Norm Matloff University of California at Davis

Parallel R, Revisited

Norm Matloff University of California at Davis

UseR! 2012 Vanderbilt University, June, 2012

URL for these slides: http://heather.cs.ucdavis.edu/user2012.pdf (repeated on final slide)

Norm Matloff University of California at Davis

The Need

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

The Need

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Data sets getting larger and larger.

- Data sets getting larger and larger.
- Algorithms becoming more and more complex,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Data sets getting larger and larger.
- Algorithms becoming more and more complex,e.g. clustering, machine learning, high-dim methods.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Data sets getting larger and larger.
- Algorithms becoming more and more complex,e.g. clustering, machine learning, high-dim methods.
- "Big data" the latest buzzword in the tech world.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Data sets getting larger and larger.
- Algorithms becoming more and more complex,e.g. clustering, machine learning, high-dim methods.
- "Big data" the latest buzzword in the tech world.

Norm Matloff University of California at Davis

New York Times, Feb. 11, 2012

Norm Matloff University of California at Davis

New York Times, Feb. 11, 2012

NEWS ANALYSIS The Age of Big Data

By STEVE LOHR Published: February 11, 2012 | 🛡 82 Comments

GOOD with numbers? Fascinated by data? The sound you hear is opportunity knocking.

Mo Zhou was snapped up by I.B.M. last summer, as a freshly minted Yale M.B.A., to join the technology company's fast-growing ranks of data consultants. They help businesses make sense of an explosion of data — Web traffic and social network comments, as well as software and sensors that monitor

Norm Matloff University of California at Davis

SAS Web page

Norm Matloff University of California at Davis

SAS Web page

NEWS / sascom MAGAZINE

Newsroom

- Press Releases
- Media Coverage
- Analyst Viewpoints
- About SAS
- Awards
- News: SAS Companies

A Marian CAC Destances

Big data: big challenges, big opportunities

An expert panel discusses how organizations can capitalize on big data to generate new ideas, build new markets and expand existing ones

Participating in a panel discussion at the recent Ideas Economy conference put on by The Economist, SAS Chief Executive Officer Jim Goodnight and other high-tech execs discussed so-called "big data" and the challenges and opportunities companies face in dealing with the ever-growing data deluge.

Norm Matloff University of California at Davis

Oracle Web page

Norm Matloff University of California at Davis

Oracle Web page

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The term big data draws a lot of attention, but behind the hype there's a simple story. For decades, companies have been making business decisions based on transactional data stored in relational databases. Beyond that critical data, however, is a potential treasure trove of less structured data: weblogs, social media, email, sensors, and photographs that can be mined for useful information.

Norm Matloff University of California at Davis

Oracle, cont'd.

Norm Matloff University of California at Davis

Oracle, cont'd.

But Oracle rocks! :-)

Norm Matloff University of California at Davis

Oracle, cont'd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

But Oracle rocks! :-)

Oracle R Enterprise

Integrates the Open-Source Statistical Environment R with Oracle Database 11g

Oracle R Enterprise allows analysts and statisticians to run existing R applications and use the R client directly a Oracle Database 11g—vastly increasing scalability, performance and security. The combination of Oracle Databa delivers an enterprise-ready, deeply integrated environment for advanced analytics. Users can also use analytic where they can analyze data and develop R scripts for deployment while results stay managed inside Oracle Datab

Norm Matloff University of California at Davis

Where Is Parallel R Today?

Norm Matloff University of California at Davis

Where Is Parallel R Today?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Tons of packages:

Norm Matloff University of California at Davis

Where Is Parallel R Today?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Tons of packages: CRAN Task View: High-Performance and Parallel Computing with R

Norm Matloff University of California at Davis

Where Is Parallel R Today?

- Tons of packages: CRAN Task View: High-Performance and Parallel Computing with R
- Base R now incorporates **snow** (cluster, multicore)

Norm Matloff University of California at Davis

Where Is Parallel R Today?

- Tons of packages: CRAN Task View: High-Performance and Parallel Computing with R
- Base R now incorporates **snow** (cluster, multicore) and **multicore** (multicore).

Norm Matloff University of California at Davis

Where Is Parallel R Today?

- Tons of packages: CRAN Task View: High-Performance and Parallel Computing with R
- Base R now incorporates **snow** (cluster, multicore) and **multicore** (multicore).
- Mainly useful on "embarrassingly parallel" (EP) problems

Norm Matloff University of California at Davis

Where Is Parallel R Today?

- Tons of packages: CRAN Task View: High-Performance and Parallel Computing with R
- Base R now incorporates **snow** (cluster, multicore) and **multicore** (multicore).
- Mainly useful on "embarrassingly parallel" (EP) problems—those dividable into subproblems that need little or no intercommunication.

Norm Matloff University of California at Davis

Where Is Parallel R Today?

