) {
r2 s <− vector ( length=nreps )
for ( i in 1 : nreps ) {

x <− matrix (rnorm(n∗p ) , ncol=p)
y <− x %∗% rep (1 , p ) + rnorm(n , sd=sqrt (p ) )
r2 s [ i ] <− get r2 (x , y )

}
hist ( r2 s )

}

get r2 <− function (x , y ) {
smm <− summary(lm( y ˜ x ) )
smm$r . squared

}

Here we are simulating a population in which

Y = X(1) + ...+X(p) + ε (2.64)

so that β consists of a 0 followed by p 1s. We set the X(j) to have variance
1, and ε has variance

√
p. This gives ρ2 = 0.50. Hopefully R2 will usually
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Figure 2.1: Plotted R2 Values, n = 25

be near this value. To assess this, I ran simr2(25,8,1000), with the result
shown in Figure 2.1.

These results are not encouraging at all! The R2 values are typically around
0.7, rather than 0.5 as they should be. In other words, R2 is typically giving
us much too rosy a picture as to the predictive strength of our X(j).

Of course, it should be kept in mind that I deliberately chose a setting
which produced substantial overfitting — 8 predictors for only 25 data
points, which you will see in Chapter 9 is probably too many predictors.

Running the simulation with n = 250 should show much better behavior.
The results are shown in Figure 2.2. This is indeed much better. Note,
though, that the upward bias is still evident, with values more typically
above 0.5 than below it.

Note too that R2 seems to have large variance, even in the case of n = 250.
Thus in samples in which p/n is large, we should not take our sample’s
value of R2 overly seriously.
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Figure 2.2: Plotted R2 Values, n = 250

2.7.4 Adjusted-R2

The adjusted-R2 statistic is aimed at serving as a less biased version of the
ordinary R2. Its derivation is actually quite simple, though note that we
do need to assume homoscedasticity.

Under the latter assumption, V ar(ε) = σ2 in (2.59). Then the numerator
in (2.63) is biased, which we know from (2.47) can be fixed by using the
factor 1/(n−p−1) instead of 1/n. Similarly, we know that the denominator
will be unbiased if we divide by 1/(n−1) instead of 1/n. Those changes do
NOT make (2.63) unbiased; the ratio of two unbiased estimators is generally
biased. However, the hope is that this new version of R2, called adjusted
R2, will have less bias than the original.

We can explore this using the same simulation code as above. We simply
change the line

smm$r . squared

to
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Figure 2.3: Plotted Adjusted R2 Values, n = 25

smm$adj . r . squared

Rerunning simr2(25,8,1000), we obtain the result shown in Figure 2.3.
This is a good sign! The values are more or less centered around 0.5, as
they should be (though there is still a considerable amount of variation).

2.7.5 The “Leaving-One-Out Method”

Our theme here in Section 2.7 has been assessing the predictive ability of
our model, with the approach described so far being the R2 measure. But
recall that we have another measure: Section 1.9.3 introduced the concept
of cross-validation for assessing predictive ability. We will now look at a
variant of that method.

First, a quick review of cross-validation: Say we have n observations in
our data set. With cross-validation, we randomly partition the data into a
training set and a validation set, of k and n− k observations, respectively.
We fit our model to the training set, and use the result to predict in the
validation set, and then see how well those predictions turned out.
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Clearly there is an issue of the choice of k. If k is large, our validation
set will be too small to obtain an accurate estimate of predictive ability.
That is not a problem if k is small, but then we have a subtler problem:
We are getting an estimate of strength of our model when constructed on
k observations, but in the end we wish to use all n observations.

One solution is the Leaving One Out Method (LOOM). Here we set k =
n − 1, but apply the training/validation process to all possible (n − 1, 1)
partitions. The name alludes to the fact that LOOM repeatedly omits one
observation, predicting it from fitting the model to the remaining obser-
vation. This gives us “the best of both worlds”: We have n validation
points, the best possible, and the training sets are of size n− 1, i.e., nearly
full-sized.

There is an added benefit that the same code to implement this method can
be used to implement the jackknife. The latter is a resampling technique. To
see what it does, let’s look at a more general technique called the bootstrap,
which is a method to empirically compute standard errors.

Say we wish to determine the standard error of an estimator θ̂. We repeat-
edly take random samples of size k, with replacement, from our data set,
and calculate θ̂ on each of them. The resulting values form a sample from
the distribution of θ̂ (for sample size k). One can compute standard errors
from this sample in various ways, e.g. simply by findiing their standard
deviation.

The jackknife does this for k = n− 1 (and sampling without replacement),
and thus we can again approximate the sampling distribution of our esti-
mator based on n data points.

2.7.5.1 The Code

Here is general code for Leaving-One-Out:

# Leaving−One−Out Method ;

# use both f o r cross−v a l i d a t i o n and j a c k k n i f e resampl ing

# arguments :

# xydata : data , one row per o bse rva t io n , ”Y’ v a l u e l a s t
# r e g f t n : r e g r e s s i o n f u n c t i o n to app ly to xydata and
# resamples
# pos tproc : f u n c t i o n to app ly to the resampl ing output
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# nsamp : number o f l eave−one−out resamples to pr oce s s

# f i t s the s p e c i f i e d r e g r e s s i o n model to each leave−one−out
# subsample , f e e d i n g the r e s u l t s i n t o pos tproc ()

# due to p o s s i b l y l a r g e amount o f computation

loom <− function ( xydata , r eg f tn , postproc ,
nsamp=nrow( xydata ) , . . . )

{
xydata <− as . matrix ( xydata )
n <− nrow( xydata )
i f (nsamp == n) {

t o l eaveout <− 1 : n
} else t o l eaveout <− sample ( 1 : n , nsamp , replace=FALSE)
jkout <− doleave ( to l eaveout , xydata , r e g f t n )
for ( i in to l eaveout ) {

jkout [ [ i ] ] <− r e g f t n ( xydata [− i , ] )
}
postproc ( jkout , xydata , t o l eaveout )

}

doleave <− function ( to l eaveout , xyd , r e g f t n ) {
i f ( i s . null ( xyd ) ) xyd <− xydata
n t l o <− length ( t o l eaveout )
tmp <− l i s t ( length=nt lo )
for ( i in 1 : n t l o ) {

l o <− t o l eaveout [ i ]
tmp [ [ i ] ] <− r e g f t n ( xyd[− lo , ] )

}
tmp

}

lmreg f tn <− function ( xydata ) {
yco l <− ncol ( xydata )
lm( xydata [ , yco l ] ˜ xydata [ ,− yco l ] )

}

l 1po s tp roc <− function ( lmouts , xydata , t o l eaveout ) {
l 1 s <− NULL
yco l <− ncol ( xydata )
for ( i in to l eaveout ) {

bhat <− coef ( lmouts [ [ i ] ] )
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predva l <− bhat %∗% c (1 , xydata [ i ,− yco l ] )
r e a l v a l <− xydata [ i , y co l ]
l 1 s <− c ( l 1 s , abs ( r e a l v a l − predva l ) )

}
mean( l 1 s )

}

Let’s look at the main arguments first:

• xydata: Our data set, in the same format as for instance our xvallm()
function in Section 1.9.4: One observation per row, Y in the last col-
umn.

• regftn: The code is versatile, not just limited to the linear model,
so the user specifies the regression function. The linear model case is
handled by specifying lmregftn.

• postproc: After the leaving-one-out processing is done, the code
has an R list, each element of which is the output of regftn(). The
postproc() function, specified by the user, is applied to each of these
elements. For instance, setting this to l1postproc() will result in
computing the mean absolute prediction error.

The remaining arguments serve to ameliorate the major drawback of the
Leaving-One-Out Method, which is large computation time:

• nsamp: Instead of leaving out each of observations 1, ..., n, we do
this only for a random sample of nsamp indices from that set.

Another possible source of speedup in the linear model case would be to
use matrix inverse update methods, which we defer to Chapter 9.

2.7.5.2 Example: Bike-Sharing Data

To illustrate, let’s look at the bike-sharing data again. To make it more
interesting, let’s load up the model with some more variables:

> shar$winter <− as . integer ( shar$ season == 1)
> shar$ sp r ing <− as . integer ( shar$ season == 2)
> shar$summer <− as . integer ( shar$ season == 3)
> shar$mon <− as . integer ( shar$weekday == 1)
> shar$tue <− as . integer ( shar$weekday == 2)
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> shar$wed <− as . integer ( shar$weekday == 3)
> shar$thu <− as . integer ( shar$weekday == 4)
> shar$ f r i <− as . integer ( shar$weekday == 5)
> shar$ sa t <− as . integer ( shar$weekday == 6)
> shr <− as . matrix ( shar [ , c ( 1 0 , 1 7 , 6 , 1 8 , 1 2 , 1 3 , 1 4 , 2 0 : 2 8 , 1 5 ) ] )

Now try LOOM cross-validation:

> loom ( shr , lmregftn , l 1po s tp roc )
[ 1 ] 383 .3055

On average, we can predict ridership to about 383, when predicting new
data. It’s worthwhile comparing this to the same number obtained by
repredicting the original data from itself, meaning

1

n

n∑
i=1

|Yi − X̃ ′iβ̂| (2.65)

We can easily compute this number from the lm() output, as the latter

includes the values of Yi − X̃ ′iβ̂, known as the residuals:

> lmout <− lm( shr [ , 1 7 ] ˜ shr [ , −17 ] )
> mean(abs ( lmout$residuals ) )
[ 1 ] 363 .3149

This is our first concrete example of overfitting. The second number, about
363, is more optimistic than the cross-validdated one. The results would
have likely been even worse with more variables. Again, this topic will be
covered in depth in Chapter 9.

2.7.5.3 Another Use of loom(): the Jackknife

As explained in Section 2.7.5, loom() can also be used for jackknife pur-
poses, which we will do here on the adjusted R2 statistic. As we saw in
Figure 2.3, this statistic can have considerable variation from one sample to
another. But in that figure, we had the luxury of performing a simulation
of many artificial samples. What can we do with our single sample of real
data, to gauge how variable adjusted R2 is in our setting?

The jackknife comes to the rescue! By repeatedly leaving one observation
out, we can generate many adjusted R2 values, amounting to a simulation
from the sampling distribution of adjusted R2. For this purpose, we set the
loom() argument postproc() to the following:
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> ar2postproc
function ( lmouts , xydata , t o l eaveout ) {

r2 s <− NULL
for ( lmout in lmouts ) {

s <− summary( lmout )
r2 s <− c ( r2s , s$adj . r . squared )

}
r2 s

}

Recall that, within loom() the function regftn() is called on each subsam-
ple of size n− 1. The function postproc() is then called on the results of
these calls, which in this case are calls to lm(). Here ar2postproc() will
then collect all the associated adjusted R2 values.

Here is what we get for the above lm() analysis of the bike-sharing data:

> ar2out <− loom ( shr , lmreg\ f oo tno t e { , a r2postproc )
> hist ( ar2out )

The results in Figure 2.4 are not too bad. There is actually rather little
variation in the simulated adjusted R2 values. This is not surprising, in that
there is not much discrepancy between the ordinary and adjusted versions
of R2 in the full sample:

> summary( lmout )
. . .
Mult ip l e R−squared : 0 .7971 , Adj . R−squared : 0 .7877
. . .

2.7.6 Other Measures

A number of other measures of predictive ability are in common use, notably
Mallows’ Cp and the Akaike Information Criterion. These will be treated
in Chapter 9.

2.7.7 The Verdict

So, what is the verdict on the use of R2 to assess the collective predictive
ability of our predictor variables? There is a general consensus among
data analysts that adjusted-R2 is a better measure than R2. And if one
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Figure 2.4: Plotted loom() ‘R2 Values, Bike-Sharing Data

observes a wide discrepancy between the two on a particular data set, this
is a suggestion that we are overfitting.

On the other hand, one must keep in mind that R2, like any other statistic,
is a sample quantity subject to sampling variation. If close attention is to
be paid to it, a standard error would be helpful, and would be obtainable
via use of loom() as a jackknife (or by the bootstrap).8

R2 is an appealing measure of predictive ability, as it is dimensionless, and
comparable across diverse settings. But finer measures of predictive ability
is obtainable via loom(), such as the mean absolute prediction error as
shown here. R2 involves squared prediction error, which accentuates the
larger errors while giving smaller weight to the moderate ones, which we
might consider a distortion.

8If we have m jackknifed versions of an estimator θ̂ on a sample of size m, a standard
error for full-sample version of θ̂ is obtained as follows. Find the standard deviation of
the m jackknifed values, and them multiply by (m− 1)/

√
m.
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2.8 Significance Testing vs. Confidence In-
tervals

“Sir Ronald [Fisher] has befuddled us, mesmerized us, and led us down the
primrose path” — Paul Meehl, professor of psychology and the philosophy
of science

When the concept of significance testing, especially the 5% value for α, was
developed in the 1920s by Sir Ronald Fisher, many prominent statisticians
opposed the idea — for good reason, as we’ll see below. But Fisher was so
influential that he prevailed, and thus significance testing became the core
operation of statistics.

So, today significance testing is entrenched in the field, in spite of being
widely recognized as faulty. Most modern statisticians understand this,9

even if many continue to engage in the practice.10

The basic problem is that a significance test is answering the wrong ques-
tion. Say in a regression analysis we are interested in the relation between
X(1) and Y . Our test might have as null hypothesis

H0 : β1 = 0 (2.66)

But we probably know a priori that there is at least some relation between
the two variables; β1 cannot be 0.000000000... to infinitely many decimal
places. So we already know that H0 is false.11 The better approach is to
form a confidence interval for β1, so that we can gauge the size of β1, i.e.,
the strength of the relation.

9This was eloquently stated in a guide to statistics prepared for the U.S. Supreme
Court by two very prominent scholars (Reference Guide on Statistics, David Kaye and
David Freedman, http://www.fjc.gov/public/pdf.nsf/lookup/sciman02.pdf/$file/

sciman02.pdf: “Statistical significance depends on the p-value, and p-values depend
on sample size. Therefore, a ‘significant’ effect could be small. Conversely, an effect that
is ‘not significant’ could be large. By inquiring into the magnitude of an effect, courts
can avoid being misled by p-values. To focus attention where it belongs — on the actual
size of an effect and the reliability of the statistical analysis — interval estimates may
be valuable. Seeing a plausible range of values for the quantity of interest helps describe
the statistical uncertainty in the estimate.”

10Many are forced to do so, e.g. to comply with government standards in pharmaceu-
tical testing. My own approach in such situations is to quote the test results but then
point out the problems, and present confidence intervals as well.

11A similar point holds for the F-test in lm() output, which tests that all the βi are
0, i.e., H0 : β1 = β2 = . . . βp = 0.

http://www.fjc.gov/public/pdf.nsf/lookup/sciman02.pdf/$file/sciman02.pdf
http://www.fjc.gov/public/pdf.nsf/lookup/sciman02.pdf/$file/sciman02.pdf
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For instance, consider another UCI data set, Forest Cover, which involves
a remote sensing project. The goal was to predict which one of seven types
of ground cover exists in a certain inaccessible location, using variables that
can be measured by satellite. One of the variables is Hillside Shade at Noon
(HS12).

For this example, I restricted the data to Cover Types 1 and 2, and took a
random subset of 1000 observations to keep the example manageable. The
logistic model here is

P (Cover Type 2) =
1

1 + e−(β0+β1 HS12)
(2.67)

Here is the glm() output, with column 8 being HS12 and column 56 being
a dummy variable indicating Cover Type 2:

> glmout <−
glm( f2512 [ , 5 6 ] ˜ f2512 [ , 8 ] , family=binomial )

> summary( glmout )
. . .
C o e f f i c i e n t s :

Estimate Std . Error z va lue Pr(>| z | )
( I n t e r c e p t ) −2.147856 0.634077 −3.387 0.000706 ∗∗∗
f2512 [ , 8 ] 0 .014102 0.002817 5 .007 5 .53 e−07 ∗∗∗
. . .

The triple-star result for β1 would indicate that HS12 is a “very highly

significant” predictor of cover type. Yet we see that β̂1, 0.014102, is tiny.
HS12 is in the 200+ range, with sample means 227.1 and 223.4 for the two
cover types, differing only by 3.7. Multiplying the latter by 0.014102 gives a

value of about 0.052, which is swamped in (2.67) by the β̂0 term, -2.147856.
In plain English: HS12 has almost no predictive power for Cover Type, yet
the test declares it “very highly significant.”

The confidence interval for β1 here is

0.014102± 1.96 · 0.002817 = (0.00858, 0.01962) (2.68)

The fact that the interval excludes 0 is irrelevant. The real value of the
interval here is that it shows that β1 is quite small; even the right-hand end
point is tiny.

This book’s preferred statistical inference method is confidence intervals,
not significance tests.



74 CHAPTER 2. LINEAR REGRESSION MODELS

2.9 Bibliographic Notes

For more on the Eickert-White approach to correct inference under het-
eroscedasticity, see (Zeileis, 2006).

2.10 Mathematical Complements

2.10.1 The Geometry of Linear Models

We’ll use the notation of Section 2.3.2 here.

Since Since β̂ is the least-squares estimate, i.e. it minimizes ||D−Ab|| over

all b, then Aβ̂ is the closest vector in the column space of A to D. Thus
the mapping

D → Aβ̂ (2.69)

is a projection.

Since a projection forms a “right triangle,” we have that

(Aβ̂,D −Aβ̂) = 0 (2.70)

2.10.2 Unbiasedness of the Least-Squares Estimator

We will show that β̂ is conditionally unbiased,

E(β̂ | X1, ..., Xn) = β (2.71)

This approach has the advantage of including the fixed-X case, and it also
implies the unconditional case for random-X, since

Eβ̂ = E[E(β̂ | X1, ..., Xn)] = Eβ = β (2.72)

So let’s derive (2.71). First note that, by definition of regression and the
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linear model,

E(Y | X) = µ(X) = X̃ ′β (2.73)

Once again using the matrix partitioning technique as in (1.19), Equation
(2.73) tells us that

E(D | A) = Aβ (2.74)

where A and D are as in Section 2.3.2.

Now using (2.23) we have

E(β̂ | X1, ..., Xn) = E[β̂ | A] (2.75)

= (A′A)−1A′E(D |A) (2.76)

= (A′A)−1A′Aβ) (2.77)

= β (2.78)

thus showing that β̂ is unbiased.

2.10.3 Consistency of the Least-Squares Estimator

For technical reasons, it’s easier to treat the random-X case. We’ll make
use of a famous theorem:

Strong Law of Large Numbers (SLLN): Say W1,W2, ... are i.i.d.
with common mean EW. Then

lim
n→∞

1

n

n∑
i=1

Wi = EW, with probability 1 (2.79)

Armed with that fundamental theorem in probability theory, rewrite (2.23)
as

β̂ =

(
1

n
A′A

)−1
(

1

n
A′D) (2.80)
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To avoid clutter, we will not use the X̃ notation here for augmenting with
a 1 element at the top of a vector. Assume instead that the 1 is X(1).

By the SLLN, the (i,j) element of 1
nA
′A converges as n→∞:

1

n
(A′A)ij =

1

n

n∑
k=1

X
(i)
k X

(j)
k → E[X(i)X(j)] = [E(XX ′)]ij (2.81)

i.e.,

1

n
A′A→ E(XX ′) (2.82)

The vector A′D is a linear combination of the columns of A, with the
coefficients of that linear combination being the elements of the vector D.
Since the columns of A′ are Xk, k = 1, ..., n, we then have

A′D =

n∑
k=1

YkXk (2.83)

and thus

1

n
A′D → E(Y X) (2.84)

The latter quantity is

E [E(Y X | X)] = E [XE(Y | X)] (2.85)

= E [X(X ′β)] (2.86)

= E [X(X ′Iβ)] (2.87)

= E [(XX ′)Iβ)] (2.88)

= E(XX ′) β (2.89)

(2.90)

So, we see that β̂ converges to

[E(XX ′)]−1E(XY ) = [E(XX ′)]−1E(XX ′β) = [E(XX ′)]−1E(XX ′)β = β
(2.91)
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2.10.4 Biased Nature of S

It was stated in Section 2.6.1 that S, even with the n−1 divisor, is a biased
estimator of η, the population standrd deviation. We’ll derive that here.

0 < V ar(S) (2.92)

= E(S2)− (ES)2 (2.93)

= η2 − (ES)2 (2.94)

since S2 is an unbiased estimator of η2. So,

ES < η (2.95)

2.10.5 µ(X) and ε Are Uncorrelated

In Section (2.7.1), it was stated that µ(X) and ε are uncorrelated. This is
easily shown. Since Eε = 0 and E(ε|X) = 0, we have

Cov[µ(X), ε) = E [(µ(X)− Eµ(X)) · (ε− Eε)] (2.96)

= E [(µ(X)− Eµ(X)) · (Y − µ(X))] (2.97)

= E [(µ(X)− Eµ(X) · E(Y − µ(X)|X)] (2.98)

= 0 (2.99)

since

E(Y − µ(X)|X) = µ(X)− µ(X) = 0 (2.100)

2.10.6 Asymptotic (p+ 1)-Variate Normality of β̂

Here we show tht asymptotically β̂ has a (p+1)-vartiate normal distribution.
We again assume the random-X setting, and as in Section 2.10.3, avoid
clutter by incorporating the 1 element of X̃ into X.
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First, define the actual prediction errors we would have if we knew the true
population value of β and were to predict the Yi from the Xi,

εi = Yi −X ′iβ (2.101)

Let G denote the vector of the εi:

G = (ε1, ..., εn)′ (2.102)

Then

D = Aβ +G (2.103)

We will show that the distribution of
√
n(β̂−β) converges to (p+1)-variate

normal with mean 0.

Multiplying both sides of (2.103) by (A′A)−1A′, we have

β̂ = β + (A′A)−1A′G (2.104)

Thus

√
n(β̂ − β) = (A′A)−1

√
n A′G (2.105)

Using Slutsky’s Theorem and (2.82), the right-hand side has the same
asymptotic distribution as

[E(XX ′)]−1
√
n (

1

n
A′G) (2.106)

In the same reasoning that led to (2.84), we have that

A′G =

n∑
i=1

εiXi (2.107)

This is a sum of i.i.d. terms with mean 0, so the CLT says that
√
n ·(A′G/n)

is asymptotically normal with mean 0 and covariance matrix equal to that
of εX, where ε is a generic random variable having the distribution of the
εi.
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Putting this information together with (2.105), we have:

β̂ is asymptotically (p + 1)-variate normal with mean β and
covariance matrix

1

n
[E(XX ′)]−1Cov(εX)[E(XX ′)]−1 (2.108)

2.10.7 Derivation of (3.14)

It is again convenient to treat the random-X case, building on the material
in Section 2.10.6. Since (2.108) is so complex, let’s simplify things by
focusing on the Cov(εX) factor in that equation. Since E(ε|X) = 0, we
have

Cov(εX) = E[(εX) (εX)′] (2.109)

= E(ε2XX ′) (2.110)

By the SLLN, this could be estimated by

1

n

n∑
i=1

ε2iXiX
′
i =

1

n

n∑
i=1

(Yi −X ′iβ)2XiX
′
i (2.111)

This is getting pretty close to what we need for (3.14), but the latter involves
the ε̂i instead of the εi:

1

n

n∑
i=1

ε̂2iXiX
′
i =

1

n

n∑
i=1

(Yi −X ′iβ̂)2XiX
′
i (2.112)

But this can be resolved by various methods of advanced probability the-
ory. For example, because β̂ → β, the Uniform Strong Law of Large Num-
bers says that under reasonable conditions, (2.112) has the same limit as
(2.111).12

12See for instance Asymptotic Theory of Statistics and Probability, Anirban DasGupta,
Springer, 2008. Roughly speaking, the conditions involve boundedness of the variables,
which is very reasonable in practice. Adult human heights are bounded above by 8 feet,
for instance.
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Now let B = diag(ε̂i, . . . , ε̂n). Recalling that the columns of A′ are the Xi,
we see that A′B is a p×n matrix whose ith column is ε̂2iXi. In partitioned
matrix form, then

A′B = (ε̂21X1, . . . ε̂
2
nXn) (2.113)

But also in partitioned matrix form,

A =

 X ′1
. . .
X ′n

 (2.114)

Taking the product in the last two equations, we obtain

A′BA =

n∑
i=1

ε̂2iXiX
′
i (2.115)

So, in (2.108), we can replace Cov(εS) by A′BA/n. From previous cal-
culations, we know that E(XX ′) can be replaced by A′A/n. So, we can
approximate (2.108) by

[
(

1

n
A′A)−1 (

1

n
A′BA) (

1

n
A′A)−1

]
/n = (A′A)−1 A′BA (A′A)−1 (2.116)

The right-hand side is (3.14)!

2.10.8 Distortion Due to Transformation

Consider this famous inequality:

Jensen’s Inequality: Suppose h is a convex function,13 and V
is a random variable for which the expected values in (2.117)
exist. Then

E[h(V )] ≥ h(EV ) (2.117)

13This is “concave up,” in the calculus sense.
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In our context, h is our transformation in Section 3.3.7, and the E() are
conditional means, i.e., regression functions. In the case of the log transform
(and the square-root transform), h is concave-down, so the sense of the
inequality is reversed:

E[lnY |X = t] ≤ ln(E(Y |X = t) (2.118)

Since equality will hold only in trivial cases, we see that the regression
function of lnY will be smaller than the log of the regression function of
Y .

Say we assume that

E(Y |X = t) = eβ0+β1t (2.119)

and reason that this implies that a linear model would be reasonable for
lnY :

E(lnY |X = t) = β0 + β1t (2.120)

Jensen’s Inequality tells us that such reasoning may be risky. In fact, if we
are in a substantially heteroscedastic setting (for Y , not lnY ), the discrep-
ancy between the two sides of (2.118) could vary a lot with t, potentially
producing quite a bit of distortion to the shape of the regression curve.
This follows from a result of Robert Becker,14 who expresses the difference
between the left- and right-hand sides of (2.117) in terms of V ar(V ).

14The Variance Drain and Jensen’s Inequality, CAEPR Working Paper 2012-004,
Indiana University, 2012.
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Chapter 3

The Assumptions in
Practice

This chapter will take a practical look at the classical assumptions of linear
regression models:

(a) Linearity:

E(Y | X̃ = t̃) = t̃′β (3.1)

(b) Normality: The conditional distribution of Y given X is normal.