- Tons of packages: CRAN Task View: High-Performance and Parallel Computing with R
- Base R now incorporates **snow** (cluster, multicore) and **multicore** (multicore).
- Mainly useful on "embarrassingly parallel" (EP) problems—those dividable into subproblems that need little or no intercommunication.
- What about non-EP apps?

Norm Matloff University of California at Davis

Challenges

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Norm Matloff University of California at Davis

Challenges

(ロ)、(型)、(E)、(E)、 E) の(の)

• Multiplatform desirable:

(ロ)、(型)、(E)、(E)、 E) の(の)

Parallel R, Revisited

- Multiplatform desirable:
 - multicore

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parallel R, Revisited

- Multiplatform desirable:
 - multicore
 - cluster

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

Parallel R, Revisited

- Multiplatform desirable:
 - multicore
 - cluster
 - GPU

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Multiplatform desirable:
 - multicore
 - cluster

Parallel R, Revisited

Norm Matloff University of California at Davis

• GPU (and other coming accelerators?)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Multiplatform desirable:
 - multicore
 - cluster

Parallel R, Revisited

- GPU (and other coming accelerators?)
- **foreach()** multiplatform, but for R code, not C, and does not work on GPU
- R not threaded

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Multiplatform desirable:
 - multicore
 - cluster

Parallel R, Revisited

- GPU (and other coming accelerators?)
- **foreach()** multiplatform, but for R code, not C, and does not work on GPU
- R not threaded
 - Very hard, no plans to do it to my knowledge (?).

- Multiplatform desirable:
 - multicore
 - cluster
 - GPU (and other coming accelerators?)
 - foreach() multiplatform, but for R code, not C, and does not work on GPU
- R not threaded
 - Very hard, no plans to do it to my knowledge (?).
 - **Rdsm**, **bigmemory** threads-like, but not good for parallel computation.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへ⊙

Parallel R, Revisited

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Multiplatform desirable:
 - multicore
 - cluster

Parallel R, Revisited

- GPU (and other coming accelerators?)
- **foreach()** multiplatform, but for R code, not C, and does not work on GPU
- R not threaded
 - Very hard, no plans to do it to my knowledge (?).
 - **Rdsm**, **bigmemory** threads-like, but not good for parallel computation.
- Copy-on-write:

- Multiplatform desirable:
 - multicore
 - cluster

Parallel R, Revisited

- GPU (and other coming accelerators?)
- foreach() multiplatform, but for R code, not C, and does not work on GPU
- R not threaded
 - Very hard, no plans to do it to my knowledge (?).
 - **Rdsm**, **bigmemory** threads-like, but not good for parallel computation.
- Copy-on-write: Writing to one vector element sometimes causes copying entire vector.

Norm Matloff University of California at Davis

Challenges, cont'd.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Norm Matloff University of California at Davis

Challenges, cont'd.

Norm Matloff University of California at Davis

Challenges, cont'd.

"When you come to a fork in the road, take it"—famous baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

Norm Matloff University of California at Davis

Challenges, cont'd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;

Norm Matloff University of California at Davis

Challenges, cont'd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?

Norm Matloff University of California at Davis

Challenges, cont'd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator:

Norm Matloff University of California at Davis

Challenges, cont'd.

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"

Norm Matloff University of California at Davis

Challenges, cont'd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year

Norm Matloff University of California at Davis

Challenges, cont'd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software;

Norm Matloff University of California at Davis

Challenges, cont'd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software; same in future?

Norm Matloff University of California at Davis

Challenges, cont'd.

"When you come to a fork in the road, take it"—famous baseball player and malapropist Yogi Berra

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software; same in future?
 - OpenCL (for GPU and multicore) growth currently stalled?

Norm Matloff University of California at Davis

Challenges, cont'd.

"When you come to a fork in the road, take it"—famous baseball player and malapropist Yogi Berra

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software; same in future?
 - OpenCL (for GPU and multicore) growth currently stalled?

• OpenACC;

Norm Matloff University of California at Davis

Challenges, cont'd.

"When you come to a fork in the road, take it"—famous baseball player and malapropist Yogi Berra

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software; same in future?
 - OpenCL (for GPU and multicore) growth currently stalled?

• OpenACC; for GPUs;

Norm Matloff University of California at Davis

Challenges, cont'd.

"When you come to a fork in the road, take it"—famous baseball player and malapropist Yogi Berra

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software; same in future?
 - OpenCL (for GPU and multicore) growth currently stalled?
 - OpenACC; for GPUs; might become more popular, due to announced connection with OpenMP

Norm Matloff University of California at Davis

Challenges, cont'd.

"When you come to a fork in the road, take it"—famous baseball player and malapropist Yogi Berra

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software; same in future?
 - OpenCL (for GPU and multicore) growth currently stalled?
 - OpenACC; for GPUs; might become more popular, due to announced connection with OpenMP

• uncertainty abounds

Norm Matloff University of California at Davis

Challenges, cont'd.

- Parallel technology in a state of flux:
 - NVIDIA chips currently dominant in the general-purpose GPU (GPGPU) world;true in future?
 - Intel Knight's Ferry accelerator: out "next year"—every year
 - CUDA (extension of C) currently GPU dominant software; same in future?
 - OpenCL (for GPU and multicore) growth currently stalled?
 - OpenACC; for GPUs; might become more popular, due to announced connection with OpenMP
 - uncertainty abounds—so which way should R go?

Norm Matloff University of California at Davis

Outline of This Talk

Norm Matloff University of California at Davis

Outline of This Talk

• An algorithmic approach:

Norm Matloff University of California at Davis

Outline of This Talk

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- An algorithmic approach:
 - Software alchemy:

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific:

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.
- My new package: Rth:

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.
- My new package: Rth:
 - Assuming parallel R will mainly consist of C/C++ interface.

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.
- My new package: **Rth**:
 - Assuming parallel R will mainly consist of C/C++ interface.
 - But need some multiplatform capability.

Norm Matloff University of California at Davis

Outline of This Talk

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.
- My new package: Rth:
 - Assuming parallel R will mainly consist of C/C++ interface.
 - But need some multiplatform capability.
 - Rth: R interface to Thrust.

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.
- My new package: Rth:
 - Assuming parallel R will mainly consist of C/C++ interface.
 - But need some multiplatform capability.
 - Rth: R interface to Thrust.
 - Thrust is C++ package for high-level operations, e.g. sort, search, prefix scan.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.
- My new package: Rth:
 - Assuming parallel R will mainly consist of C/C++ interface.
 - But need some multiplatform capability.
 - Rth: R interface to Thrust.
 - Thrust is C++ package for high-level operations, e.g. sort, search, prefix scan.

• Thrust builds to multiple backends, including GPU and multicore.

Norm Matloff University of California at Davis

Outline of This Talk

- An algorithmic approach:
 - Software alchemy: Change non-embarrassingly parallel to EP.
 - Statistics-specific: Assumes i.i.d. data.
- My new package: Rth:
 - Assuming parallel R will mainly consist of C/C++ interface.
 - But need some multiplatform capability.
 - Rth: R interface to Thrust.
 - Thrust is C++ package for high-level operations, e.g. sort, search, prefix scan.
 - Thrust builds to multiple backends, including GPU and multicore.
 - So, Rth is a tool for easily parallelizing many R operations, usable on both GPU and multicore.

Norm Matloff University of California at Davis

Software Alchemy: Non-EP to EP

Norm Matloff University of California at Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

Norm Matloff University of California at Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into chunks, work on each chunk, then combine results.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into chunks, work on each chunk, then combine results.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• But this requires EP to be worthwhile.

Norm Matloff University of California at Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

- Old, old idea in parallel processing: Break data into chunks, work on each chunk, then combine results.
- But this requires EP to be worthwhile.
- New approach: Exploit the statistical properties.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

- Old, old idea in parallel processing: Break data into chunks, work on each chunk, then combine results.
- But this requires EP to be worthwhile.
- New approach: Exploit the statistical properties.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Key point:

Norm Matloff University of California at Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

- Old, old idea in parallel processing: Break data into chunks, work on each chunk, then combine results.
- But this requires EP to be worthwhile.
- New approach: Exploit the <u>statistical</u> properties.
- Key point: Calculate a **statistically equivalent** quantity that lends itself to EP computation.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Advantages of NEP2EP

Norm Matloff University of California at Davis Advantages of NEP2EP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Works on R level; no need to resort to C/C++.

Norm Matloff University of California at Davis

Advantages of NEP2EP

- Works on R level; no need to resort to C/C++.
- Fine on either multicore or cluster.

Norm Matloff University of California at Davis

Advantages of NEP2EP

- Works on R level; no need to resort to C/C++.
- Fine on either multicore or cluster.
- Simple to use—e.g. from **snow**.

Norm Matloff University of California at Davis

Advantages of NEP2EP

- Works on R level; no need to resort to C/C++.
- Fine on either multicore or cluster.
- Simple to use—e.g. from **snow**.
- Has a surprising benefit even on unicore.

Norm Matloff University of California at Davis

Advantages of NEP2EP

- Works on R level; no need to resort to C/C++.
- Fine on either multicore or cluster.
- Simple to use—e.g. from snow.
- Has a surprising benefit even on unicore.
- Bonus: Automatic generation of standard errors (that you didn't have before).

Norm Matloff University of California at Davis

How NEP2EP Works

Norm Matloff University of California at Davis

How NEP2EP Works

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Suppose we wish to calculate an estimator $\widehat{\theta},$ say regression coefficients.