(c) Independence: The data (Xi, Yi) are independent across i.

(d) Homoscedasticity:

V ar(Y | X = t) (3.2)

is constant in t.

Verifying assumption (a), and dealing with substantial departures from it,
is the subject of an entire chapter, Chapter 6. So, this chapter will focus
on assumptions (b)-(d).

83
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3.1 Normality Assumption

We already discussed (b) in Section 2.6.2, but the topic deserves further
comment. First, let’s review what was found before.

Neither normality nor homoscedasticity is needed; β̂ is unbiased, consistent
and asymptotically normal without those assumptions. Standard statisti-
cal inference procedures, however, assume homoscedasticity. We’ll return
to the latter issue in Section 3.3. But for now, let’s concentrate on the
normality assumption. Retaining the homoscedasticity assumption for the
moment, we found in the last chapter that:

The conditional distribution of the least-squares estimator β̂,
given A, is approximately multivariate normal distributed with
mean β and approximate covariance matrix

s2(A′A)−1 (3.3)

Thus the standard error of β̂j is the square root of element j
of this matrix (counting the top-left element as being in row 0,
column 0).

Similarly, suppose we are interested in some linear combination
λ′β of the elements of β, estimating it by λ′β̂. The standard
error is the square root of

s2λ′(A′A)−1λ (3.4)

The reader should not overlook the word asymptotic in the above. With-
out assumption (a) above, our inference procedures (confidence intervals,
significance tests) are valid, but only approximately. On the other hand,
the reader should be cautioned (as in Section 2.6.1) that so-called “exact”
inference methods, based on the Student-t distribution and so on, are them-
selves only approximate, since true normal distributions rarely if ever exist
in real life.

In other words:

We must live with approximations one way or the other, and
the end result is that the normality assumption is not very im-
portant.
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3.2 Independence Assumption — Don’t Over-
look It

Statistics books tend to blithely say things like “Assume the data are inde-
pendent and identically distributed (i.i.d.),” without giving any comment
to (i) how they might be nonindependent and (ii) what the consequences
are of using standard statstical methods on nonindependent data. Let’s
take a closer look at this.

3.2.1 Estimation of a Single Mean

Note the denominator S/
√
n in (2.35). This is the standard error of W ,

i.e. the estimated standard deviation of that quantity. That in turn comes
from a derivation you may recall from statistics courses,

V ar(W ) =
1

n2
V ar(

n∑
i=1

Wi) (3.5)

=
1

n2

n∑
i=1

V ar(Wi)) (3.6)

and so on.

In going from the second equation to the third, we are making use of the
usual assumption that the Wi are independent. But suppose the Wi are
correlated. Then the correct equation is

V ar(

n∑
i=1

Wi) =

n∑
i=1

V ar(Wi) + 2
∑

1≤i<j≤n

Cov(Wi,Wj) (3.7)

It is often the case that our data are positively correlated. Many data sets,
for instance, consist of multiple measurements on the same person, say 10
blood pressure readings for each of 100 people. In such cases, the covariance
terms in (3.7) will be positive, and (3.5) will yield too low a value. Thus
the denominator in (2.35) will be smaller than it should be. That means
that our confidence interval (2.37) will be too small (as will be p-values), a
serious problem in terms of our ability to do valid inference.

Here is the intuition behind this: Although we have 1000 blood pressure
readings, the positive intra-person correlation means that there is some
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degree of repetition in our data. Thus we don’t have “1000 observations
worth” of data, i.e. our effective n is less than 1000. Hence our confidence
interval, computed using n = 1000, is overly optimistic.

Note that W will still be an unbiased and consistent estimate of ν. In other
words, W is still useful, even if inference procedures computed from it may
be suspect.

3.2.2 Estimation of Linear Regression Coefficients

All of this applies to inference on regression coefficients as well. If our data
is correlated, i.e. rows within (A,D) are not independent, then (??) will
be incorrect, because the off-diagnonal elements won’t be 0s. And if they
are positive, (??) will be “too small,” and the same will be true for (3.3).
Again, the result will be that our confidence intervals and p-values will be
too small, i.e. overly optimistic. In such a situation, then our β̂ will still be
useful, but our inference procedures will be suspect.

3.2.3 What Can Be Done?

This is a difficult problem. Some possibilities are:

• Simply note the dependency problem, e.g. in our report to a client,
and state that though our estimates are valid (in the sense of statis-
tical consistency), we don’t have reliable standard errors.

• Somehow model the dependency, i.e. the off-diagonal elements of
(A′A)−1.

• Collapse the data in some way to achieve independence.

An example of this last point is presented in the next section.

3.2.4 Example: MovieLens Data

The MovieLens data (http://grouplens.org/) consists of ratings of var-
ious movies by various users. The 100K version, which we’ll analyze here,
consists of columns User ID, Movie ID, Rating and Timestamp. There is
one row per rating. If a user has rated, say eight movies, then he/she will

http://grouplens.org/
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have eight rows in the data matrix. Of course, most users have not rated
most movies.

Let Yij denote the ratings of user i, j = 1, 2, ..., Ni, where Ni is the number
of movies rated by this user. We are not taking into account which movies
the user rates here, just analyzing general user behavior. We are treating
the users as a random sample from a conceptual population of all potential
users.

As with the blood pressure example above, for fixed i, the Yij are not
independent, since they come from the same user. Some users tend to give
harsher ratings, others tend to give favorable ones. But we can form

Ti =
1

Ni

Ni∑
j=1

Yij (3.8)

the average rating given by user i, and we have independent random vari-
ables. And, if we treat the Ni as random too, and i.i.d., then the Ti are
i.i.d., enabling standard statistical analyses.

For instance, the MovieLens data include a few demographic variables for
the users, and we can run the model, say,

mean rating = β0 + β1 age + β2 gender (3.9)

and then pose questions such as “Do older people tend to give lower rat-
ings?”

3.3 Dropping the Homoscedasticity Assump-
tion

For an example of problems with the homoscedasticity assumption, again
consider weight and height. It is intuitive that tall people have more vari-
ation in weight than do short people, for instance. We can confirm that in
our baseball player data. Let’s find the sample standard deviations for each
height group (restricting to the groups with over 50 observations), seen in
Section 1.5.2):

> m70 <− mlb [ mlb$Height >= 70 & mlb$Height <= 7 7 , ]
> sds <− tapply (m70$Weight , m70$Height , sd )
> plot ( 7 0 : 7 7 , sds )
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Figure 3.1: Standard Deviations of Weight, By Height Group

The result is shown in Figure 3.1. The upward trend is clearly visible, and
thus the homoscedasticity assumption is not reasonable.

(2.23) is called the ordinary least-squares (OLS) estimator of β, in contrast
to weighted least-sqaures (WLS), a weighted version to be discussed shortly.
Statistical inference on β using OLS is usually based on (2.46), which is in
turn based on the homoscedasticity assumption — that (2.26) is constant
in t. Yet that assumption is rarely if ever valid.

Given the inevitable nonconstancy of (2.26), there are questions that must
be raised:

• Do departures from constancy of (2.26) in t substantially impact the
validity of statistical inference procedures that are based on (2.46)?

• Can we somehow estimate the function σ2(t), and then use that in-
formation to perform a WLS analysis?

• Can we somehow modify (2.46) for the heteroscedastic case?

These points will be addressed in this section.
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3.3.1 Robustness of the Homoscedasticity Assumption

In statistics parlance, we ask, “Is classical inference on β robust to the
homoscedasticity assumption, meaning that there is not much effect on the
validity of our inference procedures (confidence intervals, significance tests)
unless the setting is quite profoundly heteroscedastic?” We can explore this
idea via simulation.

Let’s investigate settings in which

σ(t) = |µ(t)|q (3.10)

where q is a parameter to vary in the investigation. This includes several
important cases:

• q = 0: Homoscedasticity.

• q = 0.5: Conditional distribution of Y given X is Poisson.

• q = 1: Conditional distribution of Y given X is exponential.

Here is the code:

s imhet <− function (n , p , nreps , sdpow ) {
bh1s <− vector ( length=nreps )
s e s <− vector ( length=nreps )
for ( i in 1 : nreps ) {

x <− matrix (rnorm(n∗p ) , ncol=p)
meany <− x %∗% rep (1 , p )
sds <− abs (meany)ˆ sdpow
y <− meany + rnorm(n , sd=sds )
lmout <− lm( y ˜ x )
bh1s [ i ] <− coef ( lmout ) [ 2 ]
s e s [ i ] <− sqrt ( vcov ( lmout ) [ 2 , 2 ] )

}
mean(abs ( bh1s − 1 . 0 ) < 1 .96∗ s e s )

}

The simulation finds the true confidence level (providing nreps is set to a
large value) corresponding to a nominal 95% confidence interval. Table 3.1
shows the results of a few runs, all with nreps set to 100000. We see that
there is indeed an effect on the true confidence level.
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n p q conf. lvl.
100 5 0.0 0.94683
100 5 0.5 0.92359
100 5 1.0 0.90203
100 5 1.5 0.87889
100 5 2.0 0.86129

Table 3.1: Heteroscedasticity Effect Simulation

3.3.2 Weighted Least Squares

If one knows the function σ2(t) (at least up to a constant multiple), one
can perform a weighted least-squares (WLS) analysis. Here, instead of
minimizing (2.12), one minimizes

1

n

n∑
i=1

1

wi
(Yi − X̃i

′
b)2 (3.11)

(without the 1/n factor, of course), where

wi = σ2(Xi) (3.12)

Just as one can show that in the homoscedastic case, OLS gives the opti-
mal (minimum-variance unbiased) estimator, the same is true for WLS in
heteroscedastic settings, provided we know the function σ2(t).1

R’s lm() function has an optional weights argument for specifying the wi.
But needless to say, this situation is not common. To illustrate this point,
consider the classical inference procedure for a single mean, reviewed in
Section 2.6.1. If we don’t know the population mean ν, we are even less
likely to know the population variance η2. The same holds in the regression
context, concerning conditional means and conditional variances.

One option would be to estimate the function σ(t) using nonparametric re-
gression techniques.2 For instance, we can use our k-NN function knnest()

1Mathematically, one is essentially transforming the original heteroscedastic problem
to a homoscedastic one by replacing Y and X by Y/σ(X) and X/σ(X), respectively.

2First proposed in R. Rose, Nonparametric Estimation of Weights in Least-Squares
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of Section 1.7.4, with the default for regestpts and applyf = var. Let’s
run the analysis with and then without weights:

> w <− knnest ( mlb [ , c ( 4 , 6 , 5 ) ] , mlb [ , c ( 4 , 6 ) ] , 2 0 ,
s c a l e f i r s t=TRUE, app ly f=var )

> summary(lm( mlb$Weight ˜ mlb$Height+mlb$Age ,
weights=w) )

. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −188.8282 19.1967 −9.836 < 2e−16 ∗∗∗
mlb$Height 4 .9473 0 .2490 19 .872 < 2e−16 ∗∗∗
mlb$Age 0.8996 0 .1402 6 .415 2 .16 e−10 ∗∗∗
. . .
> summary(lm( mlb$Weight ˜ mlb$Height+mlb$Age ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −187.6382 17.9447 −10.46 < 2e−16 ∗∗∗
mlb$Height 4 .9236 0 .2344 21 .00 < 2e−16 ∗∗∗
mlb$Age 0.9115 0 .1257 7 .25 8 .25 e−13 ∗∗∗
. . .

The weighted analysis, the “true” one (albeit with the weights being only
approximate), did give slightly different results than those of OLS. The
standard error for the Age coefficient, for instance, was about 12% larger
with WLS. This may seem small (and is small), but a 12% difference will
have a large effect on the true confidence level. Consider this computation:

> 1 − 2∗pnorm(−0.88∗ 1 . 9 6 )
[ 1 ] 0 .9154365

In other words, a nominal 95% confidence interval only has confidence level
at about 91.5%. Or, a nominal p-value of 5% is actually 8.5%. Use of
the estimated weights makes a difference, with impacts on our statistical
inference.

On the other hand, we used a rather small value of k here, and there is no
clear way to choose it.

Regression Analysis, PhD dissertation, University of California, Davis, 1978, later stud-
ied extensively in various papers by Raymond Carroll.
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3.3.3 A Procedure for Valid Inference

In principle, the delta method (Appendix ??) could be used to not only show

that β̂ is asymptotically normal, but also find its asymptotic covariance
matrix without assuming homoscedasticity. We would then have available
standard errors for the β̂i and so on.

However, the matrix differentiation needed to use the delta method would
be far too complicated. Fortunately, though, there exists a rather sim-
ple procedure, originally developed by Eickert3 and later refined by White
and others,4 for finding valid asymptotic standard errors for β̂ in the het-
eroscedastic case. This section will present the methodology, and test it on
data.

3.3.4 The Methodology

Let’s first derive the correct expression for Cov(β̂|A) without the homoscedas-
ticity assumption. Using our properties of covariance, this is

Cov(β̂ | A) = (A′A)−1A′ diag(σ2(X1), ..., σ2(Xn) A(A′A)−1 (3.13)

where diag(a1, ..., ak) denotes the matrix with the ai on the diagonal and
0s elsewhere.

Rather unwieldy, but the real problem is that we don’t know the σ(Xn).
However, the situation is more hopeful than it looks. It can be proven (as
outlined in Section 2.10.7) that:

In the heteroscedastic case, the approximate covariance matrix
of β̂ given A is

(A′A)−1A′ diag(ε̂21, ..., ε̂
2
n) A(A′A)−1 (3.14)

3Friedhelm Eickert, 1967, “Limit Theorems for Regression with Unequal and Depen-
dent Errors,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, 1967, 5982.

4For example, Halbert White, (1980), “A Heteroskedasticity-Consistent Covariance
Matrix Estimator and a Direct Test for Heteroskedasticity,” Econometrica, 1980, 817838;
James MacKinnon and Halbert White, “Some Heteroskedastic-Consistent Covariance
Matrix Estimators with Improved Finite Sample Properties,” Journal of Econometrics,
1985, 305325.
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n p q conf. lvl.
100 5 0.0 0.95176
100 5 0.5 0.94928
100 5 1.0 0.94910
100 5 1.5 0.95001
100 5 2.0 0.95283

Table 3.2: Heteroscedasticity Correction Simulation

where

ε̂i = Yi − X̃ ′iβ̂ (3.15)

Again, the expression in (3.14) is rather unwieldy, but it is easy to program,
and most important, we’re in business! We can now conduct statistical
inference even in the heteroscedastic case.

Code implementing (3.14) is available in R’s car and sandwich packages,
as the functions hccm() and vcovHC(), respectively. (These functions
also offer various refinements of the method.) These functions are drop-in
replacements to the standard vcov().

3.3.5 Simulation Test

Let’s see if it works, at least in the small simulation experiment in Section
3.3.1. We use the same code as before, simply replacing the call to vcov()
by one to vcovHC(). The results, shown in Table 3.2, are excellent.

3.3.6 Example: Bike-Sharing Data

In Section 2.6.3, we found that the standard error for µ(75, 0, 1)−µ(62, 0, 1)
was about 47.16. Let’s get a more accurate standard error, that does not
assume homoscedasticity:

> sqrt ( t ( lamb ) %∗% vcovHC( lmout ) %∗% lamb )
[ , 1 ]

[ 1 , ] 44 .0471
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Not a very large difference in this case, but still of interest.

3.3.7 Variance-Stabilizing Transformations

Most classical treatments of regression analysis devote a substantial amount
of space to transformations of the data. For instance, one might replace
Y by lnY , and possibly apply the log to the predictors as well. There are
several reasons why this might be done:

(a) The distribution of Y given X may be skewed, and applying the log
may make it more symmetric, thus more normal-like.

(b) Log models may have some meaning relevant to the area of applica-
tion, such as elasticity models in economics.

(c) Applying the log may convert a heteroscedastic setting to one that is
close to homoscedastic.

One of the themes of this chapter has been that the normality assumption
is not of much practical importance, which would indicate that Reason (a)
above may not so useful. Reason (b) is domain-specific, and thus outside the
scope of this book. But Reason (c) relates directly our current discussion
on heteroscedasticity. Here is how transformations come into play.

Recall that the delta method (Appendix ??) says, roughly, that if the ran-
dom variable W is approximately normal with a small coefficient of varia-
tion (ratio of standard deviation to mean), and g is a smooth function, then
the new random variable g(W ) is also approximately normal, with mean
g(EW ) and variance

[g′(EW )]2V ar(W ) (3.16)

Let’s consider that in the context of (3.10). Assuming that the regression
function is always positive, (3.10) reduces to

σ(t) = µq(t) (3.17)

Now, suppose (3.17) holds with q = 1. Take g(t) = ln(t). Then since

d

dt
ln t =

1

t
(3.18)
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we see that (3.16) becomes

1

µ2(t)
· µ2(t) = 1 (3.19)

In other words V ar(lnY | X = t) is approximately 1, and we are back to
the homoscedastic case. Similarly, if q = 0.5, then setting g(t) =

√
t would

give us approximate homoscedasticity.

However, this method has real drawbacks: Distortion of the model, diffi-
culty interpreting the coefficients and so on.

Let’s look at a very simple model that illustrates the distortion issue. (It is
further explored in Section 2.10.8.) Suppose X takes on the values 1 and
2. Given X = 1, Y is either 2 or 1/2, with probability 1/2 each. If X = 2,
then Y is either 4 or 1/4, with probability 1/2 each. Let U = log2 Y .

Let µY and µU denote the regression functions of Y and U on X. An
advantage of this very simple model is that, since X takes on only two
values, both of these regression functions are linear.

Then

µU (1) = 0.5 · 1 + 0.5 · (−1) = 0 (3.20)

and similarly µU (2) = 0 as well.

So, look at what we have. There is no relation between U and X at all!
Yet the relation between Y and X is quite substantial. The transformation
has destroyed the latter relation.

Of course, this example is contrived, and one can construct examples with
the opposite effect. Nevertheless, it shows that a log transformation can
indeed bring about considerable distortion. This is to be expected in a
sense, since the log function flattens out as we move to the right. Indeed,
the U.S. Food and Drug Administration once recommended against using
transformations.5

5Quoted in The Log Transformation Is Special, Statistics in Medicine, Oliver Keene,
1995, 811-819. That author takes the opposite point of view.
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3.3.8 The Verdict

While the examples here do not constitute a research study (the reader is
encouraged to try the code in other settings, simulated and real), an overall
theme is suggested.

In principle, WLS provides more efficient estimates and correct statistical
inference. What are the implications?

If our goal is Prediction, then forming correct standard errors is typically
of secondary interest, if at all. And unless there is really strong variation in
the proper weights, having efficient estimates is not so important. In other
words, for Prediction, OLS may be fine.

The picture changes if the goal is Description, in which case correct stan-
dard errors may be important. For this, given that the method of Section
3.3.3, is now commonly available in statistical software packages (albeit not
featured), this is likely to be the best way to cope with heteroscedasticity.

3.4 Bibliographic Notes

For more on the Eickert-White approach to correct inference under het-
eroscedasticity, see (Zeileis, 2006).



Chapter 4

Nonlinear Models

Consider our bike-sharing data (e.g./ Section 1.12.2). Suppose we have
several years of data. On the assumption that ridership trends are seasonal,
and that there is no other time trend (e.g. no long-term growth in the
program), then there would be a periodic relation between ridership R and
G, the day in our data; here G would take the values 1, 2, 3, ..., with the
top value being, say, 3 × 365 = 1095 for three consecutive years of data.1

Assuming that we have no other predictors, we might try fitting the model
with a sine term:

mean R = β0 + β1 sin(2π ·G/365) (4.1)

Just as adding a quadratic term didn’t change the linearity of our model
in Section 1.11.1, the model (4.1) is linear too. In the notation of Section
2.3.2), as long as we can write our model as

mean D = A β (4.2)

then by definition the model is linear. In the bike data model above, A
would be

A =


1 sin(2π · 1/365)
1 sin(2π · 2/365)
...
1 sin(2π · 1095/365)

 (4.3)

1We’ll ignore the issue of leap years here, to keep things simple.

97
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But in this example, we have a known period, 365. In some other periodic
setting, the period might be unknown, and would need to be estimated
from our data. Our model might be, say,

mean Y = β0 + β1 sin(2π ·X/β2) (4.4)

where β2 is the unknown period. This does not correspond to (4.2). The
model is still parametric, but is nonlinear.

Nonlinear parametric modeling, then, is the topic of this chapter. We’ll de-
velop procedures for computing least squares estimates, and forming con-
fidence intervals and p-values, again without assuming homoscedasticity.
The bulk of the chapter will be devoted to the Generalized Linear Model
(GLM), which is a widely-used broad class of nonlinear regression mod-
els. Two important special cases of the GLM will be the logistic model
introduced briefly in Section 1.12.2, and Poisson regression.

4.1 Example: Enzyme Kinetics Model

Data for the famous Michaelis-Menten enzyme kinetics model is available
in the nlstools package on CRAN. For the data set vmkm, we predict
the reaction rate V from substrate concentration S. The model used was
suggested by theoretical considerations to be

E(V | S = t) =
β1t

β2 + t
(4.5)

In the second data set, vmkmki,2 an addiitonal predictor I, inhibitor
concentration, was added, with the model being

E(V | S = t, I = u) =
β1t

t+ β2 (1 + u/β3)
(4.6)

We’ll fit the model using R’s nls() function:

> l ibrary ( n l s t o o l s )
> data (vmkmki)
> r e g f t n <− function ( t , u , b1 , b2 , b3 )

b1 ∗ t / ( t + b2 ∗ (1 + u/b3 ) )

2There were 72 observation in this data, but the last 12 appear to be anomalous
(gradient 0 in all elements), and thus were excluded.
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All nonlinear least-squares algorithms are iterative: We make an initial
guess at the least-squares estimate, and from that, use the data to update
the guess. Then we update the update, and so on, iterating until the guesses
converge. In nls(), we specify the initial guess for the parameters, using the
start argument, an R list.3 Let’s set that up, and then run the analysis:

> b s t a r t <− l i s t ( b1=1,b2=1, b3=1)

The values 1 here were arbitrary, not informed guesses at all. Domain
expertise can be helpful.

> z <− n l s ( v ˜ r e g f t n (S , I , b1 , b2 , b3 ) , data=vmkmki ,
start=l i s t ( b1=1,b2=1, b3=1))

> z
Nonl inear r e g r e s s i o n model

model : v ˜ r e g f t n (S , I , b1 , b2 , b3 )
data : vmkmki
b1 b2 b3

18 .06 15 .21 22 .28
r e s i d u a l sum−of−squares : 177 .3

Number o f i t e r a t i o n s to convergence : 11
Achieved convergence t o l e r a n c e : 4 .951 e−06

So, β̂1 = 18.06 etc.

We can apply summary(), coef() and vcov() to the output of nls(),
just as we did earlier with lm(). For example, here is the approximate
covariance matrix of the coefficient vector:

> vcov ( z )
b1 b2 b3

b1 0.4786776 1.374961 0.8930431
b2 1.3749612 7.568837 11.1332821
b3 0.8930431 11.133282 29.1363366

This assumes homoscedasticity. Under that assumption, an approximate
95% confidence interval for β1 would be

18.06± 1.96
√

0.4786776 (4.7)

3This also gives the code a chance to learn the names of the parameters, needed for
computation of derivatives.
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One can use the approach in Section 3.3.3 to adapt nls() to the het-
eroscedastic case, and we will do so in Section 4.2.2.

4.2 Least-Squares Computation

A point made in Section 1.3 was that the regression function, i.e. the con-
ditional mean, is the optimal predictor function, minimizing mean squared
prediction error. This still holds in the nonlinear (and even nonparametric)
case. The problem is that in the nonlinear setting, the least-squares estima-
tor does not have a nice, closed-form solution like (2.23) for the linear case.
Let’s see how we can compute the solution through iterative approximation.

4.2.1 The Gauss-Newton Method

Denote the nonlinear model by

E(Y | X = t) = g(t, β) (4.8)

where both t and β are possibly vector-valued. In (4.5), for instance, t is a

scalar but β is a vector. The least-squares estimate β̂ is the value of b that
minimizes

n∑
i=1

[Yi − g(Xi, b)]
2 (4.9)

Many methods exist to minimize (4.9), most of which involve derivatives
with respect to b. (The reason for the plural derivatives is that there is a
partial derivative for each of the elements of b.)

The best intuitive explanation of derivative-based methods, which will also
prove useful in a somewhat different context later in this chapter, is to set
up a Taylor series approximation for g(Xi, b) (Appendix ??):

g(Xi, b) ≈ g(Xi,
̂̂
β) + h(Xi, β̂)′(b− β̂) (4.10)

where h(Xi, b) is the derivative vector of g(Xi, b) with respect to b, and the
prime symbol, as usual, means matrix transpose (not a derivative). The
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(4.13) (2.12)
Yi − g(Xi, bk−1) + h(Xi, bk−1)′bk−1 Yi

h(Xi, bk−1) X̃i

Table 4.1:

value of β̂, is of course yet unknown, but let’s put that matter aside for
now. Then (4.9) is approximately

n∑
i=1

[Yi − g(Xi, β̂) + h(Xi, β̂)′β̂ − h(Xi, β̂)′ b]2 (4.11)

At iteration k we take our previous iteration bk−1 to be an approximation

to β̂, and make that substitution in (4.11), yielding

n∑
i=1

[Yi − g(Xi, bk−1) + h(Xi, bk−1)′bk−1 − h(Xi, bk−1)′ b]2 (4.12)

Our bk is then the value that minimizes (4.12) over all possible values of
b. But why is that minimization any easier than minimizing (4.9)? To see
why, write (4.12) as

n∑
i=1

[Yi − g(Xi, bk−1) + h(Xi, bk−1)′bk−1︸ ︷︷ ︸−h(Xi, bk−1)′ b]2 (4.13)

This should look familiar. It has exactly the same form as (2.12), with the
correspondences shown in Table 4.1. In other words, what we have in (4.13)
is a linear regression problem!

In other words, we can find the minimizing b in (4.13) using lm(). There
is one small adjustment to be made, though. Recall that in (2.12), the

quantity X̃i includes a 1 term (Section 2.1), i.e. the first column of A in
(2.13) consists of all 1s. That is not the case in Table 4.1 (second row, first
column), which we need to indicate in our lm() call. We can do this via
specifying “-1” in the formula part of the call.
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Another issue is the computation of h(). Instead of burdening the user with
with this, it is typical to compute h() using numerical approximation, e.g.
using R’s numericDeriv() function or the numDeriv package.

4.2.2 Eickert-White Asymptotic Standard Errors

As noted, nls() assumes homoscedasticity, which generally is a poor as-
sumption (Section 2.4.2). It would be nice, then, to apply the Eickert-
White method (Section 3.3.3). Actually, it is remarkably easy to adapt
that method to the nonlinear computation above.

The key is to note the linear approximation (4.2.1). One way to look at this
is that it has already set things up for us to use the delta method, which
uses a linear approximation. Thus we can apply Eickert-White to the lm()
output, say using vcovHC(), as in Section 3.3.4.

Below is code along these lines. It requires the user to run nlsLM(), an
alternate version of nls() in the CRAN package minpack.lm.4

1 l ibrary ( minpack . lm)
2 l ibrary ( sandwich )
3
4 # uses output o f nlsLM () o f the minpack . lm package
5 # to g e t an asymptot ic covar iance matrix wi thou t
6 # assuming h o m o s c e d a s t i c i t y
7
8 # arguments :
9 #

10 # nls lmout : re turn v a l u e from nlsLM ( )
11 #
12 # v a l u e : approximate covar iance matrix f o r the
13 # est imated parameter v e c t o r
14
15 nlsvcovhc <− function ( nls lmout ) {
16 # n o t a t i o n : g ( t , b ) i s the r e g r e s s i o n model ,
17 # where x i s the v e c t o r o f v a r i a b l e s f o r a
18 # given o b s e r v a t i o n ; b i s the es t imated parameter
19 # v e c t o r ; x i s the matrix o f p r e d i c t o r v a l u e s
20 b <− coef ( nls lmout )
21 m <− nls lmout$m

4This version is needed here because it provides the intermediate quantities we need
from the computation. However, we will see in Section 4.2.4 that this version has other
important advantages as well.
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22 # y − g :
23 resid <− m$resid ( )
24 # row i o f hmat w i l l be d e r i v o f g ( x [ i , ] , b )
25 # with r e s p e c t to b
26 hmat <− m$grad i en t ( )
27 # c a l c u l a t e the a r t i f i c i a l ”x” and ”y” o f
28 # the a l gor i thm
29 fakex <− hmat
30 fakey <− resid + hmat %∗% b
31 # −1 means no cons tant term in the model
32 lmout <− lm( fakey ˜ fakex − 1)
33 vcovHC( lmout )
34 }

In addition to nice convergence behavior, the advantage for us here of nl-
sLM() over nls() is that the former gives us access to the quantities we
need in (4.13), especially the matrix of h() values. We then apply lm() one
more time, to get an object of type ”lm”, needed by vcovHC().

Applying this to the enzyme data, we have

> nlsvcovhc ( z )
fakex1 fakex2 fakex3

fakex1 0.4708209 1.706591 2.410712
fakex2 1.7065910 10.394496 20.314688
fakex3 2.4107117 20.314688 53.086958

This is rather startling. Except for the estimated variance of β̂1, the esti-
mated variances and covariances from Eickert-White are much larger than
what nls() found under the assumption of homoscedasticity.

Of course, with only 60 observations, both of the estimated covariance
matrices must be “taken with a grain of salt.” So, let’s compare the two
approaches by performing a simulation. Here

E(Y | X = t) =
1

t′β
(4.14)

where t = (t1, t2)′ and β = (β1, β2)′. We’ll take the components of X
to be independent and exponentially distributed with mean 1.0, with the
heteroscedasticity modeled as being such that the standard deviation of Y
given X is proportional to the regression function value at X. We’ll use as
a check the fact that a N(0,1) variable is less than 1.28 90% of the time,
Here is the simulation code:
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sim <− function (n , nreps ) {
b <− 1 :2
r e s <− r e p l i c a t e ( nreps ,{

x <− matrix (rexp (2∗n ) , ncol=2)
meany <− 1 / ( x %∗% b)
y <− meany + ( runif (n) − 0 . 5 ) ∗ meany
xy <− cbind (x , y )
xy <− data . frame (xy)
n lout <− n l s (X3 ˜ 1 / ( b1∗X1+b2∗X2) ,

data=xy , start=l i s t ( b1 = 1 , b2=1))
b <− coef ( n lout )
vc <− vcov ( n lout )
vchc <− nlsvcovhc ( n lout )
z1 <− (b [ 1 ] − 1) / sqrt ( vc [ 1 , 1 ] )
z2 <− (b [ 1 ] − 1) / sqrt ( vchc [ 1 , 1 ] )
c ( z1 , z2 )

})
print (mean( r e s [ 1 , ] < 1 . 2 8 ) )
print (mean( r e s [ 2 , ] < 1 . 2 8 ) )

}

And here is a run of the code:

> sim (250 ,2500)
[ 1 ] 0 .6188
[ 1 ] 0 .9096

That’s quite a difference! Eickert-White worked well, whereas assuming
homoscedasticity fared quite poorly. (Similar results were obtained even
for n = 100.)

4.2.3 Example: Bike Sharing Data

In our bike-sharing data (Section 1.12.2), there are two kinds of riders,
registered and casual. We may be interested in factors determining the
mix, i.e.

registered

registered + casual
(4.15)

Since the mix proportion is between 0 and 1, we might try the logistic
model, introduced in (4.18), in the context of classification, though the
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example here does not involve a classification problem, and use of glm()
would be inappropriate. Here are the results:

> shar <− read . csv ( ”day . csv ” , header=T)
> shar$temp2 <− shar$tempˆ2
> shar$summer <− as . integer ( shar$ season == 3)
> shar$propreg <− shar$ reg / ( shar$ reg+shar$cnt )
> names( shar ) [ 1 5 ] <− ” reg ”
> l ibrary ( minpack . lm)
> l o g i t <− function ( t1 , t2 , t3 , t4 , b0 , b1 , b2 , b3 , b4 )

1 / (1 + exp(−b0 − b1∗t1 −b2∗t2 −b3∗t3 −b4∗t4 ) )
> z <− nlsLM ( propreg ˜
l o g i t ( temp , temp2 , workingday , summer , b0 , b1 , b2 , b3 , b4 ) ,

data=shar , start=l i s t ( b0=1,b1=1,b2=1,b3=1,b4=1))
> summary( z )
. . .
Parameters :

Estimate Std . Error t value Pr(>| t | )
b0 −0.083417 0.020814 −4.008 6 .76 e−05 ∗∗∗
b1 −0.876605 0.093773 −9.348 < 2e−16 ∗∗∗
b2 0.563759 0.100890 5 .588 3 .25 e−08 ∗∗∗
b3 0.227011 0.006106 37 .180 < 2e−16 ∗∗∗
b4 0.012641 0.009892 1 .278 0 .202
. . .

As expected, on working days, the proportion of registered riders is higher,
as we are dealing with the commute crowd on those days. On the other
hand, the proportion doesn’t seem to be much different during the summer,
even though the vacationers would presumably add to the casual-rider ount.

But are those standard errors trustworthy? Let’s look at the Eickert-White
versions:

> sqrt ( diag ( n l svcovhc ( z ) ) )
fakex1 fakex2 fakex3 fakex4

0.021936045 0.090544374 0.092647403 0.007766202
fakex5

0.007798938

Again, we see some substantial differences.
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4.2.4 The “Elephant in the Room”: Convergence Is-
sues

So far we have sidestepped the fact that any iterative method runs the risk
of nonconvergence. Or it might converge to some point at which there is
only a local minimum, not the global one — worse than nonconvergence,
in the sense that the user might be unaware of the situation.

For this reason, it is best to try multiple, diverse sets of starting values.
In addition, there are refinements of the Gauss-Newton method that have
better convergence behavior, such as the Levenberg-Marquardt method.

Gauss-Newton sometimes has a tendency to “overshoot,” producing too
large an increment in b from one iteration to the next. Levenberg-Marquardt
generates smaller increments. Interestingly it is a forerunner of ridge re-
gression that we’ll discuss in Chapter 8. It is implemented in the CRAN
package minpack.lm, which we used earlier in this chapter.

4.2.5 Example: Eckerle4 NIST Data

The U.S. National Institute of Standards and Technology has available sev-
eral data sets that serve as test beds for nonlinear regression modeling. The
one we’ll use here is called Eckerle4.5 The data are from a NIST study in-
volving circular interference transmittance. Here we predict transmittance
from wavelength, with a model like a normal density:

mean transmittance =
β1
β2

exp [−0.5 (
wavelength− β3

β2
)2] (4.16)

NIST also provides sets of starting values. For this data set, the two sug-
gested starting vectors are (1,10,500) and (1.5,5,450), values that appar-
ently came from informal inspection of a plot of the data, seen in Figure
4.1. It is clear, for instance, that β̂3 is around 450. The standard deviation
of a normal curve is the distance from the center of the curve to either
inflection point, say about 10 here. Since since the maximum value of the
curve is about 0.4, we can then solve for an initial guess for β̂1.

It turns out that ordinary nls() works for the second set but not the first:

> eck <− read . table ( ” Ecker le4 . dat ” , header=T)
> frm <− y ˜ ( b1/b2 ) ∗ exp(−0.5∗ ( ( x−b3 )/b2 )ˆ2)

5See http://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA/Eckerle4.dat.

http://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA/Eckerle4.dat
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Figure 4.1: Eckerle4 Data

. . .
> b s t a r t
$b1
[ 1 ] 1
$b2
[ 1 ] 10
$b3
[ 1 ] 500
> n l s ( frm , data=eck , start=b s t a r t )
Error in n l s ( frm , data = eck , start = b s t a r t ) : s i n g u l a r g rad i ent
> b s t a r t <− l i s t ( b1 =1.5 , b2=5, b3=450)
> n l s ( frm , data=eck , start=b s t a r t )
Nonl inear r e g r e s s i o n model

model : y ˜ ( b1/b2 ) ∗ exp(−0.5 ∗ ( ( x − b3 )/b2 )ˆ2)
data : eck

b1 b2 b3
1 .554 4 .089 451.541

r e s i d u a l sum−of−squares : 0 .001464
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Number o f i t e r a t i o n s to convergence : 6
Achieved convergence t o l e r a n c e : 1 .395 e−06

But nlsLM() worked with both sets

4.2.6 The Verdict

Nonlinear regression models can be powerful, but may be tricky to get to
converge properly. Moreover, convergence might be achieved at a local,
rather than global minimum, in which case the statistical outcome may be
problematic. A thorough investigation of convergence (and fit) issues in
any application is a must.

Fortunately, for the special case of Generalized Linear Models, the main
focus of this chapter, convergence is rarely a problem. So, let’s start dis-
cussing GLM.

4.3 The Generalized Linear Model

Recall once again the logistic model, introduced in (4.18). We are dealing
with a classification problem, so the Y takes on the values 0 and 1. Let
X = (X(1), X(2), ..., X(p))′ denote the vector of our predictor variables.

4.3.1 Definition

Our model is

P (Y = 1 | X(1) = t1, ..., X
(p)) = tp) = `(β0 + β1t1 + ...+ βptp) (4.17)

where

`(s) =
1

1 + e−s
(4.18)

and t = (t1, ..., tp)
′.6

6Recall from Section 1.12.1 that te classification problem is a special case of regression.
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The key point is that even though the right-hand side of (4.17) is not linear
in t, it is a function of a linear expression in t, hence the term generalized
linear model (GLM).

So, GLM is actually a broad class of models. We can use many different
functions q() in place of `() in (4.18); for each such function, we have a
different GLM.

4.3.2 Example: Poisson Regression

For example, setting q() = exp() gives us a model known as Poisson regres-
sion, which assumes

E(Y = 1 | X(1) = t1, ..., X
(p)) = tp) = eβ0+β1t1+...+βptp (4.19)

In addition, GLM assumes a specified parametric class for the conditional
distribution of Y givenX, which we will denote FY |X . In Poisson regression,
this assumption is, not surprisingly, that the conditional distribution of Y
given X is Poisson. In the logistic case, the assumption is trivially that
the distribution is Bernoulli, i.e. binomial with number of trials equal to
1. Having such assumptions enables maximum likelihood estimation.

In particular, the core of GLM assumes that FY |X belongs to an exponential
family. This is formally defined as a parametric family whose probability
density/mass function has the form

exp[η(θ)T (x)−A(θ) +B(x)] (4.20)

where θ is the parameter vector and x is a value taken on by the random
variable. Though this may seem imposing, it sufficies to say that the above
formulation includes many familiar distribution families such as Bernoulli,
binomial, Poisson, exponential and normal. In the Poisson case, for in-
stance, setting η(θ) = log λ, T (x) = k, A(θ) = −λ and B(x) = − log(k!)
yields the expression

e−λλk

k!
(4.21)

the famous form of the Poisson probability mass function.

GLM terminology centers around the link function, which is the functional
inverse of our function q() agove. For Poisson regression, the link function
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is the inverse of exp() i.e. log(). For logit, set u = `(s) = (1 + exp(−s))−1,
and solve for s, giving us the link function,

link(u) =
u

1− u
(4.22)

4.3.3 GLM Computation

Though estimation in GLM uses maximum likelihood, it can be shown that
the actual computation can be done extending the ideas in Section 4.2, i.e.
via least-squares models. The only new aspect is the addition of a weight
function, which works as follows.

Let’s review Section 3.11, which discussed weighted least squares in the
case of a linear model. Using our usual notation µ(t) = E(Y | X = t) and
σ2(t) = V ar(Y | X = t), the optimal estatimor of β is the value of b that
minimizes

n∑
i=1

1

σ2(X̃i)
(Yi − X̃i

′
b)2 (4.23)

Now consider the case of Poisson regression. One of the famous properties
of the Poisson distribution family is that the variance equals the mean.
Thus (4.9) becomes

n∑
i=1

1

g(Xi, b)
[Yi − g(Xi, b)]

2 (4.24)

Then (4.13) bceoms

n∑
i=1

1

g(Xi, bk−1)
[Yi − g(Xi, bk−1) + h(Xi, bk−1)′bk−1︸ ︷︷ ︸−h(Xi, bk−1)′ b]2

(4.25)

and we again solve for the new iterate bk by calling lm(), this time making
use of the latter’s weights argument.

We iterate as before, but now the weights are updated at each iteration
too. For that reason, the process is known as iteratively reweighted least
squares.
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4.3.4 R’s glm() Function

Of course, the glm() function does all this for us. For ordinary usage, the
call is the same as for lm(), except for one extra argument, family. In the
Poisson regression case, for example, the call looks like

glm( y ˜ x , family = poisson )

The family argument actually has its own online help entry:

> ? family
family package : s t a t s
R Documentation

Family Objects for Models

Desc r ip t i on :
. . .

Usage :

family ( object , . . . )

binomial ( l ink = ” l o g i t ” )
gaussian ( l ink = ” i d e n t i t y ” )
Gamma( l ink = ” i n v e r s e ” )
inverse . gaussian ( l ink = ”1/muˆ2” )
poisson ( l ink = ” log ” )
quasi ( l ink = ” i d e n t i t y ” , var i ance = ” constant ” )
quas ib inomia l ( l ink = ” l o g i t ” )
qua s ipo i s s on ( l ink = ” log ” )

. . .

Ah, so the family argument is a function! There are built-in ones we can
use, such as the poisson one we used above, or a user could define her own
custom function.

Well, then, what are the arguments to such a function? A key argument
is link, which is obviously the link function q() discussed above, which we
found to be log() in the Poisson case.

For a logistic model, as noted earlier, FY |X is binomial with number of
trials m equal to 1. Recall that the variance of a binomial random variable
with m trials is mr(1−r), where r is the “success” probability on each trial,
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Recall too that the mean of a 0-1-valued random variable is the probability
of a 1. Putting all this together, we have

σ2(t) = µ(t)[1− µ(t)] (4.26)

Sure enough, this appears in the code of the built-in function binomial():

> binomial
function ( l ink = ” l o g i t ” )
{
. . .

va r i ance <− function (mu) mu ∗ (1 − mu)

Let’s now turn to details of two of the most widely-used models, the logistic
and Poisson.

4.4 GLM: the Logistic Model

The logistic regression model, introduced in Section 1.12.2, is by far the
most popular nonlinear regression method. Here we are predicting a re-
sponse variable Y that takes on the values 1 and 0, indicating which of two
classes our unit belongs to. As we saw in Section 1.12.1, this indeed is a
regression situation, as E(Y | X = t) reduces to P (Y = 1 | X = t).

The model, again, is

P (Y = 1 | X = (t1, ..., tp)) =
1

1 + e−(β0+β1t1+....+βptp)
(4.27)

4.4.1 Motivation

We noted in Section 1.12.2 that the logistic model is appealing for two
reasons: (a) It takes values in [0,1], as a model for probabilities should,
and (b) it is monotone in the predictor variables, as in the case of a linear
model.

But there’s even more. It turns out that the logistic model is related to
many familiar distribution families. We’ll show that in this section. In ad-
dition, the derivations here will deepen the reader’s insight into the various
conditional probabilities involved in the overall classification problem.



4.4. GLM: THE LOGISTIC MODEL 113

To illustrate that, consider a very simple example of text classification,
involving Twitter tweets. Suppose we wish to automatically classify tweets
into those involving financial issues and all others. We’ll do that by having
our code check whether a tweet contains words from a list of financial terms
we’ve set up for this purpose, say bank, rate and so on.

Here Y is 1 or 0, for the financial and nonfinancial classes, and X is the
number of occurrences of terms from the list. Suppose that from past
data we know that among financial tweets, the number of occurrences of
words from this list has a Poisson distribution with mean 1.8, while for
nonfinancial tweets the mean is 0.2. Mathematically, that says that FX|Y=1

is Poisson with mean 1.8, and FX|Y=0 is Poisson with mean 0.2. (Be sure
to distinguish the situation here, in which FX|Y is a Poisson distribution,
from Poisson regression (Section 4.3.2), in which it is assumed that FY |X
is Poisson.) Finally, suppose 5% of all tweets are financial.

Recall once again (Section 1.12.1) that in the classification case, our regres-
sion function takes the form

µ(t) = P (Y = 1 | X = t) (4.28)

Let’s calculate this function:

P (Y = 1 | X = t) =
P (Y = 1 and X = t)

PX = t)
(4.29)

=
P (Y = 1 and X = t)

P (Y = 1 and X = t or Y = 1 and X = t)

=
π P (X = t | Y = 1)

π P (X = t | Y = 1) + (1− π) P (X = t | Y = 0)

where π = P (Y = 1) is the population proportion of individuals in class 1.

The numerator in (4.29) is

0.05 · e
−1.8 1.8t

t!
(4.30)

and similarly the denominator is

0.05 · e
−1.8 1.8t

t!
+ 0.95 · e

−0.2 0.2t

t!
(4.31)



114 CHAPTER 4. NONLINEAR MODELS

Putting this into (4.29) and simplifying, we get

P (Y = 1 | X = t) =
1

1 + 19e1.6(
1
9 )

t
(4.32)

=
1

1 + exp(log 19− 0.2− t log 9)
(4.33)

That last expression is of the form

1

1 + exp[−(β0 + β1t)]
(4.34)

with

β0 = − log 19 + 0.2 (4.35)

and

β1 = log 9 (4.36)

In other words the setting in which FX|Y is Poisson implies the logistic
model!

This is true too if FX|Y is an exponential distribution. Since this is a
continuous distribution family rather than a discrete one, the quantities
P (X = t|Y = i) in (4.32) must be replaced by density values:

P (Y = 1 | X = t) =

π f1(X = t | Y = 1)

π f1(X = t | Y = 1) + (1− π) f0(X = t | Y = 0)
(4.37)

where the within-class densities of X are

fi(w) = λie
−λiw, i = 0, 1 (4.38)

After simplifying, we again obtain a logistic form.
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Most important, consider the multivariate normal case: Say for groups
i = 0, 1, FX|Y=i is a multivariate normal distribution with mean vector µi
and covariance matrix Σ, where the latter does not have a subscript i. This
is a generalization of the classical two-sample t-test setting, in which two
(scalar) populations are assumed to have possibly different means but the
same variance.7 Again using (4.37), and going through a lot of algebra, we
find that again P (Y = 1 | X = t) turns out to have a logistic form,

P (Y = 1 | X = t) =
1

1 + e−(β0+β
′
t)

(4.39)

with

β0 = log(1− π)− log π +
1

2
(µ′1µ1 − µ′0µ0) (4.40)

and

β = (µ0 − µ1)′Σ−1 (4.41)

where t is the vector of predictor variables, the β vector is broken down into
(β0, β), and π is P (Y = 1). The messy form of the coefficients here is not
important; instead, the point is that we find that the multivariate normal
model implies the logistic model, giving the latter even more justification.

In summary:

Not only is the logistic model intuitively appealing because it is
a monotonic function with values in (0,1), but also because it
is implied by various familiar parametric models for the within-
class distribution of X.

No wonder the logit model is so popular!

4.4.2 Example: Pima Diabetes Data

Another famous UCI data set is from a study of the Pima tribe of Native
Americans, involving factors associated with diabetes. There is data on 768

7It is also the setting for Fisher’s Linear Discriminant Analysis, to be discussed in
Section ??.
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women.8 Let’s preduct diabetes from the other variables:

> l o g i t o u t <− glm( Diab ˜ . , data=pima , family=binomial )
> summary( l o g i t o u t )
. . .
C o e f f i c i e n t s :

Estimate Std . Error z va lue
( I n t e r c e p t ) −8.4046964 0.7166359 −11.728
NPreg 0.1231823 0.0320776 3 .840
Gluc 0.0351637 0.0037087 9 .481
BP −0.0132955 0.0052336 −2.540
Thick 0.0006190 0.0068994 0 .090
I n s u l −0.0011917 0.0009012 −1.322
BMI 0.0897010 0.0150876 5 .945
Genet 0.9451797 0.2991475 3 .160
Age 0.0148690 0.0093348 1 .593

Pr(>| z | )
( I n t e r c e p t ) < 2e−16 ∗∗∗
NPreg 0.000123 ∗∗∗
Gluc < 2e−16 ∗∗∗
BP 0.011072 ∗
Thick 0.928515
I n s u l 0 .186065
BMI 2 .76 e−09 ∗∗∗
Genet 0 .001580 ∗∗
Age 0.111192
. . .

4.4.3 Interpretation of Coefficients

In nonlinear regression models, the parameters βi do not have the simple
marginal interpretation they enjoy in the linear case. Statements like we
made in Section 1.7.1.2, “We estimate that, on average, each extra year of
age corresponds to almost a pound in extra weight,” are not possible here.

However, in the nonlinear case, the regression function is still defined as the
conditional mean, or in the logit case, the conditional probability of a 1.
Practical interpretation is definitely still possible, if slightly less convenient.

Consider for example the estimated Glucose coefficient in our diabetes data

8The data set is at https://archive.ics.uci.edu/ml/datasets/Pima+Indians+

Diabetes. I have added a header record to the file.

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes


4.4. GLM: THE LOGISTIC MODEL 117

above, 0.035. Let’s apply that to the people similar to the first person in
the data set:

> pima [ 1 , ]
NPreg Gluc BP Thick I n s u l BMI Genet Age Diab

1 6 148 72 35 0 33 .6 0 .627 50 1

Ignore the fact that this woman has diabetes. Let’s consider the population
group of all women with the same characteristics as this one, i.e. all who
have had 6 pregnancies, a glucose level of 148 and so on, through an age of
50. The estimated proportion of women in this population group is

1

1 + e−(8.4047+0.1232·6+...+0.0149·50) (4.42)

We don’t have to plug these numbers in by hand, of course:

> l <− function ( t ) 1/(1+exp(−t ) )
> pima1 <− pima [1 ,−9] # e x c l u d e d iab . var .
> pima1 <− unlist ( pima [1 , −9 ] ) # had been a data frame
> l ( coef ( l o g i t o u t ) %∗% c (1 , pima1 ) )

[ , 1 ]
[ 1 , ] 0 .7217266

So, about 72% of women in this population group have diabetes. But
what about the population group of the same characteristics, but of age 40
instead of 50?

> w <− pima1
> w[ ’Age ’ ] <− 40
> l ( coef ( l o g i t o u t ) %∗% c (1 ,w) )

[ , 1 ]
[ 1 , ] 0 .6909047

Only about 69% of the younger women have diabetes.

So, there is an effect of age on developing diabetes, but only a mild one;
a 10-year increase in age only increased the chance of diabetes by about
3.1%. However, note carefully that this was for women having a given set
of the other factors, e.g. 6 pregnancies. Let’s look at a different population
group, those with 2 pregnancies and a glucose level of 120, comparing 40-
and 50-year-olds:

> u <− pima1
> u [ 1 ] <− 2
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> u [ 2 ] <− 100
> v <− u
> v [ 8 ] <− 40
> l ( coef ( l o g i t o u t ) %∗% c (1 , u ) )

[ , 1 ]
[ 1 , ] 0 .2266113
> l ( coef ( l o g i t o u t ) %∗% c (1 , v ) )

[ , 1 ]
[ 1 , ] 0 .2016143

So here, the 10-year age effect was somewhat less, about 2.5%. A more
careful analysis would involve calculating standard errors for these numbers,
but the chief point here is that the effect of a factor in nonlinear situations
depends on the values of the other factors.

P (Y = 0 | X(1) = t1, ..., X
(p)) = tp) = 1− `(β0 + β1t1 + ...+ βptp) (4.43)

Some analysts like to look at the log-odds ratio,

P (Y = 1 | X(1) = t1, ..., X
(p)) = tp)

P (Y = 0 | X(1) = t1, ..., X(p)) = tp)
(4.44)

in this case the ratio of the probability of having and not having the disease.
By Equation (4.17), this simplifies to

β0 + β1t1 + ...+ βptp (4.45)

— a linear function! Thus, in interpreting the coefficients output from a
logisitic analysis, it is convenient to look at the log-odds ratio, as it gives us
a single number for each factor. This may be sufficient for the application
at hand, but a more thorough analysis should consider the effects of the
factors on the probabilities themselves.