Norm Matloff University of California at Davis

How NEP2EP Works

- Suppose we wish to calculate an estimator $\widehat{\theta},$ say regression coefficients.
- Have n data points, r processes (e.g. r = 2 for dual core on a single machine).

Norm Matloff University of California at Davis

How NEP2EP Works

- Suppose we wish to calculate an estimator $\widehat{\theta},$ say regression coefficients.
- Have n data points, r processes (e.g. r = 2 for dual core on a single machine).
- Break into r chunks of n/r data points each.

Norm Matloff University of California at Davis

How NEP2EP Works

- Suppose we wish to calculate an estimator $\widehat{\theta},$ say regression coefficients.
- Have n data points, r processes (e.g. r = 2 for dual core on a single machine).
- Break into r chunks of n/r data points each.
- For i = 1,...,r calculate $\hat{\theta}$ on chunk i, yielding $\tilde{\theta}_i$.

Norm Matloff University of California at Davis

How NEP2EP Works

- Suppose we wish to calculate an estimator $\widehat{\theta},$ say regression coefficients.
- Have n data points, r processes (e.g. r = 2 for dual core on a single machine).
- Break into r chunks of n/r data points each.
- For i = 1,...,r calculate $\hat{\theta}$ on chunk i, yielding $\tilde{\theta}_i$.
- Average all those chunked values:

$$\overline{\theta} = \frac{1}{r} \sum_{i=1}^{r} \widetilde{\theta}_i$$

Norm Matloff University of California at Davis

R Code (Snow)

<□ > < @ > < E > < E > E のQ @

R Code (Snow)

wrapper <- function(cls,z,probpars,sfrndmz=F) if (!is.matrix(z)) z <- matrix(z,ncol=1) n <- probpars\$n</pre> if (rndmz) z <- z[sample(1:n,n,replace=F),] nnodes <- length(cls) obslist <- list()</pre> chunksize <- n / nnodes for (i in 1:nnodes) { firstobs <-1 + (i-1) * chunksize lastobs <- firstobs + chunksize - 1 if (lastobs == n) lastobs <- n obslist [[i]] <- z[firstobs:lastobs,]</pre> } thts <- clusterApply(cls, obslist, sf) tht $\leq -$ do. call ("+", thts) tht / nnodes

Parallel R, Revisited

University of California at

Davis

Norm Matloff University of California at Davis

What Does That Give You?

Norm Matloff University of California at Davis

What Does That Give You?

 The result, θ
 can be proven to have the same asymp. statistical accuracy as the original θ
 .

Norm Matloff University of California at Davis

What Does That Give You?

- The result, θ
 can be proven to have the same asymp.
 statistical accuracy as the original θ
 .
- But the computation of $\overline{\theta}$ is EP even if $\widehat{\theta}$ is non-EP.

Norm Matloff University of California at Davis

What Does That Give You?

- The result, $\overline{\theta}$ can be proven to have the same asymp. statistical accuracy as the original $\widehat{\theta}$.
- But the computation of $\overline{\theta}$ is EP even if $\widehat{\theta}$ is non-EP.
- Alchemy! Non-EP \rightarrow EP.

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Say n obs., r processes (e.g. r = 2 for dual core).

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

- Say n obs., r processes (e.g. r = 2 for dual core).
- Say basic alg. takes $O(n^c)$ time.

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

- Say n obs., r processes (e.g. r = 2 for dual core).
- Say basic alg. takes $O(n^c)$ time.
- So, NEP2EP speedup is (roughly) $O(n^c/r^c)$,

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

- Say n obs., r processes (e.g. r = 2 for dual core).
- Say basic alg. takes $O(n^c)$ time.
- So, NEP2EP speedup is (roughly) $O(n^c/r^c)$, speedup of r^c .

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

- Say n obs., r processes (e.g. r = 2 for dual core).
- Say basic alg. takes $O(n^c)$ time.
- So, NEP2EP speedup is (roughly) $O(n^c/r^c)$, speedup of r^c .
- For algs. having c > 1, speedup is *superlinear* (par. proc. term).

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

- Say n obs., r processes (e.g. r = 2 for dual core).
- Say basic alg. takes $O(n^c)$ time.
- So, NEP2EP speedup is (roughly) $O(n^c/r^c)$, speedup of r^c .
- For algs. having c > 1, speedup is *superlinear* (par. proc. term).Not the usual small stuff like cache effects!

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

- Say n obs., r processes (e.g. r = 2 for dual core).
- Say basic alg. takes $O(n^c)$ time.
- So, NEP2EP speedup is (roughly) $O(n^c/r^c)$, speedup of r^c .
- For algs. having c > 1, speedup is *superlinear* (par. proc. term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is $rO(n^c/r^c)$, i.e. $O(n^c/r^{c-1})$.