4.4.4 The predict() Function

IN the previous section, we evaluated the estimated regression function
(and thus predicted values as well) the straightforward but messy way, e.g.

> l ( coef ( l o g i t o u t ) %∗% c (1 , v ) )
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The easy way is to use R’s predict() function:

> predict ( ob j e c t=l o g i t o u t , newdata=pima [1 , −9 ] ,
type=’ response ’ )

1
0.7217266

Let’s see what just happened. First, predict() is what is called a generic
function in R. What this means is that it is not a single function, but rather
an umbrella leading into a broad family of functions, depending on the class
of the object on which it is invoked.

In our case here, we invoked it on logitout. What is the class of that
object?

> class ( l o g i t o u t )
[ 1 ] ”glm” ”lm”

So, it is an object of class ”glm” (and, we see, the latter is a subclass of
the class ”lm”).

In processing our call to predict(), the R interpreter found that our ob-
ject had class ”glm”, and thus looked for a function predict.glm(),
which the authors of glm() had written for us. So, in R terminology, the
interpreter dispatched, i.e. relayed, our priedct()call to predict.glm().
What did the latter then do?

The argument newdata is a data frame consisting of what its name implies
— new cases to predict. As you will recall, the way we predict a new case
in regression analysis is to take as our prediction the value of the regression
function for that casew. The net result is then that predict() is giving us
the value of the regression function at our requested points, in this case for
the population group of all women with the same traits as the first person
in our data.

So, predict() while doesn’t give us any new capabilities, it certainly makes
things more convenient. The reader should ponder, for instance, how to use
this function to simplify the code in Section 1.9.4.1.

4.4.5 Linear Boundary

In (4.27), which values of t = (t1, ..., tp)
′ will cause us to gues Y = 1 and

which will result in a guess of Y = 0? The boundary occurs when (4.27)
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has the value 0.5. In other words, the boundary consists of all t such that

β0 + β1t1 + ....+ βptp = 0 (4.46)

So, the boundary has linear form, a hyperplane in p-dimensional space. This
may seem somewhat abstract now, but it will have value later on.

4.5 GLM: the Poisson Model

Since in the above data the number of pregnancies is a count, we might
consider predicting it using Poission regression. (The reader may wonder
why we may be interested in such a “reverse” prediction. It could occur,
for instance, with multiple imputation methods to deal with missing data.)
Here’s how we can do this with glm():

> po i sout <− glm( NPreg ˜ . , data=pima , family=poisson )
> summary( po i sout )
. . .
C o e f f i c i e n t s :

Estimate Std . Error z va lue
( I n t e r c e p t ) 0 .2963661 0.1207149 2 .455
Gluc −0.0015080 0.0006704 −2.249
BP 0.0011986 0.0010512 1 .140
Thick 0.0000732 0.0013281 0 .055
I n s u l −0.0003745 0.0001894 −1.977
BMI −0.0002781 0.0027335 −0.102
Genet −0.1664164 0.0606364 −2.744
Age 0.0319994 0.0014650 21 .843
Diab 0.2931233 0.0429765 6 .821

Pr(>| z | )
( I n t e r c e p t ) 0 .01408 ∗
Gluc 0.02450 ∗
BP 0.25419
Thick 0.95604
I n s u l 0 .04801 ∗
BMI 0.91896
Genet 0 .00606 ∗∗
Age < 2e−16 ∗∗∗
Diab 9 .07 e−12 ∗∗∗
. . .
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On the other hand, even if we believe that our count data follow a Poisson
distribution, there is no law dictating that we use Poisson regression, i.e.
the model (4.3.2). The main motivation for using exp() in that model is to
ensure that our regression function is nonnegative, conforming to the non-
negative nature of Poisson random variables. This is not unreasonable, but
as noted in a somewhat different context in Section 3.3.7, transformations
like this can produce distortions. Let’s try an alternative:

> quas iout <− glm( NPreg ˜ . , data=pima ,
family=quasi ( var i ance=”muˆ2” ) , start=rep ( 1 , 9 ) )

This “quasi” family is a catch-all option, specifying a linear model but here
allowing us to specify a Poisson variance function.

Well, then, which model performed better? As a rough, quick look, ignoring
issues of overfitting and the like, let’s consider R2. This quantity is not
calculated by glm(), but recall from Section 2.7.2 that R2 is the squared
correlation between the predicted and actual Y values. This quantity makes
sense for any regression situation, so let’s calculate it here:

> cor ( po i sout$f itted . va lues , po i sout$y )ˆ2
[ 1 ] 0 .2314203
> cor ( quas iout$f itted . va lues , quas iout$y )ˆ2
[ 1 ] 0 .3008466

The “unorthodox” model performed better. We cannot generalize from
this, but it does show again that one must use transformations carefully.
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Chapter 5

Multiclass Classification
Problems

In classification problems we’ve discussed so far, we have assumed just two
classes. The patient either has the disease in question, or not; the customer
chooses to buy a certain item, or not; and so on.

But in many applications, we have multiple classes. We may, for instance,
be considering several different diseases that a patient might have.1 In
computer vision applications, the number of classes can be quite large, say
face recognition with data on a large number of people. Let m denote the
number of classes, and label them 0, 1, ..., m - 1.

Say for instance we wish to do machine recognition of handwritten digits,
so we have 10 classes, with our variables being various patterns in the
pixels, e.g. the number of (approximately) straight line segments. Instead
of having a single response variable Y as before, we would now have 10
of them, setting Y (i) to be 1 or 0, according to whether the given digit is
i, for i = 0, 1, ..., 9. We could run 10 logistic regression models, and then
use each one to estimate the probability that our new image represents a
certain digit.

In general, as above, let Y (i), i = 0, ...,m− 1 be the indicator variables for

1For a classification problem, the classes must be mutually exclusive. In this case,
there would be the assumption that the patient does not have more than one of the
diseases.

123
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the classes, and define the class probabilities

πi = P (Y (i) = 1), i = 0, 1...,m− 1 (5.1)

Of course, we must have

m−1∑
i=0

πi = 1 (5.2)

We will still refer to Y , now meaning the value of i for which Y (i) = 1.

Note that in this chapter, we will be concerned primarily with the Predic-
tion goal, rather than Description.

5.1 The Key Equations

Equations (4.29) and (4.37), and their generalizations, will play a key role
here. Let’s relate our new multiclass notation to what we had in the two-
class case before. If m = 2, then:

• What we called Y (1) above was just called Y in our previous discussion
of the two-class case.

• The class probability π1 here was called simply π previously.

Now, let’s review from the earlier material. (Keep in mind that typically
X will be vector-valued, as we typically have more than one predictor vari-
able.) For m = 2:

• The quantity of interest is P (Y = 1 | X = t).

• If X has a discrete distribution, then

µ(t) = P (Y = 1 |X = t) =
π P (X = t | Y = 1)

π P (X = t | Y = 1) + (1− π) P (X = t | Y = 0)
(5.3)



5.2. HOW DO WE USE MODELS FOR PREDICTION? 125

• If X has a continuous distribution,

µ(t) = P (Y = 1 | X = t) =
π f1(t)

π f1(t) + (1− π) f0(t)
(5.4)

where the within-class densities of X are f1 and f0.2

• Sometimes it is more useful to use the following equivalence to (5.4):

P (Y = 1 | X = t) =
1

1 + 1−π
π

f0(t)
f1(t)

(5.5)

Note that, in keeping with the notion that classification amounts to a re-
gression problem (Section 1.12.1), we have used our regression function
notation µ(t) above.

Things generalize easily to the multiclass case. We are now interested in
the quantities

P (Y = i) = µi(t) = P (Y (i) = 1 | X = t), i = 0, 1, ...,m− 1 (5.6)

For continuous X, (5.4) becomes

P (Y = i) = µi(t) = P (Y (i) = 1 | X = t) =
πi fi(t)∑m−1

j=0 πj fj(t)
(5.7)

5.2 How Do We Use Models for Prediction?

In Section 1.8, we discussed the specifics of predicting new cases, in which
we know “X” but not “Y,” after fitting a model to data in which both “X”
and “Y” are known (our training data). The parametric and nonparametric
cases were slightly different.

2 Another term for the classification probabilities πi is prior probabilities. Readers
familar with the controversy over Bayesian versus frequentist approaches to statistics may
wonder if we are dealing with Bayesian analyses here. Actually, that is not the case;
we are not working with subjective, “gut feeling” probabilities as in the controversial
Bayesian methods. There is some connection, in the sense that (5.3) and (5.4) make use
of Bayes’ Rule, but the latter is standard for all statisticians, frequentist and Bayesian
alike. Note by the way that quantities nrobabilities like (5.4) are often termed posterior
probabilities, again sounding Bayesian but again actually Bayesian/frequentist-neutral.
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The situation is the same here in the multiclass setting. The only difference
is that now multiple functions µi(t), i = 0, 1, ...,m− 1 need to be estimated
from our training data, as opposed to just µ(t) before.

It should be noted, though, that some nonparametric methods do not ex-
plicitly estimate µi(t), and instead only estimate “boundaries” involving
those functions. These methods will be discussed in Chapter 11.

5.3 Misclassification Costs

One context to consider is the informal. Say we are trying to determine
whether a patient has a particular disease, based on a vector X of various
test results, demographic variables and so on for this patient. Denote the
value of X by tc, and suppose our estimate of P (Y (1) = 1 | X = tc) is 0.02.
We estimate that this patient has only a 2% chance of having the disease.
This isn’t very high, so we might simply stop there.

On the other hand, a physician may have a hunch, based on information
not in X and thus not in our sample data, that leads her to suspect that
the patient does have the disease. The physician may thus order further
tests and so on, in spite of the low estimated probability.

Moreover, in the case of a catastrophic disease, the misclassification costs
may not be equal; failing to detect the disease when it’s present may be a
much more serious error than ordering further medical tests that turn out
to be negative.

So, in the context in which we’re doing classification based on “gut feeling,”
our estimated P (Y (i) = 1 | X = tc) can be used as just one of several
components that enter our final decision.

In many applications today, though, our classification process will be auto-
mated, done entirely by machine. Consider the example in Section 4.4.1 of
classifying subject matter of Twitter tweets, say into financial tweets and
all others, a two-class setting. Here again there may be unequal misclassi-
fication costs, depending on our goals. If so, the prescription

guess for Y =

{
1, if µ(tc) > 0.5

0, if µ(tc) ≤ 0.5
(5.8)

from Section 1.13.2 is not what we want, as it implicitly assumed equal
costs.
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If we wish to automate, we’ll probably need to set up a formal cost structure.
Let `0 denote our cost for guessing Y to be 1 when it’s actually 0, and define
`1 for the opposite kind of error. Now reason as follows as to what we should
guess for Y , knowing that X = tc. For convenience, write

p = P (Y = 1 | X = tc) (5.9)

Suppose we guess Y to be 1. Then our expected cost is

(1− p)`0 (5.10)

If on the other hand we guess Y to be 0, our expected cost is

p`1 (5.11)

So, our strategy could be to choose our guess to be the one that gives us
the smaller of (5.10) and (5.11):

guess for Y =

{
1, if (1− p)`0 ≤ p`1
0, if (1− p)`0 > p`1

(5.12)

In other words, given X, we guess Y to be 1 if

µ(X) ≥ `0
`0 + `1

(5.13)

This all seems pretty abstract, but it is actually simple. If we consider
wrongly guessing Y to be 1 as 10 times worse than wrongly guessing Y to
be 0, then the right-hand side of (5.13) is 1/11, or about 0.09. So, if we
estimate the conditional probability of Y being 1 is more than 9%, we go
ahead and guess 1.

From this point onward, we will assume equal costs.

5.4 One vs. All or All vs. All?

Let’s consider the Vertebral Column data from the UC Irvine Machine
Learning Repository. Here there are m = 3 classes: Normal, Disk Hernia
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and Spondylolisthesis. The predictors are, as described on the UCI site,
“six biomechanical attributes derived from the shape and orientation of the
pelvis.” Consider two approaches we might take to predicting the status of
the vertebral column, based on logistic regression:

• One vs. All (OVA): Here we would fit 3 logit models to our training
data, predicting each of the 3 classes, one at a time. The ith model
would regress Y (i) against the 6 predictor variables, yielding µ̂i(t), i =
0, 1, 2. To predict Y for X = tc, we would guess Y to be whatever
i has the largest value of µ̂i(tc), i.e. the most likely class, given the
predictor values.

• All vs. All (AVA): Here we would fit 3 logit models again, but with
one model for each possible pair of clases. Our first model would
pit class 0 against class 1, meaning that we would restrict our data
to only those cases in which the class is 0 or 1, then predict class
0 in that restricted data set. Our second logit model would restrict
to the classes 0 and 2, and predict 0, while the last model would be
for classes 1 and 2, predicting 1. (We would still use our 6 predictor
variables in each model.)

Note that it was just coincidence that we have the same number of models in
the OVA and AVA approaches here (3 each). In general, with m classes, we
will run m logistic models (or kNN or whatever type of regression modeling
we like) under OVA, but C(m, 2) = m(m− 1)/2 models under AVA.3

5.4.1 R Code

To make this concrete, here is code for the two approaches:

1 # One−vs .−A l l (OVA) and Al l−vs . A l l (AVA) ,
2 # l o g i t models
3
4 # arguments :
5
6 # m: number o f c l a s s e s
7 # trnxy : X, Y t r a i n i n g s e t ; Y in l a s t column ;
8 # Y coded 0 , 1 , . . . ,m−1 f o r the m c l a s s e s
9 # predx : X v a l u e s from which to p r e d i c t Y v a l u e s

10 # t s t x y : X, Y t e s t se t , same format

3Here the notation C(r, s) means the number of combinations one can form from r
objects, taking them s at a time.
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11
12 #####################################################
13 # o v a l o g t r n : genera te es t imated r e g r e s s i o n f u n c t i o n s
14 #####################################################
15
16 # arguments :
17
18 # m: as above
19 # trnxy : as above
20
21 # v a l u e :
22
23 # matrix o f the b e t a h a t v ec tor s , one per column
24
25 ova logt rn <− function (m, trnxy ) {
26 p <− ncol ( trnxy )
27 x <− as . matrix ( trnxy [ , 1 : ( p−1) ])
28 y <− trnxy [ , p ]
29 outmat <− NULL
30 for ( i in 0 : (m−1)) {
31 ym <− as . integer ( y == i )
32 betahat <− coef (glm(ym ˜ x , family=binomial ) )
33 outmat <− cbind ( outmat , betahat )
34 }
35 outmat
36 }
37
38 #####################################################
39 # ova logpred : p r e d i c t Ys from new Xs
40 #####################################################
41
42 # arguments :
43 #
44 # coefmat : c o e f . matrix , output from o v a l o g t r n ( )
45 # predx : as above
46 #
47 # v a l u e :
48 #
49 # v e c t o r o f p r e d i c t e d Y va lues , in { 0 , 1 , . . . ,m−1} ,
50 # one element f o r each row of predx
51
52 ovalogpred <− function ( coefmat , predx ) {
53 # g e t e s t reg f t n v a l u e s f o r each row of predx
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54 # and each c o l o f coefmat ; v a l s from
55 # coefmat [ , ] in tmp [ , i ]
56 tmp <− as . matrix (cbind (1 , predx ) ) %∗% coefmat
57 tmp <− l o g i t (tmp)
58 apply (tmp , 1 , which .max) − 1
59 }
60
61 #####################################################
62 # a v a l o g t r n : genera te es t imated r e g r e s s i o n f u n c t i o n s
63 #####################################################
64
65 # arguments :
66
67 # m: as above
68 # trnxy : as above
69
70 # v a l u e :
71
72 # matrix o f the b e t a h a t v ec tor s , one per column ,
73 # in the order o f combin ( )
74
75 ava logt rn <− function (m, trnxy ) {
76 p <− ncol ( trnxy )
77 n <− nrow( trnxy )
78 x <− as . matrix ( trnxy [ , 1 : ( p−1) ])
79 y <− trnxy [ , p ]
80 outmat <− NULL
81 i j s <− combn(m, 2 )
82 doreg <− function ( i j ) {
83 i <− i j [ 1 ] − 1
84 j <− i j [ 2 ] − 1
85 tmp <− rep(−1 ,n)
86 tmp [ y == i ] <− 1
87 tmp [ y == j ] <− 0
88 y i j <− tmp [ tmp != −1]
89 x i j <− x [ tmp != −1 ,]
90 coef (glm( y i j ˜ x i j , family=binomial ) )
91 }
92 coefmat <− NULL
93 for ( k in 1 : ncol ( i j s ) ) {
94 coefmat <− cbind ( coefmat , doreg ( i j s [ , k ] ) )
95 }
96 coefmat
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97 }
98
99 #####################################################

100 # ava logpred : p r e d i c t Ys from new Xs
101 #####################################################
102
103 # arguments :
104 #
105 # m: as above
106 # coefmat : c o e f . matrix , output from a v a l o g t r n ( )
107 # predx : as above
108 #
109 # v a l u e :
110 #
111 # v e c t o r o f p r e d i c t e d Y va lues , in { 0 , 1 , . . . ,m−1} ,
112 # one element f o r each row of predx
113
114 avalogpred <− function (m, coefmat , predx ) {
115 i j s <− combn(m, 2 ) # as in a v a l o g t r n ()
116 n <− nrow( predx )
117 ypred <− vector ( length = n)
118 for ( r in 1 : n) {
119 # p r e d i c t the r t h new o b s e r v a t i o n
120 xrow <− c (1 , unlist ( predx [ r , ] ) )
121 # wins [ i ] t e l l s how many t imes c l a s s i−1 has won
122 wins <− rep (0 ,m)
123 for ( k in 1 : ncol ( i j s ) ) {
124 i <− i j s [ 1 , k ] # c l a s s i−1
125 j <− i j s [ 2 , k ] # c l a s s j−1
126 bhat <− coefmat [ , k ]
127 mhat <− l o g i t ( bhat %∗% xrow )
128 i f (mhat >= 0 . 5 ) wins [ i ] <− wins [ i ] + 1 else
129 wins [ j ] <− wins [ j ] + 1
130 }
131 ypred [ r ] <− which .max( wins ) − 1
132 }
133 ypred
134 }
135
136 l o g i t <− function ( t ) 1 / (1+exp(−t ) )

For instance, under OVA, we call ovalogtrn() on our training data, yielding
a logit coefficient matrix having m columns; the ith column will consist of
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the estimated coefficients from fitting a logit model predicting Y (i). We
then use this matrix as input for predicting Y in all future cases that come
our way, by calling ovalogpred() whenever we need to do a prediction.

Under AVA, we do the same thing, calling avalogtrn() and avalogpred().

5.4.2 Which Is Better?

Clearly, AVA involves a lot of computation. For fixed number of predictor
variables p, here is a rough time estimate. For a logit model, the computa-
tion will be proportional to the number of cases n (due to computing various
sums over all cases). Say our training data is approximately balanced in
terms of sizes of the classes, so that the data corresponding to class i has
about n/m cases in it, Then the computation for one pair will be O(n/m),
but there will be O(m2) pairs, so the total amount of computation will be
O(mn) — potentially much larger than the O(n) used by OVA.

Well, then, do we benefit from that extra computation? At least at first
glance, AVA would not seem to have much to offer. For instance, since
each of its models uses much less than our full data, the resulting estimated
coefficients will likely be less accurate than what we calculate under OVA.
And if m is large, we will have so many pairs that at least some will likely
be especially inaccurate. And yet some researchers claim they find AVA to
work better.

To better understand the situation, let’s consider an example and draw
upon some intuition.

5.4.3 Example: Vertebrae Data

Here we continue with the vertebrae data, applying the OVA and AVA
methods to a training set of 225 randomly chosen records, then predicting
the remaining records:4

> ver t <− read . table ( ’ Vertebrae/column 3C. dat ’ ,
header=FALSE)

> ver t$V7 <− as . numeric ( ve r t$V7) − 1
> t r n id x s <− sample ( 1 : 310 , 225 )
> pred idxs <− setd i f f ( 1 : 3 1 0 , t r n i dx s )

4To avoid clutter, some messages, “glm.fit: fitted probabilities numerically 0 or 1
occurred,” have been removed, here and below. The warnings should not present a
problem.
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> ovout <− ova logt rn (3 , ve r t [ t rn idxs , ] )
> predy <− ovalogpred ( ovout , ve r t [ predidxs , 1 : 6 ] )
> mean( predy == ver t [ predidxs , 7 ] )
[ 1 ] 0 .8823529
> avout <− ava logt rn (3 , ve r t [ t rn idxs , ] )
> predy <− avalogpred (3 , avout , ve r t [ predidxs , 1 : 6 ] )
> mean( predy == ver t [ predidxs , 7 ] )
[ 1 ] 0 .8588235

Note that ovalogpred() requires that Y be coded 0, 1, ...,m−1, hence the
call to as.numeric().

The two correct-classification rates here are, of course, subject to sampling
error, but in any case AVA did not seem superior.

5.4.4 Intuition

To put this in context, consider the artificial example in Figure 5.1, adapted
from Friedman (1996). Here we have m = 3 classes, with p = 2 predictors.
For each class, the bulk of the probability mass is assumed to lie within one
of the circles.

Now suppose a logistic model were used here. It implies that the prediction
boundary between our two classes is linear. The figure shows that a logit
model would fare well under AVA, because for any pair of classes, there is a
straight line (pictured) that separates that pair of classes well. But under
OVA, we’d have a problem; though a straight line separates the top circle
from the bottom two, there is no straight line that separates the bottom-
left circle well from the other two; the boundary between that bottom-left
circle and the other two would be a curve.

The real problem here, of course is that the logit is not a good model in
such a situation.

5.4.5 Example: Letter Recognition Data

Following up on the notion that AVA may work to reduce model bias, i.e.
that AVA’s value occurs in settings in which our model is not very good,
let’s look at an example in which we know the model is imperfect.

The UCI Letters Recognition data set 5 uses various summaries of pixel

5https://archive.ics.uci.edu/ml/datasets/Letter+Recognition; a lso available

https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
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Figure 5.1: Three Artificial Regression Lines
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patterns to classify images of capital English letters. A naively applied
logistic model may sacrifice some accuracy here, due to the fact that the
predictors do not necessarily have monotonic relations with the response
variable, the class identity.

The naive approach actually doesn’t do too poorly:

> l ibrary ( mlbench )
> data ( Le t t e rRecogn i t i on )
> l r <− Let te rRecogn i t i on
> l r [ , 1 ] <− as . numeric ( l r [ , 1 ] ) − 1
> # t r a i n i n g and t e s t s e t s
> l r t r n <− l r [ 1 : 1 4 0 0 0 , ]
> l r t e s t <− l r [ 1 4 0 0 1 : 2 0 0 0 0 , ]
> o logout <− ova logt rn (26 , l r t r n [ , c ( 2 : 1 7 , 1 ) ] )
> ypred <− ovalogpred ( ologout , l r t e s t [ , −1 ] )
> mean( ypred == l r t e s t [ , 1 ] )
[ 1 ] 0 .7193333

We will see shortly that one can do considerably better. But for now, we
have a live candidate for a “poor model example,” on which we can try
AVA:

> a logout <− ava logt rn (26 , l r t r n [ , c ( 2 : 1 7 , 1 ) ] )
> ypred <− avalogpred (26 , a logout , l r t e s t [ , −1 ] )
> mean( ypred == l r t e s t [ , 1 ] )
[ 1 ] 0 .8355

That is quite a difference! So, apparently AVA fixed a poor model. Of
course, its better to make a good model in the first place. Based on our
previous observation that the boundaries may be better approximated by
curves than lines, let’s try a quadratic model.

A full quad model with have all squares and interactions among the 16
predictors. But there are 16 · 17/2 = 136 of them! That risks overfitting,
so let’s settle for just adding the squares of the predictors:

> for ( i in 2 : 1 7 ) l r <− cbind ( l r , l r [ , i ] ˆ 2 )
> l r t r n <− l r [ 1 : 1 4 0 0 0 , ]
> l r t e s t <− l r [ 1 4 0 0 1 : 2 0 0 0 0 , ]
> o logout <− ova logt rn (26 , l r t r n [ , c ( 2 : 3 3 , 1 ) ] )
> ypred <− ovalogpred ( ologout , l r t e s t [ , −1 ] )
> mean( ypred == l r t e s t [ , 1 ] )
[ 1 ] 0 .8086667

in the R package mlbench.
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Ah, much better. Not quite as good as AVA, but rather commensurate
with sampling error, and we didn’t even try interaction terms.

5.4.6 The Verdict

With proper choice of model, it is my experience that OVA does as well as
AVA, if not better. And in paper supporting OVA, Rifkin (2004) contends
that some of the pro-AVA experiments were not done properly.

Clearly, though, our letters recognition example shows that AVA is worth
considering. We will return to this issue later.

5.5 The Classical Approach: Fisher Linear
Discriminant Analysis

Sir Ronald Fisher (1890-1962) was one of the pioneers of statistics. He
called his solution to the multiclass problem linear discriminant analysis
(LDA), now considered a classic.

It is assumed that within class i, the vector of predictor variables X has a
multivariate normal distribution with mean vector µi and covariance matrix
Σ. Note that the latter does not have a subscript i, i.e. the covariance matrix
for X is the same in each class.

5.5.1 Background

To explain this method, let’s review some material from Section 4.4.1.

Let’s first temporarily go back to the two-class case, and use our past
notation:

Y = Y (1), π = π1 (5.14)

For convenience, let’s reproduce (5.4) here:

P (Y = 1 | X = t) =
π f1(t)

π f1(t) + (1− π) f0(t)
(5.15)
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5.5.2 Derivation

As noted in Section 4.4.1, after substituting the multivariate normal density
for the fi in (5.15), we find that

P (Y = 1 | X = t) =
1

1 + e−(β0+β
′
t)

(5.16)

with

β0 = log(1− π)− log π +
1

2
(µ′1µ1 − µ′0µ0) (5.17)

and

β = (µ0 − µ1)′Σ−1 (5.18)

Intuitively, if we observe X = t, we should predict Y to be 1 if

P (Y = 1 | X = t) > 0.5 (5.19)

and this was shown in Section 1.12.1 to be the optimal strategy.6 Combining
this with (5.16), we predict Y to be 1 if

1

1 + e−(β0+β
′
t)
> 0.5 (5.20)

which simplifies to

β
′
t < −β0 (5.21)

So it turns out that our decision rule is linear in t, hence the term linear in
linear discriminant analysis.7

Without the assumption of equal covariance matrices, (5.21) turns out to
be quadratic in t, and is called quadratic discriminant analysis.