Norm Matloff University of California at Davis

Rough Theoretical Speedup Analysis

- Say n obs., r processes (e.g. r = 2 for dual core).
- Say basic alg. takes $O(n^c)$ time.
- So, NEP2EP speedup is (roughly) $O(n^c/r^c)$, speedup of r^c .
- For algs. having c > 1, speedup is *superlinear* (par. proc. term).Not the usual small stuff like cache effects!
- Uniprocessing case: Run time is $rO(n^c/r^c)$, i.e. $O(n^c/r^{c-1})$. So, if c > 1 NEP2EP gives a speedup with no parallelism!

Norm Matloff University of California at Davis

NEP2EP Timing Experiments

Norm Matloff University of California at Davis

NEP2EP Timing Experiments

NEP2EP in Snow

Norm Matloff University of California at Davis

NEP2EP Timing Experiments

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- NEP2EP in Snow
- multicore machine, 32 threads (2 CPUs x 8 cores x hyperthreading of 2)

Norm Matloff University of California at Davis

NEP2EP Timing Experiments

- NEP2EP in Snow
- multicore machine, 32 threads (2 CPUs x 8 cores x hyperthreading of 2)
- num. cores = 2,4,8,16,24,32;

Norm Matloff University of California at Davis

NEP2EP Timing Experiments

- NEP2EP in Snow
- multicore machine, 32 threads (2 CPUs x 8 cores x hyperthreading of 2)
- num. cores = 2,4,8,16,24,32; sometimes better beyond 32, probably due to cache/VM effects

Norm Matloff University of California at Davis

NEP2EP Timing Experiments

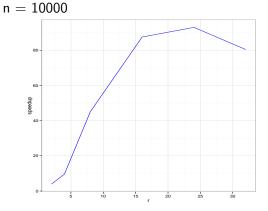
- NEP2EP in Snow
- multicore machine, 32 threads (2 CPUs x 8 cores x hyperthreading of 2)
- num. cores = 2,4,8,16,24,32; sometimes better beyond 32, probably due to cache/VM effects

- procedures tried:
 - Kendall's au
 - quantile regression
 - nonparametric hazard function est.
 - log-concave density est.
 - linear regression (random x)

Norm Matloff University of California at Davis

Kendall's τ

Kendall's τ



3.92X speedup at 2 threads 93.97X speedup at 24 threads

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Davis

Parallel R, Revisited

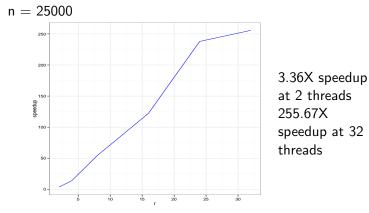
Norm Matloff University of California at

Norm Matloff University of California at Davis

Kendall's τ , cont'd.

Norm Matloff University of California at Davis

Kendall's τ , cont'd.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

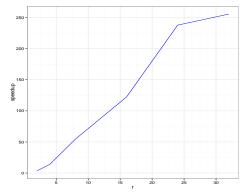
Norm Matloff University of California at Davis

Quantile Regression

Norm Matloff University of California at Davis

Quantile Regression

 $n = 10000, \, p = 10$



0.86X speedup at 2 threads 1.16X speedup at 8 threads

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

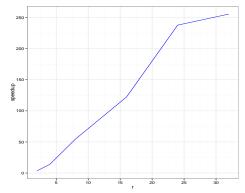
Norm Matloff University of California at Davis

Quantile Regression

Norm Matloff University of California at Davis

Quantile Regression

n = 10000, p = 25



3.36X speedup at 2 threads 255.67X speedup at 32 threads

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

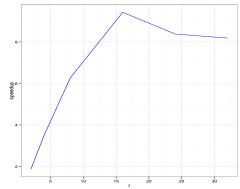
Norm Matloff University of California at Davis

Hazard Function Estimation

Norm Matloff University of California at Davis

Hazard Function Estimation

 $n=25000,\,p=0.2$ (proportion missing); estimate quantiles 0.2, 0.4, 0.6, 0.8



1.87X speedup at 2 threads 9.43X speedup at 16 threads

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

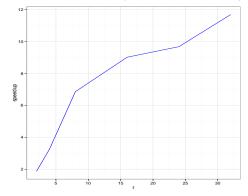
Norm Matloff University of California at Davis

Hazard Function Estimation

Norm Matloff University of California at Davis

Hazard Function Estimation

n = 50000, p = 0.02 (proportion missing)



1.87X speedup at 2 threads 11.69X speedup at 32 threads

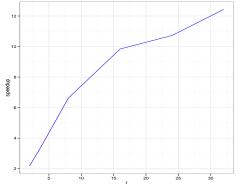
Norm Matloff University of California at Davis

Log Concave Density Estimation

Norm Matloff University of California at Davis

Log Concave Density Estimation

n = 200000



2.17X speedup at 2 threads 12.43X speedup at 32 threads

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Norm Matloff University of California at Davis

Linear Regression

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Norm Matloff University of California at Davis

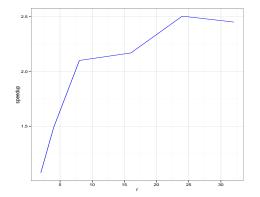
Linear Regression

n = 50000, p = 50; should expect less here, $O(n, p^3)$

Norm Matloff University of California at Davis

Linear Regression

n = 50000, p = 50; should expect less here, $O(n, p^3)$



0.90X speedup at 2 threads 1.97X speedup at 32 threads

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

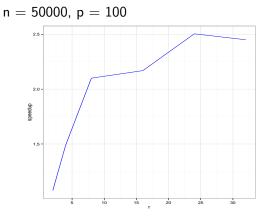
Norm Matloff University of California at Davis

Linear Regression

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Norm Matloff University of California at Davis

Linear Regression

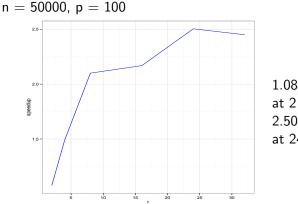


1.08X speedup at 2 threads 2.50X speedup at 24 threads

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Norm Matloff University of California at Davis

Linear Regression



1.08X speedup at 2 threads 2.50X speedup at 24 threads

Put in context: Seligman (2010) found GPU provides speedup only if $\mathsf{r}>1000.$

Norm Matloff University of California at Davis

What About the Large-Sample Nature?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

What About the Large-Sample Nature?

• One can prove that NEP2EP works <u>asymptotically</u>, i.e. gives the same statistical accuracy as the original estimatator.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

What About the Large-Sample Nature?

• One can prove that NEP2EP works <u>asymptotically</u>, i.e. gives the same statistical accuracy as the original estimatator. Is that large-n requirement an issue?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

What About the Large-Sample Nature?

• One can prove that NEP2EP works <u>asymptotically</u>, i.e. gives the same statistical accuracy as the original estimatator. Is that large-n requirement an issue?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• No, not an issue:

Norm Matloff University of California at Davis

What About the Large-Sample Nature?

- One can prove that NEP2EP works <u>asymptotically</u>, i.e. gives the same statistical accuracy as the original estimatator. Is that large-n requirement an issue?
- No, not an issue: Since we're talking about settings where parallel computing is needed, we're working with large samples by definition

Norm Matloff University of California at Davis

What About the Large-Sample Nature?

- One can prove that NEP2EP works <u>asymptotically</u>, i.e. gives the same statistical accuracy as the original estimatator. Is that large-n requirement an issue?
- No, not an issue: Since we're talking about settings where parallel computing is needed, we're working with large samples by definition—the large n is the reason we need parallel computing!

Norm Matloff University of California at Davis

What About the Large-Sample Nature?

- One can prove that NEP2EP works <u>asymptotically</u>, i.e. gives the same statistical accuracy as the original estimatator. Is that large-n requirement an issue?
- No, not an issue: Since we're talking about settings where parallel computing is needed, we're working with large samples by definition—the large n is the reason we need parallel computing!
- NEP2EP gives essentially the same values as the original.

Norm Matloff University of California at Davis

Norm Matloff University of California at Davis

Accuracy

Absolute differences, r = 16:

Accuracy

Parallel R, Revisited

Norm Matloff University of California at Davis

Absolute differences, r = 16:

app.	prob. size	rel. diff.
Kendall	n = 1000	0.005849463
quant. reg.	n = 10000, p = 10	0.001274819
haz. ftn.	n = 25000, p = 0.2	0.007422595
log conc. dens.	n = 25000	0.0003593208
lin. reg.	n = 50000, p = 100	0.0001207394

Norm Matloff University of California at Davis

Rth

Norm Matloff University of California at Davis

Rth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

Norm Matloff University of California at Davis

Rth

- Parallelizing R will need to rely in part on C/C++ code.
- Nice to have the same parallel code work on multicore and GPU systems.

Norm Matloff University of California at Davis

Rth

- Parallelizing R will need to rely in part on $C/C{++}\xspace$ code.
- Nice to have the same parallel code work on multicore and GPU systems. PGP—Pretty Good Parallelism.

Norm Matloff University of California at Davis

Rth

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallelizing R will need to rely in part on C/C++ code.
- Nice to have the same parallel code work on multicore and GPU systems. PGP—Pretty Good Parallelism.
- Nice to have code for high-level operations available (sort, search, prefix scan, etc.).

Norm Matloff University of California at Davis

Rth

- Parallelizing R will need to rely in part on C/C++ code.
- Nice to have the same parallel code work on multicore and GPU systems. PGP—Pretty Good Parallelism.
- Nice to have code for high-level operations available (sort, search, prefix scan, etc.).
- Hopefully make it (somewhat) easy for users to write their own parallel code.