6Again assuming equal costs of the two types of misclassification.
7The word discriminant alludes to our trying to distinguish between Y = 1 and

Y = 0.
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5.5.3 Example: Vertebrae Data

Let’s apply this to the vertebrae data, using the lda() function in the
MASS library that is built-in to R. This function assumes that the class
variable is a factor, so we won’t convert to numeric codes this time.

5.5.3.1 LDA Code and Results

Here is the code:

> ldaout <− lda (V7 ˜ . , data=vert ,CV=TRUE)
> mean( ldaout$class == ver t$V7)
[ 1 ] 0 .8096774

That CV argument tells lda() to predict the classes after fitting the model,
using (5.4) and the multivariate normal means and covariance matrix that
it estimated from the data. Here we find a correct-classification rate of
about 81%. This is biased upward, since we didn’t bother here to set up
separate training and test sets, but even then we did not do as well as our
earlier logit analysis. Note that in the latter, we didn’t assume a common
covariance matrix within each class, and that may have made the difference.

5.5.3.2 Comparison to kNN

By the way, that 81% figure is worth comparing to to that obtained using
the k-Nearest Neighbor method. Here is the regtools code:

1 ovaknntrn <− function (y , xdata ,m, k ) {
2 i f (m < 3) stop ( ’m must be at l e a s t 3 ; use knnest ( )3 ’ )
3 x <− xdata$x
4 outmat <− NULL
5 for ( i in 0 : (m−2)) {
6 y i <− as . integer ( y == i )
7 knnout <− knnest ( yi , xdata , k )
8 outmat <− cbind ( outmat , knnout$ r e g e s t )
9 }

10 outmat <− cbind ( outmat ,1−apply ( outmat , 1 ,sum) )
11 xdata$ r e g e s t <− outmat
12 xdata
13 }
14
15 ovaknnpred <− function ( xdata , predpts ) {
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16 x <− xdata$x
17 i f ( i s . vector ( predpts ) )
18 predpts <− matrix ( predpts ,nrow=1)
19 # need to s c a l e p r e d p t s wi th the same v a l u e s t h a t had been used in
20 # the t r a i n i n g s e t
21 c t r <− xdata$ s c a l i n g [ , 1 ]
22 s c l <− xdata$ s c a l i n g [ , 2 ]
23 predpts <− scale ( predpts , c en t e r=ctr , scale=s c l )
24 tmp <− get . knnx (x , predpts , 1 )
25 idx <− tmp$nn . index
26 r e g e s t <− xdata$ r e g e s t [ idx , ]
27 apply ( r ege s t , 1 , which .max) − 1
28 }

Recall that xdata is the output of preprocessx(), which determines the
nearest neighbors and so on. We call the basic kNN function knnest() for
each class, i.e. Y = i, i = 0, 1, ...,m − 2 (the probabilities for class m − 1
are obtained by subtraction from 1). These results are tacked onto xdata,
and then input to ovaknnpred() whenever we need to do a prediction.

And here is the run:

> xdata <− preproce s sx ( ve r t [ , −7 ] ,50)
> ovout <− ovaknntrn ( ve r t [ , 7 ] , xdata , 3 , 5 0 )
> predy <− ovaknnpred ( ovout , ve r t [ , −7 ] )
> # p ropo r t i on c o r r e c t l y c l a s s i f i e d
> mean( predy == ver t$V7)
[ 1 ] 0 . 8

Again, this was without the benefit of cross-validation, but about the same
as for LDA.

5.5.4 Multinomial Logistic Model

Within the logit realm, one might also consider multinomial logistic re-
gression. Here one makes the assumption that the m sets of coefficients
βi, i > 0 are the same across all classes, with only β0 varying from class to
class. Recall from Section 4.4.5 that the logistic model implies that inter-
class boundaries are linear, i.e. hyperplanes; the multinomial logit model
assumes these are parallel, as they are in the LDA case. This is a very
stringent assumption, so this model may perform poorly.
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5.5.5 The Verdict

If LDA’s assumptions hold, especially the one positing the same covariance
matrix for “X” within each class, it can be a powerful tool. However, that
assumption rarely holds in practice.

As noted, the LDA setting for two classes implies that of the logistic model.
Thus the latter (and not in multinomial form) is more general and “safer”
than LDA. Accordingly, LDA is less widely used than in the past, but it
gives us valuable perspective on the multiclass problem.

5.6 Classification Via Density Estimation

Since classification amounts to a regression problem, we could use non-
parametric regression methods such as k-Nearest Neighbor if we desire a
nonparametric approach, as above. However, Equations (5.4) and (5.7) sug-
gest that one approach to the classification problem would be to estimate
the within-class densities fi. Actually, this approach is not commonly used,
as it is difficult to get good estimates, especially if the number of predictors
is large. However, we will examine it in this section anyway, as it will yield
some useful insights.

5.6.1 Methods for Density Estimation

Say for simplicity that X is one-dimensional. You are already familiar with
one famous nonparametric method for density estimation — the histogram!
In R, we could use the hist() function for this, though we must remember
to set the argument freq to FALSE, so as to have total area under the
histogram equal to 1.0, as with a density. In the return value of hist(), the

density component gives us f̂i(t).

There are more advanced density estimation methods, such as the kernel
method, which is implemented in R’s density() function in one dimen-
sion, and some other packages on CRAN do so for some small numbers of
dimensions. Also, the k-Nearest Neighbor approach can be used for den-
sity estimation. All of this is explained in the Mathematical Complements
section at the end of this chapter.
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5.6.2 Procedure

Whenever we have a case to predict, i.e. we know its X value tc and need
to predict its Y value, we do the following:

For each i = 0, 1, ...,m− 1:

• Collect the observations in our training data for which Y = i.

• Set π̂i to the proportion of cases for which Y = i, among all the cases.

• Use the X values in our collected data to form our estimated density
for X within class i, f̂i(tc).

• Guess the Y value for the new case to be whichever i yields the largest
value of (5.7), with f̂j(tc) in place of fj(t) and with π̂j in place of πj .

5.7 The Issue of “Unbalanced (and Balanced)
Data”

Here will discuss a topic that is usually glossed over in treatments of the
classification problem, and indeed is often misunderstood in the machine
learning (ML) research literature, where one sees much questionable hand-
wringing over “the problem of unbalanced data.” On the contrary, the real
problem is often that the data are balanced.

For concreteness and simplicity, consider the two-class problem of predict-
ing whether a customer will purchase a certain item (Y = 1) or not (Y = 0),
based on a single predictor variable, X, the customer’s age. Suppose also
that most of the purchasers are older.

5.7.1 Why the Concern Regarding Balance?

Though one typically is interested in the overall rate of incorrect classifi-
cation, we may also wish to estimate rates of “false positives” and “false
negatives.” In our customer purchasing example, for instance, we wish to
ask, What percentage of the time do we predict that the customer does not
purchase the item, among cases in which the purchase actually is made?
One problem is that, although our overall misclassification rate is low, we
may do poorly on a conditional error rate of this sort. This may occur, for
example, if we have unbalanced data, as follows.
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Suppose only 1.5% of the customers in the population opt to buy the prod-
uct.8 The concern among some ML researchers and practitioners is that,
with random sampling (note the qualifier), the vast majority of the data in
our sample will be from the class Y = 0, thus giving us “unbalanced” data.
Then our statistical decision rule may not predict the other class well, and
indeed may just predict almost everything to be Class 0. Let’s address this
concern.

Say we are using a logit model. If the model is accurate throughout the
range of X, unbalanced data may not be such a problem. If most of our data
have their X values in a smaller subrange, this will likely increase standard
errors of the estimated regression coefficients, but not be a fundamental
issue.

On the other hand, say we do classification using nonparametric density
estimation. Since even among older customers, rather few buy the product,
we won’t have much data from Class 1, so our estimate of f̂1 probably won’t
be very accurate. Thus Equation (5.5) then suggests we have a problem.
Nevertheless, short of using a parametric model, there really is no solution.

Ironically, a more pressing issue is that we may have data that is too bal-
anced, the subject of our next section.

5.7.2 A Crucial Sampling Issue

In this chapter, we have often dealt with expressions such as P (Y = 1) and
P (Y = 1 |X = t). These seem straightforward, but actually they may be
undefined, due to our sampling design, as we’ll see here.

In our customer behavior context, P (Y = 1) is the unconditional proba-
bility that a customer will buy the given item. If it is equal to 0.12, for
example, that means that 12% of all customers purchase this item. By
contrast, P (Y = 1 | X = 38) is a conditional probability, and if it is equal
to 0.18, this would mean that among all people of age 38, 18% of them buy
the item.

The quantities π = P (Y = 1) and 1 − π = P (Y = 0) play a crucial role,
as can be seen immediately in (5.3) and (5.4). Let’s take a closer look
at this. Continuing our customer-age example, X (age) has a continuous
distribution, so (5.4) applies. Actually, it will be more useful to look at the
equivalent equation, (5.5).

8As mentioned earlier in the book, in some cases it may be difficult to define a
target population, even conceptually. There is not much that can be done about this,
unfortunately.
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5.7.2.1 It All Depends on How We Sample

Say our training data set consists of records on 1000 customers. Let N1

and N0 denote the number of people in our data set who did and did not
purchase the item, with N1 + N0 = 1000. If our data set can be regarded
as a statistical random sample from the population of all customers, then
we can estimate π from the data. If for instance 141 of the customers in
our sample purchased the item, then we would set

π̂ =
N1

1000
= 0.141 (5.22)

The trouble is, though, that the expression P (Y = 1) may not even make
sense with some data. Consider two sampling plans that may have been
followed by whoever assembled our data set.

(a) He sampled 1000 customers from our full customer database.9

(b) He opted to sample 500 customers from those who purchased the
item, and 500 from those who did not buy it.

Say we are using the density estimation approach to estimate P (Y | X = t),
in (5.5). In sampling scheme (a), N1 and N0 are random variables, and as
noted we can estimate π by the quantity N1/1000. But in sampling scheme
(b), we have no way to estimate π from our data.

Or, suppose we opt to use a logit model here. It turns out that we will run
into similar trouble in sampling scheme (b), as follows. From (4.27) and
(5.5), write the population relation

β0 + β1t1 + ...+ βptp = − ln((1− π)/π)− ln[f0(t)/f1(t)] (5.23)

where t = (t1, ..., tp)
′. Here one can see that if one switches sampling

schemes, then βi, i > 0 will not change, because the fi are within-class den-
sities; only β0 changes. Indeed, our logit-estimation software will “think”
that π1 and π0 are equal (or roughly so, since we just have a sample, not
the population distribution), and thus produce the wrong constant term.

In other words:

9Or, this was our entire customer database, which we are treating as a random sample
from the population of all customers.
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Under sampling scheme (b), we are obtaining the wrong β̂0,

though the other β̂i are correct.

If our goal is merely Description rather than Prediction, this may not be
a concern, since we are usually interested only in the values of βi, i > 0.
But if Prediction is our goal, as we assuming in this chapter, we do have a
serious problem, since we will need all of the estimated coefficients in order
to estimate P (Y |X = t) in (4.27).

A similar problem arises if we use the k-Nearest Neighbor method. Suppose
for instance that the true value of π is low, say 0.06, i.e. only 6% of customers
buy the product. Consider estimation of P (Y | X = 38). Under the k-NN
approach, we would find the k closest observations in our sample data to
38, and estimate P (Y | X = 38) to be the proportion of those neighboring
observations in which the customer bought the product. The problem is
that under sampling scenario (b), there will be many more among those
neighbors who bought the product than there “should” be. Our analysis
won’t be valid.

So, all the focus on unbalanced data in the literature is arguably misplaced.
As we saw in Section 5.7.1, it is not so much of an issue in the parametric
case, and in any event there really isn’t much we can do about it. At least,
things do work out as the sample size grows. By contrast, with sampling
scheme (b), we have a permanent bias, even as the sample size grows.

Scenario (b) is not uncommon. In the UCI Letters Recognition data set
mentioned earlier for instance, there are between 700 and 800 cases for each
English capital letter, which does not reflect that wide variation in letter
frequencies. The letter ’E’, for example, is more than 100 times as frequent
as the letter ’Z’, according to published data (see below).

Fortunately, there are remedies, as we will now see.

5.7.2.2 Remedies

As noted, use of “unnaturally balanced” data can seriously bias our classi-
fication process. In this section, we turn to remedies.

It is assumed here that we have an external data source for the class prob-
abilities πi. For instance, in the English letters example above, there is
much published data, such as at the Web page Practical Cryptography.10

They find that πA = 0.0855, πB = 0.0160, πC = 0.0316 and so on.

10http://practicalcryptography.com/cryptanalysis/ letter-frequencies-various-
languages/english-letter-frequencies/.
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So, if we do have external data on the πi (or possibly want to make some
“what if” speculations), how do we adjust our code output to correct the
error?

For LDA, R’s lda() function does the adjustment for us, using its priors
argument. That code is based on the relation (4.40), which we now see is
a special case of (5.23).

The latter equation shows how to deal with the logit case as well: We
simply adjust the β̂0 that glm() gives us as follows.

(a) Add ln(N0/N1).

(b) Subtract ln[(1− π)/π)], where π is the true class probability.

Note that for an m-class setting, we estimate m logistic regression functions,
adjusting β̂0 in each case. The function ovalogtrn() now will include an
option for this:

ova logt rn <− function (m, trnxy , t r u e p r i o r s = NULL)
{

p <− ncol ( trnxy )
x <− as . matrix ( trnxy [ , 1 : ( p − 1 ) ] )
y <− trnxy [ , p ]
outmat <− NULL
for ( i in 0 : (m − 1) ) {

ym <− as . integer ( y == i )
betahat <− coef (glm(ym ˜ x , family = binomial ) )
outmat <− cbind ( outmat , betahat )

}
i f ( ! i s . null ( t r u e p r i o r s ) ) {

tmp <− table ( y )
wrongpr iors <− tmp/sum(tmp)
outmat [ 1 , ] <− outmat [ 1 , ]
− log ( (1 − t r u e p r i o r s )/ t r u e p r i o r s )
+ log ( (1 − wrongpr iors )/wrongpr iors )

}
outmat

}

What about nonparametric settings? Equation (5.5) shows us how to make
the necessary adjustment, as follows:

(a) Our software has given us an estimate of the left-hand side of that
equation.
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(b) We know the value that our software has used for its estimate of
(1− π)/π, which is N0/N1.

(c) Using (a) and (b), we can solve for the estimate of fo(t)/f1(t).

(d) Now plug the correct estimate of (1 − π)/π, and the result of (c),
back into (5.5) to get the proper estimate of the desired conditional
probability.

Code for this is straightforward:

c l a s s a d j u s t <− function ( econdprobs , wrongratio , t r u e r a t i o ) {
f r a t i o s <− (1 / econdprobs − 1) ∗ (1 / wrongrat io )
1 / (1 + t r u e r a t i o ∗ f r a t i o s )

}

Note that if we are taking the approach described in the paragraph labeled
“A variation” in Section 1.8.2, we do this adjustment only at the stage in
which we fit the training data. No further adjustment at the prediction
stage is needed.

5.8 Example: Letter Recognition

Let’s try out the kNN analysis on the letter data. First, some data prep:

> l ibrary ( mlbench )
> data ( Le t t e rRecogn i t i on )
> l r <− Let te rRecogn i t i on
> # code Y v a l u e s
> l r [ , 1 ] <− as . numeric ( l r [ , 1 ] ) − 1
> # t r a i n i n g and t e s t s e t s
> l r t r n <− l r [ 1 : 1 4 0 0 0 , ]
> l r t e s t <− l r [ 1 4 0 0 1 : 2 0 0 0 0 , ]

As discussed earlier, this data set has approximately equal frequencies for
all the letters, which is unrealistic. The regtools package contains the
correct frequencies, obtained from the Practical Cryptography Web site
cited before. Let’s load those in:

> wrongpr iors <− tmp / sum(tmp)
> data ( l t r f r e q s )
> l t r f r e q s <− l t r f r e q s [ order ( l t r f r e q s [ , 1 ] ) , ]
> t r u e p r i o r s <− l t r f r e q s [ , 2 ] / 100
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(Recall from Footnote 2 that the term priors refers to class probabili-
ties, and that word is used both by frequentists and Bayesians. It is not
“Bayesian” in the sense of subjective probability.)

So, here is the straightforward analysis, taking the letter frequencies as they
are, with 50 neighbors:

> trnout <− ovaknntrn ( l r t r n [ , 1 ] , xdata , 2 6 , 5 0 )
> ypred <− ovaknnpred ( trnout , l r t e s t [ , −1 ] )
> mean( ypred == l r t e s t [ , 1 ] )
[ 1 ] 0 .8641667

In light of the fact that we have 26 classes, 86% accuracy is pretty good.
But it’s misleading: We did take the trouble of separating into training and
test sets, but as mentioned, the letter frequencies are unrealistic. How well
would our classifier do in the “real world”? To simulate that, let’s create a
second test set with correct letter frequencies:

> newidxs <− sample ( 0 : 25 , 6000 , replace=T, prob=t r u e p r i o r s )
> l r t e s t 1 <− l r t e s t [ newidxs , ]

Now we can try our classifier on this more realistic data:

> ypred <− ovaknnpred ( trnout , l r t e s t 1 [ , −1 ] )
> mean( ypred == l r t e s t 1 [ , 1 ] )
[ 1 ] 0 .7543415

Only about 75%. But in order to prepare for the real world, we can make
use of the truepriors argument in ovaknntrn()

> trnout1 <− ovaknntrn ( l r t r n [ , 1 ] , xdata , 26 , 50 , t r u e p r i o r s )
> ypred <− ovaknnpred ( trnout1 , l r t e s t 1 [ , −1 ] )
> mean( ypred == l r t e s t 1 [ , 1 ] )
[ 1 ] 0 .8787988

Ah, very nice!
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5.9 Mathematical Complements

5.9.1 Nonparametric Density Estimation

5.10 Bibliographic Notes

5.11 Further Exploration: Data, Code and
Math Problems

Exercises

1. Here we will consider the “OVA and AVA” approaches to the multiclass
problem (Section 5.4), using the UCBAdmissions data set that is built in to
R. This data set comes in the form of a counts table, which can be viewed
in proportion terms via

UCBAdmissions / sum( UCBAdmissions )

For the sake of this experiment, let’s take those cell proportions to be pop-
ulation values, so that for instance 7.776% of all applicants are male, apply
to departmental program F and are rejected. The accuracy of our classifi-
cation process then is not subject to the issue of variance of estimators of
logistic regression coefficients or the like.

(a) Which would work better in this population, OVA or AVA, say in
terms of overall misclassification rate?

[Computational hint: First convert the table to an artificial data
frame:

ucbd <− as . data . frame ( UCBAdmissions )

]

(b) Write a general function

ovaavatbl <− function ( tb l , yname)

that will perform the computation in part (a) for any table tbl, with
the class variable having the name yname, returning the two mis-
classification rates. Note that the name can be retrieved via
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names( attr ( tb l , ’ dimnames ’ ) )

2. Consider the two-class classification problem with scalar predictor.

(a) Show that if the within-class distributions are exponential, the logistic
model again is valid.

(b) Do the same for the Poisson case.

(c) Find general conditions in (4.20) that imply the logit model.
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Chapter 6

Model Fit: Assessment
and Improvement

The Box quote from our first chapter is well worth repeating:

All models are wrong, but some are useful — famed statistician
George Box

We have quite a bit of powerful machinery to fit parametric models. But
are they any good on a given data set? We’ll discuss this subject here in
this chapter.

6.1 Aims of This Chapter

Most regression books have a chapter on diagnostics, methods for assessing
model fit and checking assumptions needed for statistical inference (confi-
dence intervals and significance tests).

In this chapter we concerned only with the model itself. Does, for instance,
the model assume a linear relationship of the response variable with the
predictors, when it actually is nonlinear? Are there extreme or erroneous
observations that mar the fit of our model?

We are not concerned here with assumptions that only affect inference, as

151
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those were treated in Chapter 2.1

6.2 Methods

There is a plethora of diagnostic methods! Entire books could and have
been written on this topic. I treat only a few such methods here — some
classical, some of my own — with the choice of methods presented stemming
from these considerations:

• This book generally avoids statistical methods that rely on assuming
that our sample data is drawn from a normally distributed popula-
tion.2 Accordingly, the material here on unusual observations does
not make such an assumption.

• Intuitive clarity of a method is paramount. If a method can’t be ex-
plained well to say, a reasonably numerate but nonstatistician client,
then I prefer to avoid it.

6.3 Notation

Say we have data (Xi, Yi), i = 1, ..., n. Here the Xi are p-component
vectors,

Xi = (X
(1)
i , ..., X

(p)
i )′ (6.1)

and the Yi are scalars (including the case Y = 0, 1, ...,m−1 in classification
applications). We typically won’t worry too much in this chapter whether
the n observations are independent.

As usual, let

µ(t) = E(Y | X = t) (6.2)

be our population regression function, and let µ̂(t) its estimate from our
sample data.

1The assumption of statistical independence was not covered there, and indeed will
not be covered elsewhere in the book, in the sense of methods for assessing independence.
The issue will of course be discussed in individual examples.

2“Rely on” here means that the method is not robust to the normality assumption.



6.4. GOALS OF MODEL FIT-CHECKING 153

6.4 Goals of Model Fit-Checking

What do we really mean when we ask whether a model fits a data set well?
Our answer ought to be as follows:

Possible Fit-Checking Goal:

Our model fits well if µ̂(t) is near µ(t) for all t, or at least for
t = X1, ..., Xn.

That criterion is of course only conceptual; we don’t know the values of
µ(t), so it’s an impossible criterion to verify. Nevertheless, it may serves
well as a goal, and our various model-checking methods will be aimed at
that goal.

Part of the answer to our goals question goes back to the twin regression
goals of Prediction and Description. We’ll explore this in the following
sections.

6.4.1 Prediction Context

If our regression goal is Prediction and we are doing classification, our above
Fit-Checking Goal may be much too stringent. Say for example m = 2. If
µ(t) is 0.9 but µ̂(t = 0.62), we will still make the correct guess, Y = 1, even
though our regression function estimate is well off the mark. Similarly, if
µ(t) is near 0 (or less than 0.5, actually), we will make the proper guess for
Y as long as our estimated value µ̂(t) is under 0.5.

Still, other than the classification case, the above Fit-Checking Goal is
appropriate. Errors in our estimate of the population regression function
will impact our ability to predict, no matter what the size is of the true
regression function.

6.4.2 Description Context

Good model fit is especially important when our regression goal is Descrip-
tion. We really want assurance that the estimated regression coefficients
represent the true regression function well. since we will be using them to
describe the underlying process.
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6.4.3 Center vs. Fringes of the Data Set

Consider a Prediction setting, in the classification case. In Section 6.4.1
above, we saw that actually can afford a rather poor model fit in regions of
the predictor space in which the population regression function is near 1 or
0.

The same reasoning shows, though, that having a good fit in regions where
µ(t) is mid-range, say in (0.25,0.75) is important. If µ̂(t) and µ(t) are on
opposite sites of the number 0.5 (i.e. one below 0.5 and the other above),
we will make the wrong decision (even though we make still be lucky and
guess Y correctly).

In classification contexts, the p-variate density of X is often “mound-
shaped,” if not bell-shaped, within each class. (In fact, many clustering
algorithms are aimed at this situation.) For such data, the regions of most
sensitivity in the above sense will be the lines/curves separating the pairs
of mounds. (Recall Figure 5.1.) The fringes of the data set, far from these
pairwise boundaries, will be regions in which model fit is less important,
again assuming a Prediction goal.

In regression contexts (continous Y , count data etc.), the full data set will
tend to be mound-shaped. Here good estimation will be important for
Predicition and Description throughout the entire region. However, one
must keep in mind that model fit will typically be better near the center
of the data than at the fringes — and that the observations at the fringes
typically have the heaviest impact on the estimated coefficients. This latter
consideration is of course of great import in the Description case.

We will return to these considerations at various points in this chapter.

6.5 Example: Currency Data

Fong and Ouliaris (1995) do an analysis of relations between currency rates
for Canada, Germany, France, the UK and Japan (pre-European Union
days). Do they move together? Let’s look at predicting the Japanese it yen
from the others.

This is time series data, and the authors of the above paper do a very
sophisticated analysis along those lines. So, the data points, such for the
pound, are not independent through time. But since we are just using the
data as an example and won’t be doing inference (confidence intervals and
significance tests), we will not worry about that here.
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Let’s start with a straightforward linear model:

> curr <− read . table ( ’EXC.ASC ’ , header=TRUE)
> f out <− lm(Yen ˜ . , data=cur1 )
> head ( curr )

Can Mark Franc Pound Yen
1 0.9770 2 .575 4 .763 0.41997 301 .5
2 0 .9768 2 .615 4 .818 0.42400 302 .4
3 0 .9776 2 .630 4 .806 0.42976 303 .2
4 0 .9882 2 .663 4 .825 0.43241 301 .9
5 0 .9864 2 .654 4 .796 0.43185 302 .7
6 0 .9876 2 .663 4 .818 0.43163 302 .5
> summary( f out )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) 102.855 14 .663 7 .015 5 .12 e−12 ∗∗∗
Can −45.941 11 .979 −3.835 0.000136 ∗∗∗
Mark 147.328 3 .325 44 .313 < 2e−16 ∗∗∗
Franc −21.790 1 .463 −14.893 < 2e−16 ∗∗∗
Pound −48.771 14 .553 −3.351 0.000844 ∗∗∗
. . .
Mult ip l e R−squared : 0 .8923 , Adjusted R−squared : 0 .8918

Not surprisingly, this model works well, with an adjusted R-squared value
of about 0.89. The signs of the coefficients are interesting, with the it yen
seeming to fluctuate opposite to all of the other currencies except for the
German mark. Of course, professional financial analysts (domain experts,
in the data science vernacular) should be consulted as to the reasons for
such relations, but here we will proceed without such knowledge.