Norm Matloff University of California at Davis

Some Existing Possibilities

Norm Matloff University of California at Davis

Some Existing Possibilities

These work on both multicore and GPUs:

- OpenCL: Extension of C.
- Magma: Matrix routines.
- OpenACC: Like OpenMP for GPUs.

But OpenCL and OpenACC do not provide high-level ops, and Magma is narrow.

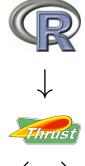
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Rth

Norm Matloff University of California at Davis

Rth



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

Goals

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

Goals

• Provide parallel Thrust code called from R,

Norm Matloff University of California at Davis

Goals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Provide parallel Thrust code called from R,
- Thrust transparent to the ordinary user.

Norm Matloff University of California at Davis

Goals

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Provide parallel Thrust code called from R,
- Thrust transparent to the ordinary user.
- Parallelize a number of R operations in Thrust.

Norm Matloff University of California at Davis

Goals

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Provide parallel Thrust code called from R,
- Thrust transparent to the ordinary user.
- Parallelize a number of R operations in Thrust.
- Facilitate sophisticated user writing own parallel code.

Norm Matloff University of California at Davis

Goals

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Provide parallel Thrust code called from R,
- Thrust transparent to the ordinary user.
- Parallelize a number of R operations in Thrust.
- Facilitate sophisticated user writing own parallel code.
- Currently just at very early stage of project.

What is Thrust?

Goals

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Parallel R, Revisited

Norm Matloff University of California at Davis

- Provide parallel Thrust code called from R,
- Thrust transparent to the ordinary user.
- Parallelize a number of R operations in Thrust.
- Facilitate sophisticated user writing own parallel code.
- Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

Goals

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Parallel R, Revisited
- Norm Matloff University of California at Davis

- Provide parallel Thrust code called from R,
- Thrust transparent to the ordinary user.
- Parallelize a number of R operations in Thrust.
- Facilitate sophisticated user writing own parallel code.
- Currently just at very early stage of project.

What is Thrust?

- C++ package, modeled on STL.
- Can compile to either GPU or multicore backend.

Goals

- Parallel R, Revisited
- Norm Matloff University of California at Davis

- Provide parallel Thrust code called from R,
- Thrust transparent to the ordinary user.
- Parallelize a number of R operations in Thrust.
- Facilitate sophisticated user writing own parallel code.
- Currently just at very early stage of project.

What is Thrust?

- C++ package, modeled on STL.
- Can compile to either GPU or multicore backend.
- Provides high-level operations, e.g. sort, search, prefix scan, foreach, reduction, etc.

Norm Matloff University of California at Davis

Example: sorting

Norm Matloff University of California at Davis

Example: sorting

R interface code:

```
rthsort <- function(x) {
   dyn.load("rthsort.so")
   n <- length(x)
   tmp <- .C("rthsort",as.double(x),
        as.integer(n),tmpres=double(n))
   return(tmp$tmpres)
}</pre>
```

Norm Matloff University of California at Davis

Example: sorting

```
R interface code:
```

```
rthsort <- function(x) {
   dyn.load("rthsort.so")
   n <- length(x)
   tmp <- .C("rthsort",as.double(x),
        as.integer(n),tmpres=double(n))
   return(tmp$tmpres)
}</pre>
```

Sorting 10000000 numbers: R 4.78 sec, Rth 1.52sec.

Norm Matloff University of California at Davis

sorting, cont'd.

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

sorting, cont'd.

Thrust code:

```
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
```

```
void rthsort(double *x, int *nx, double *xout)
{
    int n = *nx;
    // set up device vector and copy x to it
    thrust::device_vector<double> dx(x,x+n);
    // sort, then copy back to x
    thrust::sort(dx.begin(), dx.end());
    thrust::copy(dx.begin(), dx.end(),xout);
}
```

Norm Matloff University of California at Davis

General Pattern

Norm Matloff University of California at Davis

General Pattern

Sort example was straight wrapper. What about other cases?

Norm Matloff University of California at Davis

General Pattern

Sort example was straight wrapper. What about other cases?

• Put together the appropriate Thrust ops.

Norm Matloff University of California at Davis

General Pattern

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sort example was straight wrapper. What about other cases?

- Put together the appropriate Thrust ops.
- For most Thrust ops, write app-specific function to be called.

Norm Matloff University of California at Davis

Example: convolution

Norm Matloff University of California at Davis

Thrust code:

Example: convolution

void rthconv(double *x, int *nx, double *y, int *ny, double *z) { int nxx = *nx, nyy = *ny, nzz = nxx + nyy thrust :: device_vector <double> dx(x, x+nxx); . . . thrust :: counting_iterator <int> seqb(0); thrust :: counting_iterator <int> seqe = seqb thrust :: for_each (seqb, seqe, doli(dx.begin(), dy.begin(),dz.begin(),nxx,nyy)); thrust :: copy(dz.begin(), dz.end(),z); } Key line:

thrust :: for_each (seqb, seqe, do1i(dx.begin(),...