It may be helpful to scale our data so as to better understand the roles of
the predictors, though, so as to put make all the predictors commensurate.
Each predictor will be divided by its standard deviation (and have its mean
subtracted off), so all the predictors have standard deviation 1.0:

> curr1 <− curr
> curr1 [ ,−5] <− scale ( curr1 [ , −5 ] )
> f out1 <− lm(Yen ˜ . , data=curr1 )
> summary( fout1 )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) 224.9451 0 .6197 362.999 < 2e−16 ∗∗∗
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Can −5.6151 1 .4641 −3.835 0.000136 ∗∗∗
Mark 57.8886 1 .3064 44 .313 < 2e−16 ∗∗∗
Franc −34.7027 2 .3301 −14.893 < 2e−16 ∗∗∗
Pound −5.3316 1 .5909 −3.351 0.000844 ∗∗∗
. . .

So Germany and France appear to have the most influence.3 This, and the
signs (positive for the mark, negative for the franc), form a good example
of the use of regression analysis for the Description goal.

In the next few sections, we’ll use this example to illustrate the basic con-
ceptss.

6.6 Overall Measures of Model Fit

We’ll look two broad categories of fit assessment methods. The first will
consist of overall measures, while the second will involve relating fit to
individual predictor variables.

6.6.1 R-Squared, Revisited

We have already seen one overall measure of model fit, the R-squared value
(Section ??). As noted before, its cousin, Adjusted R-squared, is considered
more useful, as it is aimed at compensating for overfitting.

For the currency data above, the two R-squared values (ordinary and ad-
justed) were 0.8923 and 0.8918, both rather high. Note that they didn’t
differ much from each other, as there were well over 700 observations, which
should easily handle a model with only 4 predictors (a topic we’ll discuss
in Chapter 9).

Recall that R-squared, whether a population value or the sample estimate
reported by lm(), is the squared correlation between Y and its predicted
value µ(X) or µ̂(X), respectively. Thus it can be calculated for any method
of regression function estimation, not just the linear model. In particular,
we can apply the concept to k-Nearest Neighbor methods.

The point of doing this with kNN is that the latter in principle does not have
model-fit issues. Whereas our linear model for the currency data assumes

3Or, at least, seem to have the strongest relation with the Yen. We cannot claim
causation.
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a linear relationship between the Yen and the other currencies, kNN makes
no assumptions on the form of the regression function. If kNN were to have
a substantially larger R-squared value than that of our linear model, then
we may be “leaving money on the table,” i.e. not fitting as well as we could
with a more sophisticated parametric model.4

So, let’s see what kNN tells us in the currency example:

> xdata <− preproce s sx ( curr1 [ , −5 ] ,25 , xval=TRUE)
> kout <− knnest ( curr1 [ , 5 ] , xdata , 2 5 )
> cor ( kout$ r ege s t , curr1 [ , 5 ] ) ˆ 2
[ 1 ] 0 .9717136

This would indicate that, in spite of a seemingly good fit for our linear
model, it does not adequately describe the currency fluctuation process.

However, we should raise a question as to whether the value of k here, 25,
is a good one. Let’s investigate this with the regtools function kmin():

> xdata <− preproce s sx ( curr1 [ , −5 ] ,150 , xval=TRUE)
> kminout <− kmin ( curr1$Yen , xdata , predwrong , nk=30)
> kminout$kmin
[ 1 ] 5

The “best” k, as determined by a cross-validated estimate of mean squared
prediction error, is reported here to be 5 (which is the smallest value this
function tried). This may seem very small, but as will be discused in
Chapter 10, it is to be expected in light of the high R2 value we have with
this data.

Let’s rerun our R2 calculation with this value of k:

> kout <− knnest ( curr1 [ , 5 ] , xdata , 5 )
> cor ( kout$ r ege s t , curr1 [ , 5 ] ) ˆ 2
[ 1 ] 0 .9920137

Even better! So, our linear model, which seemed so nice at first, is missing
something. Maybe we can determine why via the methods in the following
sections.

4We could of course simply use kNN in the first place. But this would not give us
the Description usefulness of the parametric model, and also would give us a higher
estimation variance.
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6.6.2 Plotting Parametric Fit Against Nonparametric
One

Let’s plot the µ̂ values of the linear model against those of kNN:

> parvsnonparplot ( fout1 , kout )

The result is shown in Figure 6.1. It suggests that the linear model is
overestimating the regression function at times when the Yen is very low,
moderately low or very high, and possibly underestimating in the moder-
ately high range.

We must view this cautiously, though. First, of course, there is the issue
of sampling variation; the apparent model bias effects here may just be
sampling anomalies.

Second, kNN itself is subject to some bias at the edges of a data set. This
will be discussed in detail in Section ??, but the implications are that in
the currency case kNN tends to overestimate for low values of the Yen, and
underestimate at the high end. This can be addressed by doing locally-
linear smoothing, an option offered by knnest(), but let’s not use it for
now.

The “hook shape” at the left end, and a “tail” in the middle suggest odd
nonlinear effects, possibly some local nonlinearities, which kNN is picking
up but which the linear model misses.

6.6.3 Residuals vs. Smoothing

In any regression analysis, the quantities

ri = Yi − µ̂(Xi) (6.3)

are traditionally called the residual values, or simply the residuals. They
are of course the prediction errors we obtain when fitting our model and
then predicting our Yi from our Xi. The smaller these values are in absolute
value, the better, but also we hope that they may inform us of inaccuracies
in our model, say nonlinear relations between Y and our predictor variables.

In the case of a linear model, the residuals are

ri = Yi − β̂0 − β̂1X(1)
i − ...− β̂pX

(p)
i (6.4)
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Figure 6.1: Estimation of Regression Values, Two Methods
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Many diagnostic methods for checking linear regression models are based
on residuals. In turn, their convenient computation typically involves first
computing the hat matrix, about which there is some material in the Math-
ematical Complements section at the end of this chapter.

The generic R function plot() can be applied to any object of class ”lm”
(including the subclass ”glm”). Let’s do that with fout1:

> plot ( fout1 )
Hit <Return> to see next plot :
Hit <Return> to see next plot :
Hit <Return> to see next plot :
Hit <Return> to see next plot :

We obtain a series of graphs, displayed sequentially. Most of them involve
more intricate concepts than we’ll use in this book (recall Section 6.2), but
let’s look at the first plot, shown in Figure 6.2. The “hook” and “tail” are
visible here too.

Arguably the effects are more clearly in Figure 6.1. This is due to the
fact that the latter figure is plotting smoothed values, not residuals. In
other words, residuals and smoothing play complementary roles to each
other: Smoothing-based plots can more easily give us “the big picture,”
but residuals may enable us to spot some fine details.

In any case, it’s clear that the linear model does not tell the whole story.

6.7 Diagnostics Related to Individual Predic-
tors

It may be that the relationship with the response variable Y is close to linear
for some predictors X(i) but not for others. How might we investigate that?

6.7.1 Partial Residual Plots

We might approach this by simply plotting a scatter diagram of Y against
each predictor variable. However, the relation of Y with X(i) may change
in the presence of the other X(j). A more sophisticated approach may be
partial residual plots, also known as component + residual plots. These
would be easy to code on one’s own, but the crPlot() function in the car
package does the job nicely for us:
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Figure 6.2: Residuas Against Linear Fitted Values
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Figure 6.3: Partial Residuals Plot, Currency Data

> c r P l o t s ( fout1 )

The resulting graph is shown in Figure 6.3. Before discussing these rather
bizarre results, let’s ask what these plots are depicting.

Here is how the partial-residual method works. The partial residuals for a
predictor X(j) are defined to be

pi = ri + β̂jX
(j)
i (6.5)

= Yi − β̂0 − β̂1X(1)
i − ...− β̂1X

(j−1)
i − β̂1X(j+1)

i − ...− β̂pX(p)
i (6.6)
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In other words, we’ve started with (6.4), but removed the linear term con-

tributed by predictor j, i.e. removed β̂pX
(j)
i . We then plot the pi against

predictor j, to try to discern a relation. In effect we are saying,

Cancel that linear contribution of predictor j. Let’s start fresh
with this predictor, and see how adding it in a possibly nonlinear
form might extend the collective predictive ability of the other
predictors.

If the resulting graph looks nonlinear, we may profit from modifying our
model to one that reflects a nonlinear relation.

In that light, what might we glean from Figure 6.3? First, we see that the
only “clean” relations are the one for the franc and the one for the mark.
No wonder, then, that we found earlier that these two currencies seemed to
have the strongest linear relation to the Yen. There does seem to be some
nonlinearity in the case of the franc, with a more negative slope for low
franc values, and this may be worth pursuing, say by adding a quadratic
term.

For the Canadian dollar and the pound, though, the relations don’t look
“clean” at all. On the contrary, the points in the graphs clump together
much more than we typically encounter in scatter plots.

But even the mark is not off the hook (pardon the pun), as the “hook” shape
noticed earlier is here for that currency, and apparently for the Canadian
dollar as well. So, whatever odd phenomenon is at work may be related to
these two currencies,

6.7.2 Plotting Nonparametric Fit Against Each Pre-
dictor

As noted, one approach would be to draw many scatter diagrams, plotting
Y individually against each X(i). But scatter diagrams are, well, scattered.
A better way is to plot the nonparametric fit against each predictor. The
regtools function nonparvsxplot() does this, plotting one graph for each
predictor, presented in succession with user prompts:

> nonparvsxplot ( kout )
next plot
next plot
next plot
next plot
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Figure 6.4: Nonparametric Fit Against the Mark

The graph for for the mark is shown in Figure 6.4. Oh my gosh! With the
partial residual plots, the mark and the franc seemed to be the only “clean”
ones. Now we see that the situation for the mark is much more complex.
The same is true for the other predictors (not shown here). This is indeed
a difficult data set.

Again, note that the use of smoothing has brought these effects into better
focus, as discussed in Section 6.6.3.

6.7.3 Freqparcoord

Another graphical approach is via freqparcoord package, written by Yingkang
Xie and me. The call
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Figure 6.5: Freqparcoord Plot, Currency Data

produces the graph in Figure 6.5.

What is depicted in this graph? First, this is a parallel coordinates plot,
which is a method for visualizing multidimensional data in a 2-dimensional
graph. This approach dates back to the 1800s, but was first developed in
depth in modern times; see Inselberg (2009).

The general method of parallel coordinates is quite simple. Here we draw
p vertical axes, one for each variable. For each of our n data points, we
draw a polygonal line from each axis to the next. The height of the line
on axis j is the value of variable j for this data point. As Inselberg pointed
out, in mathematical terms the plot performs a transformation mapping
p-dimensional points to p− 1-segment lines. The practical effect is that we
can visualize how our p variables vary together.
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However, if our number of data points n is large, our parallel coordinates
will consist of a chaotic jumble of lines, maybe even with the “black screen
problem,” meaning that so much has been plotted that the graph is mostly
black, no defining features.

The solution to that problem taken by freqparcoord is to plot only the
most frequently-occurring lines, meaning those corresponding to the origi-
nal data points having the largest estimated p-dimensional density funciton.

A function in the freqparcoord package, regdiag(), applies this to regres-
sion diagnostics. The first variable plotted, i.e. the first vertical axis, is what
we call the divergences, meaning the differences beween the parametric and
nonparametric estimates of the population regression function,

µ̂linmod(Xi)− µ̂knn(Xi), i = 1, ..., n (6.7)

The other axes represent our predictor variables. Vertical measures are
numbers of standard deviations from the mean of the given variable.

There are three groups, thus three subgraphs, for the upper 10%, middle
80% and lower 10% of the divergence values. So for instance the upper
subgraph describes data points Xi at which the linear model greatly over-
estimates the true regression function.

What we see, then, is that in regions in which the linear model underes-
timates, the Canadian dollar tends to be high and the mark low, with an
opposite relation for the region of overestimation. Note that this is not the
same as saying that the correlation between those two currencies is neg-
ative; on the contrary, running cor(curr1) shows their correlation to be
positive and tiny, about 0.01. This suggests that we might try adding a
dollar/mark interaction term to our model, though the effect here seems
mild, with peaks and valleys of only about 1 standard deviation..

6.8 Effects of Unusual Observations on Model
Fit

Suppose we are doing a study of rural consumer behavior in a small country
C in the developing world. One day, a few billionaires discover the idyllic
beauty of rural C and decide to move there. We almost certainly would
want to exclude data on these interlopers from our analysis. Second, most
data contains errors. Obviously these must be excluded too, or corrected if
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possible. These two types of observations are sometimes collectively called
outliers, or simply unusual.

Though we may hear that Bill Gates has moved to C, and we can clean
the data to remove the obvious errors, such as a human height of 25 feet
or a negative weight. other extreme values or errors may not jump out at
us. Thus it would be useful to have methods that attempt to find such
observations in some mechanical way.

6.8.1 The influence() Function

Base R includes a very handy function, influence(). We input an object
of type ”lm”, and it returns an R list. One of the components of that list,
coefficients, is just what we want: It has a column for each β̂j , and a row
for each observation in our data set. Row i, column j tells us how much
β̂j would change if observation i were deleted from the data set.5 If the
change is large, we should take a close look at observation i, to determine
whether it is “unusual.”

6.8.1.1 Example: Currency Data

Let’s take a look:

> i n f c f s <− influence ( fout1 )$coef
> head ( i n f c f s )

( I n t e r c e p t ) Can Mark Franc
1 −0.01538183 0.03114368 −0.009961471 −0.07634899
2 −0.02018040 0.03743135 −0.018141461 −0.09488785
3 −0.02196501 0.03583000 −0.024654614 −0.08885551
4 −0.02877846 0.02573926 −0.050914092 −0.08862127
5 −0.02693571 0.02564799 −0.046012297 −0.08261002
6 −0.02827297 0.02524051 −0.050186868 −0.08733993

Pound
1 0.07751692
2 0.10129967
3 0.10190745
4 0.13201466
5 0.12140985
6 0.13027910

5The entire computation does not need to be done from scratch. The Sherman-
Morrison-Woodbury formula provides a shortcut. See the Mathematical Complements
section at the end of this chapter.
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So, if we were to remove the second data point, this says that β̂0 would
decline by 0.02018040, β̂1 would increase by 0.03743135, and so on. Let’s
check to be sure:

> coef ( fout1 )
( I n t e r c e p t ) Can Mark Franc

224.945099 −5.615144 57.888556 −34.702731
Pound

−5.331583
> coef (lm(Yen ˜ . , data=curr1 [ −2 , ] ) )
( I n t e r c e p t ) Can Mark Franc

224.965279 −5.652575 57.906698 −34.607843
Pound

−5.432882
> −5.652575 + 0.037431
[ 1 ] −5.615144

Excellent. Now let’s find which points have large influence.

A change in an estimated coefficient should be considered “large” only rel-
ative to the standard error, so let’s scale accordingly, dividing each change
by the standard error of the correspoding coefficient:

> se <− sqrt ( diag ( vcov ( fout1 ) ) )
> i n f c f s <− i n f c f s %∗% diag (1/se )

So, how big do the changes brought by deletions get in this data? And for
which observations does this occur?

> i a <− abs ( i n f c f s )
> max( i a )
[ 1 ] 0 .1928661
> f 15 <− function ( rw) any( rw > 0 . 1 5 )
> i a15 <− apply ( ia , 1 , f15 )
> names( ia15 ) <− NULL
> which( ia15 )

[ 1 ] 744 745 747 748 749 750 751 752 753 754 755
[ 1 2 ] 756 757 758 759 760 761

Here we (somewhat arbitrarily) decided to identify which deletions of ob-
servations would result in an absolute change of some coefficient of more
than 0.15.

Now this is interesting. There are 761 observations in this data set, and
now we find that all of the final 18 (and more) are influential. Let’s look
more closely:
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> t a i l ( ia , 5 )
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]

757 0.05585538 0.1311110 0.1572411 0.1305925
758 0.05851087 0.1294412 0.1563013 0.1259741
759 0.05838813 0.1386614 0.1629851 0.1358875
760 0.05818730 0.1429951 0.1654354 0.1385146
761 0.05626212 0.1316884 0.1534207 0.1211305

[ , 5 ]
757 0.021300177
758 0.015701005
759 0.020431391
760 0.019962502
761 0.006793673

So, the influence of these final observations was on the coefficients of the
Canadian dollar, the mark and the franc — but not on the one for the
pound.

Something special was happening in those last time periods. It would be
imperative for us to track this down with currency experts.

Each of the observations has something like a 0.15 impact, and intuitively,
removing all of these observations should cause quite a change. Let’s see:

> curr2 <− curr1 [ − (744 : 761 ) , ]
> lm(Yen ˜ . , data=curr2 )
. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) Canada Mark

225.780 −10.271 52 .926
Franc Pound

−27.126 −6.431

> f out1
. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) Canada Mark

224.945 −5.615 57 .889
Franc Pound

−34.703 −5.332

These are very substantial changes! The coefficient for the Canadian cur-
rency almost doubled, and even the pound’s value changed almost 30%.
That latter is a dramatic difference, in view of the fact that each individual
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observation had only about a 2% influence on the pound.

6.9 Automated Outlier Resistance

The term robust in statistics generally means the ability of methodology to
withstand problematic conditions. Linear regression models, for instance,
are said to be “robust to the normality” assumption, meaning that (at least
large-sample) inference on the coefficients with work well even though the
distribution of Y given X is not normal.

Here we are concerned with robustness of regression models to outliers.
Such methods are called robust regression. There are many such methods,
one of which is median regression, to be discussed next.

6.9.1 Median Regression

Suppose we wish to estimate the mean of some variable in some population,
but we are concerned about unusual observations. As an alternative, we
might consider estimating the median value of the variable, which will be
much less sensitive to unusual observations. Recall our hypothetical exam-
ple earlier, in which we were interested in income distributions. If one very
rich person moves into the area, the mean may be affected substantially —
but the median would likely not change at all.

We thus say that the median is robust to unusual data points. One can do
the same thing to make regression analysis robust in this sense.

It turns out (see the Mathematical Complements section at the end of this
chapter) that

ν(t) = median(Y | X = t) = argminmE(|Y −m| |X = t) (6.8)

In other words, in contrast to the regression function, i.e. the conditional
mean, which minimizes mean squared prediction error, the conditional me-
dian minimizes mean absolute error.

Remember, as with regression, we are estimating an entire function here,
as t varies. A nonparametric approach to this would be to use knnest()
with nearf set to

function ( predpt , nearxy )
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{
yco l <− ncol ( nearxy )
median( nearxy [ , yco l ] )

}

However, in this chapter we are primarily concerned with parametric mod-
els. So, we might, in analogy to the linear regression model, make the
assumption that (6.8) has the familiar form

ν(t) = β0 + β1t1 + ...+ βptp (6.9)

Solving this at the sample level is a linear programming problem, which has
been implemented in the CRAN package quantreg. As the package name
implies, we can estimate general conditional quantile functions, not just the
conditional median. The argument tau of the rq() function specifies what
quantile we want, with the value 0.5, i.e. the median, being the default.

It is important to understand that ν(t) is not the regression function, i.e.
not the conditional mean. Thus rq() is not estimating the same quantity
as is lm(). Thus the term quantile regression, in this case the term me-
dian regression, is somewhat misleading here. But we can use ν(t) as an
alternative to µ(t) in one of two senses:

(a) We may believe that ν(t) is close to µ(t). They will be exactly the
same, of course, if the conditional distribution of Y given X is sym-
metric, at least if the unusual observations are excluded. (This is an
assumption we can assess by looking at the residuals.)

(b) We may take the point of view that the conditional median is just as
meaningful as the conditional mean (no pun intended this time), so
why not simply model ν(t) in the first place?

Sense (a) above will be particularly relevant here.

6.9.2 Example: Currency Data

Let’s apply rq() to the currency data:

> qout <− rq (Yen ˜ . , data=curr1 )
> qout
. . .
C o e f f i c i e n t s :
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( I n t e r c e p t ) Can Mark Franc
224.517899 −11.038238 53.854005 −27.443584

Pound
−5.320035

. . .
> f out1
. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) Can Mark

224.945 −5.615 57 .889
Franc Pound

−34.703 −5.332

The results are strikingly similar to what we obtained in Section 6.8.1.1 by
calling lm() with the bad observations at the end of the data set removed.
In other words,

Median regression can be viewed as an automated method for
removing (the effects of) the unusual data points.

6.10 Example: Vocabulary Acquisition

The Wordbank data, http://wordbank.stanford.edu/, concerns child vo-
cabulary development, in not only English but also a number of other lan-
guages, such as Cantonese and Turkish. These are mainly toddlers, ages
from about a year to 2.5 years.

Let’s read in the English set:

> eng l <− read . csv ( ’ Eng l i sh . csv ’ )
> eng l <− eng l [ , c ( 2 , 5 : 8 , 1 0 ) ]
> encc <− eng l [ complete . c a s e s ( eng l ) , ]
> nrow( encc )
[ 1 ] 2741

One of the variables is Birth Order. Let’s make it numeric:

> z <− engcc$ b i r t h order
> numorder <− vector ( length=length ( z ) )
> for ( i in 1 : length ( z ) ) {
+ numorder [ i ] <− i f ( z [ i ]== ’ F i r s t ’ ) 1 else
+ i f ( z [ i ]== ’ Second ’ ) 2 else

http://wordbank.stanford.edu/
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+ i f ( z [ i ]== ’ Third ’ ) 3 else
+ i f ( z [ i ]== ’ Fourth ’ ) 4 else
+ i f ( z [ i ]== ’ F i f th ’ ) 5 else
+ i f ( z [ i ]== ’ Sixth ’ ) 6 else
+ i f ( z [ i ]== ’ Seventh ’ ) 7 else 8
+ }
> encc$b i r tho rd <− numorder

Let’s convert the variable on the mother’s education to a rough number of
years of school:

> z <− encc$mom ed
> momyrs <− vector ( length=length ( z ) )
> for ( i in 1 : length ( z ) ) {
+ momyrs [ i ] <− i f ( z [ i ]== ’ Primary ’ ) 4 else
+ i f ( z [ i ]== ’Some Secondary ’ ) 10 else
+ i f ( z [ i ]== ’ Secondary ’ ) 12 else
+ i f ( z [ i ]== ’Some Co l l ege ’ ) 14 else
+ i f ( z [ i ]== ’ Co l l ege ’ ) 16 else
+ i f ( z [ i ]== ’Some Gradute ’ ) 18 else 20
+ }
> encc$momyrs <− momyrs

Also, create the needed dummy variables, for gender and nonwhite cate-
gories:

> encc$male <− as . numeric ( encc$ sex==’ Male ’ )
> encc$as ian <− as . numeric ( encc$ e t h n i c i t y==’ Asian ’ )
> encc$black <− as . numeric ( encc$ e t h n i c i t y==’ Black ’ )
> encc$ l a t i n o <− as . numeric ( encc$ e t h n i c i t y==’ Hispanic ’ )
> encc$othernonwhite <− as . numeric ( encc$ e t h n i c i t y==’ Other ’ )

Running knnest() (not shown), there seemed to be an approximately linear
relation between vocabulary and age (for the age range studied). Let’s run
a linear regression analysis:

> encc1 <− encc [ ,−c ( 2 : 5 ) ]
> summary(lm( vocab ˜ . , data=encc1 ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −473.0402 23.1001 −20.478 < 2e−16 ∗∗∗
age 33 .3905 0 .6422 51 .997 < 2e−16 ∗∗∗
b i r tho rd −20.5399 3 .0885 −6.650 3 .52 e−11 ∗∗∗
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male −49.0196 5 .4840 −8.939 < 2e−16 ∗∗∗
as ian −15.7985 17.2940 −0.914 0.361048
black 1 .0940 10.2360 0 .107 0.914890
othernonwhite −54.1384 15.1274 −3.579 0.000351 ∗∗∗
l a t i n o −75.6905 13.0155 −5.815 6 .75 e−09 ∗∗∗
momyrs 3 .6746 0 .9381 3 .917 9 .18 e−05 ∗∗∗
. . .
Mult ip l e R−squared : 0 .5132 , Adjusted R−squared : 0 .5118

So, the kids seemed to be learning about 30 characters per month during
the studied age range. Latino kids seem to start from a lower English base,
possibly due to speaking Spanish at home. Consistent with the general
notion that girls develop faster than boys, the latter have a lower base.
Having a lot of older siblings also seems to be related to a lower base,
possibly due to the child being one of several competing for the parents’
attention. Having a mother with more education had a modest positive
effect.

A word on the standard errors: As each child was measured multiple times
as he/she aged, the observations are not independent, and the true standard
errors are larger than those given.

Let’s try median regression instead:

> rq ( vocab ˜ . , data=encc1 )
. . .
C o e f f i c i e n t s :

( I n t e r c e p t ) age b i r tho rd male
as i an
−574.685185 37.777778 −19.425926 −44.925926

−21.944444
black othernonwhite l a t i n o momyrs

−13.148148 −50.462963 −68.629630 3.638889
. . .

The robust results here are similar to what we obtained earlier, but with
some modest shifts.

It is often worthwhile to investigate other quantiles than the median. Trying
that for age only:

> plot ( c (12 , 30 ) , c (0 , 800 ) , type = ”n” , xlab = ” age ” , ylab = ”vocab” )
> abline ( coef ( rq ( vocab ˜ age , data=encc ) ) )
> abline ( coef ( rq ( vocab ˜ age , data=encc , tau =0.9)) )
> abline ( coef ( rq ( vocab ˜ age , data=encc , tau =0.1)) )
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Figure 6.6: Vocabulary vs. Age

As seen in Figure 6.6, the middle-level children start out knowin much
fewer words than the most voluble ones, but narrow the gap over time.
By contrast, the kids with smaller vocabularies start out around the same
level as the middle kids, but actually lose ground over time, suggesting that
educational interventions may be helpful.

6.11 Improving Fit

The currency example seemed so simple at first, with a very nice adjusted
R-squared value of 0.89, and with the yen seeming to have a clean linear
relation with the franc and the mark. And yet we later encountered some
troubling aspects to this data.

First we noticed that the adjusted R-squared value for the kNN fit was
even better, at 0.98. Thus there is more to this data than simple linear
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relationships. Later we found that the last 18 data points, possibly more,
have an inordinate influence on the β̂j . This too could be a reflection of
nonlinear relationships between the currencies. The plots exhibited some
strange, even grotesque, relations.

So, let’s see what we might do to improve our parametric model.

6.11.1 Deleting Terms from the Model

Predictors with very little relation to the response variable may actually
degrade the fit, and we should consider deleting them. Tnis topic is treated
in depth in Chapter 9.

6.11.2 Adding Polynomial Terms

Our current model is linear in the variables. We might add second-degree
terms. Note that this means not only squares of the variables, but products
of pairs of them. The latter may be important, in view of our comment
in Section 6.7.3 that it might be useful to add a Canadian dollar/mark
interaction term to our model.

6.11.2.1 Example: Currency Data

Let’s add squared terms for each variable, and try the interaction term as
well. Here’s what we get:

> curr2 <− curr1
> curr2$C2 <− curr2$Canadaˆ2
> curr2$M2 <− curr2$Markˆ2
> curr2$F2 <− curr2$Franc ˆ2
> curr2$P2 <− curr2$Poundˆ2
> curr2$CM <− curr2$Canada∗ curr2$Mark
> summary(lm(Yen ˜ . , data=curr2 ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value
( I n t e r c e p t ) 223.575386 1.270220 176.013
Can −8.111223 1.540291 −5.266
Mark 50.730731 1.804143 28 .119
Franc −34.082155 2.543639 −13.399
Pound −3.100987 1.699289 −1.825
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C2 −1.514778 0.848240 −1.786
M2 −7.113813 1.175161 −6.053
F2 11.182524 1.734476 6 .447
P2 −1.182451 0.977692 −1.209
CM 0.003089 1.432842 0 .002

Pr(>| t | )
( I n t e r c e p t ) < 2e−16 ∗∗∗
Can 1 .82 e−07 ∗∗∗
Mark < 2e−16 ∗∗∗
Franc < 2e−16 ∗∗∗
Pound 0.0684 .
C2 0.0745 .
M2 2 .24 e−09 ∗∗∗
F2 2 .04 e−10 ∗∗∗
P2 0.2269
CM 0.9983
−−−
S i g n i f . codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 . 1 1
. . .
Mult ip l e R−squared : 0 .9043 , Adjusted R−squared : 0 .9032

Adjusted R-squared increased only slightly. And this was despite the fact
that two of the squared-variable terms were “highly significant,” adorned
with three asterisks, showing how misleading significance testing can be.
The interaction term came out tiny, 0.003089. So, kNN is still the winner
here.

6.11.2.2 Example: Programmer/Engineer Census Data

Let’s take another look at the Census data on programmers and engineers
in Silicon Valley, first introduced in Section 1.11.1.

We run

> data ( prgeng )
> pe <− prgeng # see ? knnest
> # dummies f o r MS, PhD
> pe$ms <− as . integer ( pe$educ == 14)
> pe$phd <− as . integer ( pe$educ == 16)
> # computer occupat ions on ly
> pecs <− pe [ pe$occ >= 100 & pe$occ <= 109 , ]
> pecs1 <− pecs [ , c ( 1 , 7 , 9 , 1 2 , 1 3 , 8 ) ]
> # p r e d i c t wage income from age , gender e t c .
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Figure 6.7: Mean Wage Income vs. Age

> # prepare neares t−ne ighbor data
> xdata <− preproce s sx ( pecs1 [ , 1 : 5 ] , 1 5 0 )
> kmin ( pecs1 [ , 6 ] , xdata , nk=30)$kmin
[ 1 ] 5
> zout <− knnest ( pecs1 [ , 6 ] , xdata , 5 )
> nonparvsxplot ( zout )

we find that the age variable, and possibly wkswrkd, seem to have a
quadratic relation to wageinc, as seen in Figures 6.7 and 6.8. So, let’s try
adding quadratic terms for those two variables. And, to assess how well
this works, let’s break the data into training and test sets:

> pecs2 <− pecs1
> pecs2$age2 <− pecs1$age ˆ2
> pecs2$wks2 <− pecs1$wkswrkdˆ2
> n <− nrow( pecs1 )
> t r n id x s <− sample ( 1 : n ,12000)
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Figure 6.8: Mean Wage Income vs. Weeks Worked
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> pred idxs <− setd i f f ( 1 : n , t rn id x s )
> lmout1 <− lm( wageinc ˜ . , data=pecs1 [ t rn idxs , ] )
> lmout2 <− lm( wageinc ˜ . , data=pecs2 [ t rn idxs , ] )
> lmpred1 <− predict ( lmout1 , pecs1 [ predidxs , ] )
> lmpred2 <− predict ( lmout2 , pecs2 [ predidxs , ] )
> ypred <− pecs1$wageinc [ pred idxs ]
> mean(abs ( ypred−lmpred1 ) )
[ 1 ] 25721.5
> mean(abs ( ypred−lmpred2 ) )
[ 1 ] 25381.08

So, adding the quadratic terms helped slightly, about a 1.3% improvement.
From a Prediction point of view, this is at best mild, There was also a
slight increase in adjusted R-squared, from 0.22 (not shown) to 0.23 (shown
below).

But for Description things are much more useful here:

> summary( lmout2 )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value
( I n t e r c e p t ) −63812.415 4471.602 −14.271
age 3795.057 221.615 17 .125
sex −10336.835 841.067 −12.290
wkswrkd 598.969 131.499 4 .555
ms 14810.929 928.536 15 .951
phd 20557.235 2197.921 9 .353
age2 −39.833 2 .608 −15.271
wks2 9 .874 2 .213 4 .462

Pr(>| t | )
( I n t e r c e p t ) < 2e−16 ∗∗∗
age < 2e−16 ∗∗∗
sex < 2e−16 ∗∗∗
wkswrkd 5 .29 e−06 ∗∗∗
ms < 2e−16 ∗∗∗
phd < 2e−16 ∗∗∗
age2 < 2e−16 ∗∗∗
wks2 8 .20 e−06 ∗∗∗
. . .
Mult ip l e R−squared : 0 .2385 , Adjusted R−squared : 0 .2381

As usual, we should not make too much of the p-values, especially with a
sample size this large (16411 for pecs1). So, all those asterisks don’t tell



6.12. CLASSIFICATION SETTINGS 181

us too much. But a confidence interval computed from the standard error
shows that the absolute age-squared effect is at least about 34, far from 0,
and it does make a difference, say on the first person in the sample:

> predict ( lmout1 , pecs1 [ 1 , ] )
1

62406.48
> predict ( lmout2 , pecs2 [ 1 , ] )

1
63471.53

The more sophisticated model predicts about an extra $1,000 in wages for
this person.

Most important, the negative sign for the age-squared coefficient shows that
income tends to level off and even decline with age, something that could
be quite interesting in a Description-based analysis.

The positive sign for wkswrkd is likely due to the fact that full-time work-
ers tend to have better jobs.

6.12 Classification Settings

Since we treat classification as a special case of regression, we can use the
same fit assessment methods, though in some cases some adapting of them
is desirable.

6.12.1 Example: Pima Diabetes Study

Let’s illustrate with the Pima diabetes data set from Section 4.4.2.

> pima <− read . csv ( ’ . . /Data/Pima/pima−ind ians−d iabe t e s . data ’ )

It goes without saying that with any data set, we should first do proper
cleaning.6 This data is actually a very good example. Let’s first try the
freqparcoord package:

> l ibrary ( f r eqparcoord )
> f r eqparcoord ( pima [ ,−9] ,−10)

6And of course should have done so for the other data earlier in this chapter, but I
decided to keep the first analyses simple.
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Here we display that 10 data points (predictors only, not response variable)
whose estimated joint density is lowest, thus qualifying as “unusual.”

The graph is shown in Figure 6.9. Again we see a jumble of lines, but look
at the big dips in the variables BP and BMI, blood pressure and Body
Mass Index. They seem unusual. Let’s look more closely at blood pressure:

> table ( pima$BP)

0 24 30 38 40 44 46 48 50 52 54 55
35 1 2 1 1 4 2 5 13 11 11 2
56 58 60 61 62 64 65 66 68 70 72 74
12 21 37 1 34 43 7 30 45 57 44 52
75 76 78 80 82 84 85 86 88 90 92 94

8 39 45 40 30 23 6 21 25 22 8 6
95 96 98 100 102 104 106 108 110 114 122

1 4 3 3 1 2 3 2 3 1 1

No one has a blood pressure of 0, yet 35 women in our data set are reported
as such. The value 24 is suspect too, but the 0s are wrong for sure. What
about BMI?

> table ( pima$BMI)

0 18 .2 18 .4 19 .1 19 .3 19 .4 19 .5 19 .6 19 .9 20
11 3 1 1 1 1 2 3 1 1

20 .1 20 .4 20 .8 21 21 .1 21 .2 21 .7 21 .8 21 .9 22 .1
. . .

Here again, the 0s are clearly wrong. So, at the very least, let’s exclude
such data points:

> pima <− pima [ pima$BP > 0 & pima$BMI > 0 , ]
> dim( pima )
[ 1 ] 729 9

(We lost 38 cases.)

Now, for our analysis, start with fitting a logit model, then comparing to
kNN. First, what value of k should we use?:

> glmout <− glm( Diab ˜ . , data=pima , family=binomial )
> xdata <− preproce s sx ( pima [ , −9 ] ,150 , xval=TRUE)
> kminout <− kmin ( pima$Diab , xdata , l o s s f t n=predwrong , nk=30)
> kminout$kmin
[ 1 ] 65
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Figure 6.9: Outlier Hunt
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Figure 6.10: Best k for Pima

Note that here we used the predwrong() loss function, which computes
the misclassification rate.

The “best” value of k found was 65, but the plot suggests that smaller values
might be tried, as seen in Figure 6.10. Let’s go with 50, and compare the
parametric and nonparametric fits:

> kout <− knnest ( pima$Diab , xdata , 5 0 )
> parvsnonparplot ( glmout , kout )

The results of the plot are shown in Figure 6.11. There does appear to
be some overestimation by the logit at very high values of the regression
function, indeed all the range past 0.5. This can’t be explained by the fact,
noted before, that kNN tends to underestimate at the high end.

Note carefully that if our goal is Prediction, it may not matter much at the
high end. Recall the discussion on classification contexts in Section 6.4.1. If
the true population regression value is 0.8 and we estimate it to be 0.88, we
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still predict Y = 1, which is the same as what we would predict if we knew
the true population regression function. Similarly, if the true regression
value is 0.25 but we estimate it to be 0.28, we still make the proper guess
for Y .

For Description, though, we should consider a richer model. Running non-
parvsxplot() (not shown) suggests adding quadratic terms for the vari-
ables Gluc, Insul, Genet and especially Age. Adding these, and rerun-
ning knnest() with nearf = loclin to deal with kNN’s high-end bias, our
new parametric-vs.-nonparametric plot is shown in Figure 6.12.

The reader may ask if now we have underestimation by the parametric
model at the high end, but we must take into account the fact that with
nearf = loclin, we can get nonparametric estimates for the regression
function that are smaller than 0 or greater than 1, which is impossible in
the classification setting. The perceived “underestimation” actually occurs
at values at which the nonparametric figures are larger than 1.

In other words, we now seem to have a pretty good model.

6.13 Special Note on the Description Goal

If we are unable to improve the fit of our parametric model in a setting in
which kNN seems to give a substantially better fit, we should be quite wary
of placing too much emphasis on the values of the β̂j . As we saw with the
currency data, the estimated coefficients can be quite sensitive to unusual
observations and so on.

This is not to say the β̂j are useless in such settings. On the contrary, they
may be quite valuable. But they should be used with caution.

6.14 Mathematical Complements

6.14.1 The Hat Matrix

We’ll use the notation of Section 2.3.2 here. The hat matrix is defined as

H = A(A′A)−1A′ (6.10)

The name stems from the fact that we use H to obtain “Y-hat,” the pre-
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Figure 6.11: Estimation of Regression Values, Two Methods
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Figure 6.12: Estimation of Regression Values, Two Methods
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dicted values for the elements of D:

D̂i = µ̂(X̃i

′
) β̂ (6.11)

so

D̂ = Aβ̂ = A(A′A)−1A′D = HD (6.12)

Using the famous relation (VW )′ = W ′V ′, it is easily verified that H is a
symmetric matrix. Also, some easy algebra shows that H is idempotent,
i.e.

H2 = H (6.13)

(The idempotencny also follows from the fact that H is a projection oper-
ator; once one projects, projecting the result won’t change it.)

This leads us directly to the residuals:

L = D −Aβ̂ = D −HD = (I −H)D (6.14)

The diagonal elements

hii = Hii (6.15)

are known as the leverage values, another measure of influence like those in
Section 6.8.1, for the following reason. Looking at (6.12), we see that

D̂i = hiiDi (6.16)

This shows us the effect of true value Di on the fitted value D̂i:

hii =
∂D̂i

∂Di
(6.17)

So, hii can be viewed as a measure of how much influence observation i has
on its fitted value. A large value might thus raise concern — but how large
is “large”?
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Let wi denote row i of H, which is also column i since H is symmetric.
Then

hii = Hii = (H2)ii = w′iwi = h2ii +

n∑
j=1,j 6=i

h2ij (6.18)

This directly tells us that hii ≥ 0. But it also tells us that hii ≥ h2ii, which
forces hii ≤ 1.

In other words,

0 ≤ hii ≤ 1 (6.19)

This will help assess whether a particular hii value is “large.”

As mentioned, there is a very large literature of this kind of analysis. The
reader is referred to the many books on this topic, such as Atkinson and
Riani (2000).

6.14.2 Martrix Inverse Update

The famous Sherman-Morrison-Woodbury formula says that for an invert-
ible matrix B and vectors u and v

(B + uv′)−1 = B−1 − 1

1 + v′B−1u
B−1uv′B−1 (6.20)

In other words, if we have already gone to the trouble of computing a matrix
inverse, and the matrix is then updated as above by adding uv′, then we
do not have to compute the new inverse from scratch; we need only modify
the old inverse, as specified above.

Let’s apply that to Section 6.8.1, where we discussed the effect of deleting
an observation from our data set. Setting B = A′A, u = X̃i and v = −X̃i,
then the new version of A′A after deleting observation i is

(A′A)(−i) = A′A+ uv′ (6.21)

That will be our value for the left-hand side of (6.20). Look what happens
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to the right-hand side:

1 + v′B−1u = 1− X̃ ′i(A′A)−1X̃i (6.22)

But that subtracted term is just hii! Now that’s convenient.

Now, again in (6.20), note that

B−1u = (A′A)−1X̃i (6.23)

and

v′B−1 = −X̃ ′i(A′A)−1 (6.24)

After substuting all this in (6.20) to computer the new (A′A)−1, we can

find our new β̂ by post-multiplying by A′(−i)D−i, where the latter factors

are the new versions of A′ and D.

It should be noted, however, that this approach has poor roundoff error
properties if A′A is ill-conditioned, meaning that it is nearly singular. This
in turn can arise if some of the predictor variables are highly correlated
with each other, as we will see in Chapter 8.

6.14.3 The Median Minimizes Mean Absolute Devia-
tion

Let’s derive (6.8).

First, suppose a random variable W has a density fW . What value m
minimizes E[(W −m)]?

E[(W −m)] =

∫ ∞
−∞
|t−m| fV (t)dt (6.25)

=

∫ m

−∞
(m− t) fV (t)dt+

∫ ∞
m

(t−m) fV (t)dt (6.26)

= mP (W < m)−
∫ m

−∞
t fV (t)dt+

∫ ∞
m

t fV (t)dt−mP (W > m)



6.15. FURTHER EXPLORATION: DATA, CODE ANDMATH PROBLEMS191

Differentiating with respect to m, we have

0 = P (W < m)+mfV (m)−mfV (m)−mfV (m)−[P (W > m)+m(−fV (m))]
(6.27)

In other words,

P (W < m) = P (W > m) (6.28)

i.e. m = median(W ).

The extension to conditional median then follows the same argument as in
Section 1.13.1.

6.15 Further Exploration: Data, Code and
Math Problems

Exercises

1. The contributors of the Forest Fire data set to the UCI Machine Learning
Repository, https://archive.ics.uci.edu/ml/datasets/Forest+Fires, describe
it as “a difficult regression problem.” Apply the methods of this chapter to
attempt to tame this data set.

2. Using the methods of this chapter, re-evaluate the two competing
Poisson-based analyses in Section 4.5.

3. Suppose the predictor vector X in a two-class classification problem has
a joint density fX . Define the “population” residual r = Y − g(X), and its
cumulative distribution function Fr.

(a) Express Fr as an integral involving fX and the regression function
µ(t).

(b) Define a sample analog of (a), and use it to develop a graphical fit
assessment tool for parametric models such as the logistic, using R’s
empirical distribution function ecdf() and kNN.

4. Write an R function analogous to influence() for quantreg objects.
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Chapter 7

Measuring Factor Effects

Throughout this book, we’ve noted the twin goals of regression and classi-
fication analysis, Prediction and Description. In many cases, our method-
ological approach has been aimed at Prediction. In this chapter, though,
the theme will entirely be Description, with most (but not all) of the ma-
terial being concerned with parametric models.

We will see, though that attaining this goal may require some subtle analy-
sis. It will be especially important to bear in mind the following principle:

The regression coefficient (whether sample estimate or popu-
lation value) for one predictor variable may depend on which
other predictors are present.

7.1 Example: Baseball Player Data

In Section 1.7.1.2, we found that the data indicated that older baseball
players — of the same height — tend to be heavier, with the difference
being about 1 pound gain per year of age. This finding may surprise some,
since athletes presumably go to great lengths to keep fit. Ah, so athletes
are similar to ordinary people after all.

We may then ask whether a baseball player’s weight is also related to the
position he plays. So, let’s now bring the Position variable in our data into
play. First, what is recorded for that variable?

> levels ( mlb$Pos i t i on )

193
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[ 1 ] ” Catcher ” ” F i r s t Baseman”
[ 3 ] ” O u t f i e l d e r ” ” R e l i e f P i t cher ”
[ 5 ] ”Second Baseman” ” Shortstop ”
[ 7 ] ” S ta r t i ng Pi tcher ” ”Third Baseman”

o, all the outfield positions have been simply labeled “Outfielder,” though
pitchers have been separated into starters and relievers.

Technically, this variable, mlb$Position, is an R factor. This is a fancy
name for an integer vector with labels, such that the labels are normally
displayed rather than the codes. So actually catchers are coded 1, desig-
nated hitters 2, first basemen 3 and so on, but in displaying the data frame,
the labels are shown rather than the codes.

The designated hitters are rather problematic, as they only exist in the
American League, not the National League. Let’s restrict our analysis to
the other players:

> nondh <−
mlb [ mlb$Pos i t i on != ” Designated H i t t e r ” , ]

> nrow( mlb )
[ 1 ] 1034
> nrow( nondh )
[ 1 ] 1016

We’ve deleted the designated hitters, assigning the result to nondh. A
comparison of numbers of rows show that there were only 18 designated
hitters in the data set anyway.

In order to have a proper basis of comparison below, we should re-run the
weight-height-age analysis:

> summary(lm( Weight ˜ Height + Age , data=nondh ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −187.6382 17.9447 −10.46 < 2e−16
Height 4 .9236 0 .2344 21 .00 < 2e−16
Age 0 .9115 0 .1257 7 .25 8 .25 e−13

( I n t e r c e p t ) ∗∗∗
Height ∗∗∗
Age ∗∗∗
. . .
Mult ip l e R−squared : 0 . 318 , Adjusted R−squared : 0 .3166
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Basically, no change from before. Now, for simplicity, let’s consolidate into
four kinds of positions: infielders, outfielders, catchers and pitchers. That
means we’ll need three dummy variables:

> poscodes <− as . integer ( nondh$Pos i t i on )
> i n f l d <− as . integer ( poscodes==3 | poscodes==6 |

poscodes==7 | poscodes==9)
> o u t f l d <− as . integer ( poscodes==4)
> p i t c h e r <− as . integer ( poscodes==5 | poscodes==8)

Again, remember that catchers are designated via the other three dummies
being 0.

So, let’s run the regression:

> lmpos <− lm( Weight ˜ Height + Age + i n f l d + o u t f l d +
pi tcher , data=nondh )

> summary( lmpos )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −182.7216 18.3241 −9.972 < 2e−16
Height 4 .9858 0 .2405 20 .729 < 2e−16
Age 0 .8628 0 .1241 6 .952 6 .45 e−12
i n f l d −9.2075 1 .6836 −5.469 5 .71 e−08
o u t f l d −9.2061 1 .7856 −5.156 3 .04 e−07
p i t c h e r −10.0600 2 .2522 −4.467 8 .84 e−06

( I n t e r c e p t ) ∗∗∗
Height ∗∗∗
Age ∗∗∗
i n f l d ∗∗∗
o u t f l d ∗∗∗
p i t c h e r ∗∗∗
. . .
Mult . R−squared : 0 .3404 , Adj . R−squared : 0 .3372
. . .

The estimated coefficients for the position variables are all negative. For
example, for a given height and age, pitchers are on average about 10.1
pounds lighter than catchers of the same height, while outfielders the fig-
ure is about 9.2 pounds. An approximate 95% confidence interval for the
population value of the latter is

9 . 2 \pm 2 \ t imes 1 .8 = ( 5 . 6 , 1 2 . 8 )
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So, the image of the “beefy” catcher is borne out.

Note that the estimated coefficient for age shrank a little. In our original
analysis, with just height and age as predictors, it had been 0.9115,1, but
now is only 0.8628. The associated confidence interval, (0.61,1.11), is still
we away from 0, indicating weight increase with age, but the effect is now
smaller than before. This is an example of the phenomenon mentioned at
the outset of this chapter that the coefficient for one predictor may depend
on what other predictors are present.

It also suggests that the age effect on weight is not uniform across playing
positions. To investigate this, let’s add interaction terms:

> summary(lm( Weight ˜ Height + Age +
i n f l d + o u t f l d + p i t c h e r +
Age∗ i n f l d + Age∗ o u t f l d + Age∗p i tcher , data=nondh ) )

. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) −168.5453 20.3732 −8.273 4 .11 e−16
Height 4 .9854 0 .2407 20 .714 < 2e−16
Age 0 .3837 0 .3335 1 .151 0 .2501
i n f l d −22.8916 11.2429 −2.036 0 .0420
o u t f l d −27.9894 11.9201 −2.348 0 .0191
p i t c h e r −31.9341 15.4175 −2.071 0 .0386
Age : i n f l d 0 .4629 0 .3792 1 .221 0 .2225
Age : o u t f l d 0 .6416 0 .4033 1 .591 0 .1120
Age : p i t c h e r 0 .7467 0 .5232 1 .427 0 .1539

( I n t e r c e p t ) ∗∗∗
Height ∗∗∗
Age
i n f l d ∗
o u t f l d ∗
p i t c h e r ∗
Age : i n f l d
Age : o u t f l d
Age : p i t c h e r
. . .
Mult . R−squared : 0 .3424 , Adj . R−squared : 0 .3372

This doesn’t look helpful. Confidence intervals for the estimated interac-
tion coefficients include 0 but are wide. Thus there could be important

1This was the case even after removing the Designated Hitters, not shown here.
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interaction effects, or they could be tiny; we just don’t have a large enough
sample to say much.

Note that the coefficients for the position dummies changed quite a bit,
but this doesn’t mean we now think there is a larger discrepancy between
weights of catchers and the other players. For instance, for 30-year-old
players, the estimated difference in mean weight between infielders and
catchers of a given height is

−22.8916 + 30 \ t imes 0 .4629 = −9.0046

similar to the -9.2075 figure we had before.

7.2 Simpson’s Paradox

The famous Simpson’s Paradox should not be considered a paradox, when
viewed in the light of a central point we have been discussing in this chapter,
which we will state a little differently here:

The regression coefficient (sample or population) for a predictor
variable may change substantially when another predictor is
added. In particular, its sign may change, from positive to
negative or vice versa.

7.2.1 Example: UCB Admissions Data (Logit)

The most often-cited example, in a tabular context, is that of the UC
Berkeley admissions data (Bickel, 1975). The issue at hand was whether the
university had been discriminating against women applicants for admission
to graduate school.

On the surface, things looked bad for the school — 44.5% of the male appli-
cants had been admitted, compared to only 30.4% of the women. However,
upon closer inspection it was found that the seemingly-low female rate was
due to the fact that the women tended to apply to more selective academic
departments, compared to the men. After correcting for the Department
variable, it was found that rather than being victims of discrimination, the
women actually were slightly favored over men. There were six departments
in all, labeled A-F.

The data set is actually included in base R. As mentioned, it is stored in
the form of an R table:
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> ucb <− UCBAdmissions
> class ( ucb )
[ 1 ] ” t a b l e ”
> ucb
, , Dept = A

Gender
Admit Male Female

Admitted 512 89
Rejected 313 19

, , Dept = B

Gender
Admit Male Female

Admitted 353 17
Rejected 207 8

. . .

In R, it is sometimes useful to convert a table to an artificial data frame,
which in this case would have as many rows as there were applicants in the
UCB study, 4526. The regtools function tbltofakedf() facilitates this:

> ucbdf <− t b l t o f a k e d f ( ucb )
> dim( ucbdf )
[ 1 ] 4526 3
> head ( ucbdf )

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] ”Admitted” ”Male” ”A”
[ 2 , ] ”Admitted” ”Male” ”A”
[ 3 , ] ”Admitted” ”Male” ”A”
[ 4 , ] ”Admitted” ”Male” ”A”
[ 5 , ] ”Admitted” ”Male” ”A”
[ 6 , ] ”Admitted” ”Male” ”A”

The first six rows are the same, and in fact there will be 512 such rows,
since, as seen above, there were 512 male applicants who were admitted to
Department A.

Let’s analyze this data using logistic regression. With such coarsely discrete
data, this is not a typical approach, but it will illustrate the dynamics of
Simpson’s Paradox.