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Norm Matloff University of California at Davis

convolution, cont'd.

Norm Matloff University of California at Davis

convolution, cont'd.

```
User supplies "foreach" function, in the form of a
struct doli { // "do 1 i"
. . .
   device
   void operator()(const int i)
   { int j; // handle 1 i in i, j loop
      int rpi = rndperm[i];
      double xdi = xd[rpi];
      for (j = 0; j < ny; j++)
         zd[rpi+j] += xdi * yd[ny-j-1];
   }
};
```

Norm Matloff University of California at Davis

convolution, cont'd.

```
User supplies "foreach" function, in the form of a
struct doli { // "do 1 i"
. . .
   device
   void operator()(const int i)
   { int j; // handle 1 i in i, j loop
      int rpi = rndperm[i];
      double xdi = xd[rpi];
      for (j = 0; j < ny; j++)
         zd[rpi+j] += xdi * yd[ny-j-1];
   }
};
```

A callable struct.

Norm Matloff University of California at Davis

Performance

Norm Matloff University of California at Davis

Performance

Norm Matloff University of California at Davis

Performance

• Rth's rthconv() orders of magnitude faster than R's convolve().

Performance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parallel R, Revisited

Norm Matloff University of California at Davis

- Rth's rthconv() orders of magnitude faster than R's convolve().
- Not fair to R's convolve();

Performance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Parallel R, Revisited

Norm Matloff University of California at Davis

- Rth's rthconv() orders of magnitude faster than R's convolve().
- Not fair to R's **convolve()**; latter written in C, but works via FFTs, slow.

Performance

- Rth's rthconv() orders of magnitude faster than R's convolve().
- Not fair to R's **convolve()**; latter written in C, but works via FFTs, slow.
- Also: R's **convolve()** runs out of space on problems than **rthconv()** can handle (multcore).

Norm Matloff University of California at Davis

Parallel R, Revisited

Norm Matloff University of California at Davis

Kendall's Tau

Kendall's Tau

```
void rthkendall(float *xy, int *nxy, float *tau)
  int i, n = *nxy, n2 = 2*n, totcount;
  thrust :: counting_iterator < int > seqa(0);
  thrust :: counting_iterator <int>
    seqb = seqa + n - 1;
  doubvec dxy(xy, xy+n2);
  intvec tmp(n-1);
  thrust :: transform (seqa, seqb, tmp. begin (),
    calcgti(dxy,n));
  totcount=thrust :: reduce(tmp.begin(),tmp.end(
  *tau = totcount / (0.5 * n * (n-1));
}
```

Key calls: **transform(), reduce()**; can combine using transform iterator

Parallel R, Revisited

Norm Matloff University of California at Davis

Norm Matloff University of California at Davis

Example: submatrix ops, select()

Norm Matloff University of California at Davis

Example: submatrix ops, select()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Not implemented yet.

Norm Matloff University of California at Davis Example: submatrix ops, select()

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Not implemented yet.
- Easy version: Specific numerical indices.

Norm Matloff University of California at Davis

Example: submatrix ops, select()

- Not implemented yet.
- Easy version: Specific numerical indices.
- More elaborate: Dynamic parse of user R expression, sent off to Thrust code.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Norm Matloff University of California at Davis

Some Thrust Ops

Norm Matloff University of California at Davis

Some Thrust Ops

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- sort, search
- reduce, min/max
- permute (e.g. for matrix transpose)
- partition, prefix scan
- foreach, transform, copyif
- set ops
- more are being added

Norm Matloff University of California at Davis

Norm Matloff University of California at Davis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• "Software alchemy" parallelizes i.i.d. stat apps, any platform.

Summary

Parallel R, Revisited

Norm Matloff University of California at Davis

• "Software alchemy" parallelizes i.i.d. stat apps, any platform. Often get superlinear speedup.

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Norm Matloff University of California at Davis

- "Software alchemy" parallelizes i.i.d. stat apps, any platform. Often get superlinear speedup.
- Rth provides a way to easily parallelize many other opps.

Norm Matloff University of California at Davis

Misc.

<□ > < @ > < E > < E > E のQ @

Misc.

Parallel R, Revisited

Norm Matloff University of California at Davis

URLs:

• these slides:

http://heather.cs.ucdavis.edu/user2012.pdf

- my online book on parallel programming: http://heather.cs.ucdavis.edu/~matloff/158/ PLN/ParProcBook.pdf
- Rth: http:

//heather.cs.ucdavis.edu/~matloff/rth.html

thanks to:

- Prof. Hao Chen (use of large multcore machine)
- Prof. Bill Hsu (use of fast GPUs)
- the audience :-)