First, convert to usable form, not R factors:
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> ucbdf$admit <− as . integer ( ucbdf [ , 1 ] == ’ Admitted ’ )
> ucbdf$male <− as . integer ( ucbdf [ , 2 ] == ’ Male ’ )
# save work by us ing the ’ dummies ’ package
> l ibrary ( dummies )
> dept <− ucbdf [ , 3 ]
> deptdummies <− dummy( dept )
> head ( deptdummies )

deptA deptB deptC deptD deptE deptF
[ 1 , ] 1 0 0 0 0 0
[ 2 , ] 1 0 0 0 0 0
[ 3 , ] 1 0 0 0 0 0
[ 4 , ] 1 0 0 0 0 0
[ 5 , ] 1 0 0 0 0 0
[ 6 , ] 1 0 0 0 0 0
> ucbdf1 <− cbind ( ucbdf , deptdummies [ , −6 ] ) [ , − ( 1 : 3 ) ] # only 5 dummies
> head ( ucbdf1 )

V1 V2 V3 admit male deptA deptB deptC
1 Admitted Male A 1 1 1 0 0
2 Admitted Male A 1 1 1 0 0
3 Admitted Male A 1 1 1 0 0
4 Admitted Male A 1 1 1 0 0
5 Admitted Male A 1 1 1 0 0
6 Admitted Male A 1 1 1 0 0

deptD deptE
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Now run the logit, first only with the male predictor, then adding the
departments:

> glm( admit ˜ male , data=ucbdf1 , family=binomial )
. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) male

−0.8305 0 .6104
. . .
> glm( admit ˜ . , data=ucbdf1 , family=binomial )
. . .
C o e f f i c i e n t s :
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( I n t e r c e p t ) male deptA
−2.62456 −0.09987 3.30648

deptB deptC deptD
3.26308 2.04388 2.01187

deptE
1.56717

. . .

So the sign for the male variable switched from positive (men are favored)
to slightly negative (women have the advantage). Needless to say this
analysis (again, in table form, not logit) caused quite a stir, as the evidence
against the university had looked so strong.

By the way, note that the coefficients for all five dummies were positive,
which reflects the fact that all the departments A-E had higher admissions
rates than department F:

> apply ( ucb , c ( 1 , 3 ) ,sum)
Dept

Admit A B C D E F
Admitted 601 370 322 269 147 46
Rejected 332 215 596 523 437 668

7.2.2 A Geometric Look

To see the problem geometrically, here is a variation of another oft-cited
example: We have scalar variables Y , X and I, with:

• I = 0 or 2,w.p. 1/2 each

• X N(10− 2I, 0.5)

• Y = X + 3I + ε, with ε N(0, 0.5)

So, the population regression function with two predictors is

E(Y | X = t, I = k) = t+ 3k (7.1)

With just X as a predictor, we defer this to the exercises at the end of this
chapter, but let’s simulate it all:
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> n <− 1000
> i <− sample ( c ( 0 , 2 ) , n , replace=TRUE)
> x <− rnorm(n ,mean=0,sd=0.5)
> x <− x + 10 − 2∗ i
> eps <− rnorm(n , sd=0.5)
> y <− x + 3∗ i + eps
> plot (x , y )
> abline ( coef (lm( y ˜ x ) ) )
> idxs0 <− which( i == 0)
> abline ( coef (lm( y [ idxs0 ] ˜ x [ idxs0 ] ) ) )
> idxs1 <− setd i f f ( 1 : n , idxs0 )
> abline ( coef (lm( y [ idxs1 ] ˜ x [ idxs1 ] ) ) )
> text ( 9 . 0 , 1 3 . 8 , ’ reg . l i n e , I = 1 ’ )
> text ( 7 . 0 , 8 . 5 , ’ reg . l i n e , I = 0 ’ )
> text ( 8 . 2 , 1 1 . 4 , ’ reg . l i n e , no I ’ )

The result, shown in Figure 7.1, dramatizes the problem. If we I as a
predictor, we positive slopes for the regression function (slopes plural, as
there are two possible values of I. But if do not know/use I, the slope is
negative.

7.2.3 The Verdict

Simpson’s is not really a paradox — let’s just call it Simpson’s Phenomenon
— but is crucially important to keep in mind in applications in which
Description is the goal. And the solution to the “paradox” is to think twice
before deleting any predictor variables.

Ironically, this last point is somewhat at odds with the theme of Chapter
9, in which we try to pare down the number of predictors. When we have
correlated variables, such as Gender and Department in the admissions
data, it might be tempting to delete one or more of them on the grounds
of “redundancy,” but we first should check the effects of deletion, e.g. sign
change.2

On the other hand, this is rather consistent with the method of ridge re-
gression in Chapter 8. That approach attempts to ameliorate the effects
of correlated predictor variables , rather than resorting to deleting some of
them.

Once again, we see that regression and classification methodology does not

2In the admissions data, the correlation, though substantial, would probably jot war-
rant deletion in the first place, but the example does illustrate the dangers.
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Figure 7.1: Geometric View of Simpson’s Paradox
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always offer easy, pat solutions.

7.3 Comparing Groups in the Presence of Co-
variates

Recall the my old consulting problem from Section 1.9.1:

Long ago, when I was just finishing my doctoral study, I had
my first experience in statistical consulting. A chain of hos-
pitals was interested in comparing the levels of quality of care
given to heart attack patients at its various locations. A prob-
lem was noticed by the chain regarding straight comparison of
raw survival rates: One of the locations served a largely elderly
population, and since this demographic presumably has more
difficulty surviving a heart attack, this particular hospital may
misleadingly appear to be giving inferior care.

How do we deal with such situations?

7.3.1 ANCOVA

There is a classical statistical method named Analysis of Covariance, used
to compare several groups in terms of a variable Y , in the presence of
covariates. It assumes:

(a) Conditional mean response is a linear function of the covariates.

(b) Coefficients of the predictors are the same across groups, except for
the constant term β0.

(c) Conditional variance is constant, both within and between groups.

The difference between groups is then taken to be the difference between
constant terms.

But wait a minute, you ask, isn’t this just what we’ve been doing with
dummy variables? The answer of course is yes. See the next section.
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7.3.2 Example: Programmer/Engineer 2000 Census Data

Consider again the census data on programmer and engineer salaries, par-
ticularly the analysis in Section ??. Considering the dummy variables Gen-
der, MS and PhD, we have six subgroups that could be compared.3 Our
use here of lm(), plus the fact that we don’t have any interaction terms
involving the dummies, implies assumptions (a)-(c) in the last section.

The constant term for any group follows from such considerations. For
example, the one for the group consisting of female PhDs, the constant
term is

63812.415− 10336.835 + 20557.235 = −663592 (7.2)

We could then compare the six groups in this manner.

7.3.3 Answering Other Subgroup Questions

But we could go further. The coefficients of the dummy variables are obvi-
ously quite useful, but they are just marginal quantities, i.e. they measure
the effect on mean response of a one-unit increase in a predictor, such as
a one-year increase in age. It may also be useful to study overall effects
within groups.

In the programmer/engineer data, the estimated coefficient for PhD was
$20557.235. But the distribution of the various predictors of those with
doctorates will likely be substantially different from the data as a whole.
The doctorate holders are more likely to be older, more likely to be male
and so on. (Indeed, they may also be more likely to be unemployed.)

So, how can we assess how the PhDs as a group are doing? For example,
in purely financial terms, how much did having a PhD impact their wage
income?

We can answer such questions by appealing to the Law of Iterated Expec-
tations,

EV = E[E(V | U)]M (7.3)

3The nature of the data definition is such that the MS and PhD variables can’t
simultaneously be 1. Note that ordinarily we would be interested in the dummies indi-
vidually, rather than defining the subgroups, but for the sake of illustration let’s suppose
the groups are of interest.



7.4. UNOBSERVED PREDICTOR VARIABLESS 205

First, let’s establish a basis for comparison:

> l ibrary ( r e g t o o l s )
> data ( prgeng )
> pe <− prgeng
> pe$ms <− as . integer ( pe$educ == 14)
> pe$phd <− as . integer ( pe$educ == 16)
> pecs <− pe [ pe$occ >= 100 & pe$occ <= 109 , ]
> pecs1 <− pecs [ , c ( 1 , 7 , 9 , 1 2 , 1 3 , 8 ) ]
> pecs1doc <− pecs1 [ pecs1$phd , ]
> mean( pecs1doc$wageinc )
[ 1 ] 75000

So we estimate the mean wage income of all PhDs to be $75,000. But what
if they didn’t have PhDs? What if they had stopped their education at a
Master’s degree?

We can answer that question using (7.3). We take our subgroup data,
pecs1doc, change their status from PhD to MS, then average our estimated
regression function over this subgroup:

> pecs1doc$ms <− 1
> pecs1doc$phd <− 0
> lmout <− lm( wageinc ˜ . , data=pecs1 )
> prout <− predict ( lmout , pecs1doc [ , −7 ] )
> mean( prout )
[ 1 ] 77395.88

Oh, this is a little disturbing. If these PhDs had not pursued a doctorate,
they actually would have been making about $2400 more, rather than the
$20,000 less that the coefficient of the PhD dummy variable had suggested.

Of course, this then indicates a need for further analysis. For example,
was the discrepancy due to the PhDs working in lower-paying sectors of
the economy, such as education or civil service? And we should double-
check the accuracy of our linear model, and so on. But it is clear that this
approach can be used for lots of other interesting investigations.

7.4 Unobserved Predictor Variabless

In Statistical Heaven, we would have data on all the variables having sub-
stantial relations to the response variable. Reality is sadly different, and
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often we feel that our analyses are hampered for lack of data on crucial
variables.

Statisticians have actually developing methodology to deal with this prob-
lem. Not surprisingly, the methods have stringent assumptions, and they
are hard to verify. But they should be part of the toolkit of any data scien-
tist, either to use where appropriate or at least understand when presented
with such analyses done by others. The following sections will provide brief
introductions to such methods.

7.4.1 Instrumental Variables (IV)

This one is quite controversial. It’s primarily used by economists, but has
become increasingly popular in the social and life sciences.

Suppose we are interested in the relation between Y and two predictors,
X(1) and X(2). We observe Y and X(1) but not X(2). We believe that
the two population regression functions (one predictor vs. two) are well
approximated by the linear model:4

E(Y | X(1)) = β01 + β11X
(1) (7.4)

E(Y | X(1), X(2)) = β02 + β12X
(1) + β22X

(2) (7.5)

We are primarily interested in the role of X(1), i.e. the value of β12. How-
ever, as has been emphasized so often in this chapter, generally

β11 6= β12 (7.6)

A commonly offered example concerns a famous economic study regarding
the returns to education. Here Y is weekly wage and X(1) is the number of
years of schooling. The concern was that this analysis doesn’t account for
“ability”; highly-able people might pursue many years of education, and
thus get a good wage due to their ability, rather than the education itself.
If a measure of ability were included in our data, we could simply use it as
a covariate and fit the model (7.5), but no such measure was included in
the data.5

4The second model does not imply the first. What if X(2) = X(1) 2, for instance?
5Of course, even with better data, “ability” would be hard to define. Does it mean

IQ (of which I am very skeptical), personal drive or what?
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The instrumental variable approach involves using a variable that is in-
tended to remove from X(1) the portion of that variable that involves abil-
ity. If this works — a big “if” — then we will be able to measure the
effect of years of schooling without the confounding effect of ability. The
instrumental variable, or simply the instrument, is observable.

7.4.1.1 The IV Method

Let Z denote our instrument. Its definition consists of two conditions (let
ρ denote population correlation):

(a) ρ(Z,X(1)) 6= 0

(b) ρ(Z,X(2)) = 0

In other words, the instrument is uncorrelated with the unseen predictor
variable, but is correlated with the response variable.6

In the years-of-schooling example, the instrument is distance from a college.
The rationale here is that, if there are no nearby postsecondary institutions,
the person will find it difficult to pursue a college education, and may well
decide to forego it.7 That gives us condition (a), and it seems reasonable
that this variable should be unrelated to ability.8 In this manner, we hope
to capture that part of X(1) that is unrelated to ability.

Where do these conditions (a) and (b) come from mathematically? Let’s
first do a (population) calculation:

Cov(Z, Y ) = β12Cov(Z,X(1) + β22Cov(Z,X(2)) = β12Cov(Z,X(1)) (7.7)

and thus

β12 =
Cov(Z, Y )

Cov(Z,X(1))
(7.8)

=
ρ(Z, Y ) σ(Y )

ρ(Z,X(1)) σ(X(1))
(7.9)

6Our focus here is on linear models. In nonlinear cases, we must ask for independence
rather than merely lack of correlation.

7The study was based on data from 1980, when there were fewer colleges in the U.S.
than there are now.

8This could be debated, of course. See Section 7.4.1.5.
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where for any random variable W , σ(W ) denotes its population standard
deviation.

Since we can estimate Cov(Z, Y ) and Cov(Z,X(1)) from our sample, we
can thus estimate the parameter of interest, β12 — in spite of not observing
X(2).

This is wonderful! Well, wait a minute...is it too good to be true? Well, as
noted, the assumptions are crucial, such as:

• We assume the linear models (7.4) and (7.5). The first can be assessed
from our data, but the second cannot.

• We assume condition (b) above, i.e. that our instrument is uncorre-
lated with our unseen variable. Often we are comfortable with that
assumption — e.g. that distance from a college is not related to ability
— but again, it cannot be verified.

• We need the instrument to have a fairly substantial correlation to the
observed predictor, i.e. ρ(Z,X(1)) should be substantial. If it isn’t,
then we have a small or even tiny denominator in (7.9), so that the

sample variance of the quotient — and thus of our β̂12 will be large,
certainly not welcome news.

7.4.1.2 2 Stage Least Squares:

Another way to look at the IV idea is 2 Stage Least Squares (2SLS), as
follows. Recall the phrasing used above, that the instrument

is a variable that is intended to remove from X(1) the portion
of that variable that involves ability.

That suggests that regressing X ;(1) on Z.9

Let’s see what happens. Using (7.5), write

E(Y | Z) = β0 + β11E(X(1)|Z) + β12E(X(2)|Z) (7.10)

9The term “regress V on U means to model the regression function of V given U .
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By assumption, Z and X(2) are uncorrelated. If they are also bivariate
normally distributed, then they are independent. Assuming this, we have

E(X(2)|Z) = E[X(2)] (7.11)

In other words,

E(Y | Z) = c+ β11E(X(1)|Z) (7.12)

for a constant c = β0 + E[X(2)].

But E(X(1)|Z) is the regression of X(1) on Z. In other words, the process
is as follows:

2 Stage Least Squares:

• First regress X(1) on the instrument Z, saving the fitted
values.

• Then regress Y on those fitted values.

• The resulting estimated slope will be β̂11, the estimate we
are seeking.

In other words, the IV method can be viewed as an application of 2SLS,
with the predictor variable in the first stage being our instrument.

In terms of R, this would mean

lmout <− lm( x1 ˜ z )
e s t r e g <− predict ( lmout )
b11hat <− coef (lm( y ˜ e s t r e g ) ) [ 2 ]

However, there are more sophisticated R packages for this, which do more
than just find that point estimae β̂11, as we will see in the next section.

7.4.1.3 Example: Price Elasticity of Demand

One of the popular R functions for IV computation is ivreg(), in the AER
package. That package’s prime example deals with the effects of price on
cigarette consumption. (Note: Our analysis here will be a simplified version
of the example in the package.)
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In the example, they first compute relative price, rprice, to adjust for
inflation. They also compute an instrument, tdiff, as follows.

The problem is that price and demand are interrelated; if demand increases,
the price will likely go up too. So, the unseen variable here is that part
of demand that comes from mutual interaction of price and demand. But
part of price is also determined by tax on the product, which the authors
use as their instrument:

> data ( ” CigarettesSW ” , package = ”AER” )
> cgd <− CigarettesSW
> cgd$ r p r i c e <− with ( cgd , p r i c e / cp i )
> cgd$ t d i f f <− with ( cgd , ( taxs − tax )/ cp i )

Now, we should check that this instrument will be useful. As noted earlier,
it should have substantial correlation with its partner variable. Let’s check:

> cor ( cgd$ rp r i c e , cgd$ t d i f f )
[ 1 ] 0 .7035012

Good, so let’s run the IV model:

> i vout <− i v r e g ( packs ˜ r p r i c e | t d i f f , data=cgd )
> summary( ivout )
. . .
C o e f f i c i e n t s :

Estimate Std . Error t value Pr(>| t | )
( I n t e r c e p t ) 219.5764 16.9894 12 .924 < 2e−16
r p r i c e −1.0195 0 .1559 −6.539 3 .2 e−09

( I n t e r c e p t ) ∗∗∗
r p r i c e ∗∗∗
. . .
Mult ip l e R−Squared : 0 .4905 , Adjusted R−squared : 0 .4851
. . .

Not surprisingly (and gratifyingly to government policymakers who wish
to reduce cigarette consumption), there does appear to be a substantial
negative affect of a price increase on demand – apart from the effect that
demand itself has on price.

Note the syntax of ivreg(). In the formula,

packs ˜ r p r i c e | t d i f f
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the response and predictor variable go before the vertical line, and the
instrument is listed after it.

Just to check that we’re using ivreg() correctly, let’s use 2SLS:

> summary(lm( packs ˜ predict (lm( r p r i c e ˜ t d i f f ) ) , data=cgd ) )
. . .
C o e f f i c i e n t s :

Estimate Std . Error
( I n t e r c e p t ) 219.5764 20.8631
predict (lm( r p r i c e ˜ t d i f f ) ) −1.0195 0 .1915

t value Pr(>| t | )
( I n t e r c e p t ) 10 .525 < 2e−16 ∗∗∗
predict (lm( r p r i c e ˜ t d i f f ) ) −5.325 6 .88 e−07 ∗∗∗
. . .
Mult ip l e R−squared : 0 .2317 , Adjusted R−squared : 0 .2235
. . .

Yes, it matches. Note, though, that using 2SLS “manually” like this is not
desirable, because the standard errors and so on that are emitted by the
second lm() call won’t be correct; ivreg() does use 2SLS internally, but
it make the proper corrections. For example, the standard error for price
reported by 2SLS above is 0.1915, but actually should be 0.1559, according
to ivreg().

One more thing: Why not simply use the instrument directly as a predictor?
We certainly could do that:

. . .
C o e f f i c i e n t s :
( I n t e r c e p t ) r p r i c e t d i f f

223 .9610 −1.0676 0 .2004

Indeed, in this instance, the estimated coefficients for the price variable
were almost identical. But in general, this will not be the case, and in
settings in which the quantity β12 is of central interest, the IV method can
be useful.

7.4.1.4 Multiple Predictors

What if we have several observable predictors?10 The same analysis shows
that we need one instrument for each one. How does the estimation then

10We are still assuming just one unobserved predictor, which might be viewed as
several of them combined.
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work?

Suppose our population model is

E(Y | X(1), ..., X(k+1)) = β0,k+1+β1,k+1X
(1)+...+βk+1,k+1X

(k+1) (7.13)

with X(1), ..., Xk observed but Xk+1 unobserved. The extension of (7.7)
will then be

Cov(Y,Zi) = β1,k+1Cov(X(1), Zi) + ...+ βk,k+1Cov(X(k), Zi) (7.14)

This sets up k linear equations in k unknowns, which can be solved for the
estimated βj,k+1. This then is a Method of Moments estimator, so we can
also obtain standard errors.

In many cases, it is felt that a predictor is unrelated to the unobserved
variable, and that predictor will serve as its own instrument. In such a
situation, the fitted values reduce to the values of the predictor itself.

7.4.1.5 The Verdict

In our years-of-schooling example (Section 7.4.1.1), it was mentioned that
the assumption that the distance variable was unreleated to ability was
debatale. For example, we might reason that able children come from able
parents, and able parents believe college is important enough that they
should live near one. This is an example of why the IV approach is so
controversial.

Nevertheless, the possible effect of unseen variables itself can make an anal-
ysis controversial. IVs may be used in an attempt to address such problems.
However, extra care is warranted if this method is used.

7.4.2 Random Effects Models

Continuing our theme here in Section 7.4 of approaches to account for
unseen variables, we now turn briefly to mixed effects models. Consider a
usual linear regression model for one predictor X,

E(Y | X = t) = β0 + β1t (7.15)
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for unknown constants β0 and β1 that we estimated from the data.

Now alter the model so that β0 is random, each unit (e.g. each person)
having a different value, though all having a common value of β1. We
might observe people over time, measuring something that we model as
having a linear time trend; the slope of that trend is assumed the same for
all people, but the starting point β0 is not.

We might write our new model as

E(Y | X = t) = β0 +B + β1t (7.16)

where α is a random variable having mean 0. Each person has a different
value of B, with the slopes for people now being a random variable with
mean β0 and variance σ2

a.

It is more common to write

Y = β0 + α+ β1X + ε (7.17)

where Eε has mean 0 and variance σ2
e . The population values to be esti-

mated from our data are β0, β1, σ2
a and σ2

e . Typically these are estimated
via Maximum Likelihood (with the assumptions that α and ε have normal
distributions, etc.), though the Method of Moments is possible too.

The variables α and ε are called random effects (they are also called variance
components), while the β0 + α + β1X portion of the model is called fixed
effects. This phrasing is taken from the term fixed-X regression, which we
saw in Section 2.2; actually, we could view this as a random-X setting,
but the point is that even then we are not estimating the distribution of X.
Due to the presence of both fixed and random effects, the term mixed-effects
model is used.

7.4.2.1 Example: Movie Ratings Data

The famous Movie Lens data (http://files.grouplens.org/datasets/
movielens/ provide ratings of many movies by many users. We’ll use the
100,000-rating data here, which includes some demographic variables for
the users. The R package lme4 will be our estimation vehicle.

First we need to merge the ratings and demographic data:

> r a t i n g s <− read . table ( ’u . data ’ )

http://files.grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/
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> names( r a t i n g s ) <− c ( ’ usernum ’ , ’movienum ’ , ’ r a t i n g ’ , ’ transID ’ )
> demog <− read . table ( ’u . user ’ , sep=’ | ’ )
> names(demog) <− c ( ’ usernum ’ , ’ age ’ , ’ gender ’ , ’ occ ’ , ’ ZIP ’ )
> u . b ig <− merge( ra t ing s , demog ,by . x=1,by . y=1)
> u <− u . b ig [ , c ( 1 , 3 , 5 , 6 ) ]

We might speculate that older users are more lenient in their ratings. Let’s
take a look:

> z <− lmer ( r a t i n g ˜ age+gender +(1 |usernum ) , data=u)
> summary( z )
. . .
Random ef fects :

Groups Name Variance Std . Dev .
usernum ( I n t e r c e p t ) 0 .175 0 .4183
Res idual 1 .073 1 .0357

Number o f obs : 100000 , groups : usernum , 943

Fixed ef fects :
Estimate Std . Error t value

( I n t e r c e p t ) 3 .469074 0.048085 72 .14
age 0.003525 0.001184 2 .98
genderM −0.002484 0.031795 −0.08

Cor r e l a t i on o f Fixed E f f e c t s :
( I n t r ) age

age −0.829
genderM −0.461 −0.014

First, a word on syntax. Here our regression formula was

r a t i n g ˜ age + gender + ( 1 | usernum )

Most of this looks the same as what we are accustomed to in lm(), but the
last term indicates the random effect. In R formulas, ‘1’ is used to denote
a constant term in a regression equation (we write ‘-1’ in our formula if
we want no such term), and here ‘(1—usernum)’ specifies a random effects
constant term which depends on usernum but is unobserved.

So, what is the answer to our speculation about age? Blind use of signif-
icance testing would mean announcing “Yes, there is a significant positive
relation between age and ratings.” But the effect is tiny; a 10-year differ-
ence in age would mean an average increase of only 0.03525, on a ratings
scale of 1 to 5. There doesn’t seem to be much different between men and
women either.
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The estimated variance of α, 0.175, is much smaller than that for ε, 1.073.

Of course, much more sophisticated analyses can be done, adding a variance
component for the movies, accounting for the different movie genres and so
on.
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Chapter 10

Smoothing-Based
Nonparametric
Estimation

In previous chapters, we often made use of k-Nearest Neighbor (kNN) re-
gression analysis. This considered a nonparametric approach, because we
do not assume any parametric model for the regression function, µ(t) =
E(Y |X = t).

In addition, kNN is known as a smoothing method. In taking the average
of Y values near the point X = t, we are “smoothing” those values. A very
close analogy is that of photo editing software, such as the open-source
GNU Image Manipulation Program (GIMP). An image may have some
erroneous pixels here and there, so we replace every pixel by the mean of
its neighbors, thus “smoothing out” the image. That way we capture the
overall trend of the image in that little section.

We might do something a bit more sophisticated, such as using the median
neighbor value, rather than the mean. This would likely eliminate stray
pixels altogether, although it would likley give a somewhat rougher image.

And that brings up another question: How much smoothing should we do,
i.e. how many nearest neighbors should we use? The more neighbors we use,
the smoother our image — but the more we lose some of the fine details of
an image. In an image of a face, for instance, if our neighborhood of an eye
is so large that it also includes the chin, then we’ve homogenized the entire

221
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face, and have a useless image (unless we are trying to hide the person’s
identity!). Too little smoothing, on the other hand, will mean that those
rogue pixels may still stand out.

So, we wish to find a “happy medium” value for our number of neighbors.
This is easier said then done, and we will look into this in some detail in
this chapter.

We will also look at variations of kNN, such as kernel methods. These
are in a sense the opposite of kNN. The latter looks at a fixed number of
neighbors, but the radius of the neighborhood is random, due to our having
a random sample from a population. With kernel-based estimation, we fix
the radius of the neighborhood, which means the number of neighbors will
be random.

In Chapter 11, we will study another kind of nonparametric regression anal-
ysis, not smoothing-based. Actually, we will refer to it as quasi-parametric
rather than nonparametric, but that can wait. Let’s take a look at smooth-
ing methods now.

10.1 Kernel Estimation of Regression Func-
tions

WE COVER THIS BECAUSE (A) IT IS ANOTHER WIDELY USED
TECH, AND (B) IT IS EASIER TO TREAT MATHEMATICALLY

10.1.1 What the Theory Says

10.2 Choosing the Degree of Smoothing

XVAL, PLUGIN ETC.a

10.3 Bias Issues

LINEAR SMOOTHING, LOESS ETC.
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10.4 Convex Regression

MAYBE

10.4.1 Empirical Methods
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