
Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Revisiting the MapReduce Paradigm: an
R-Specific View

Norm Matloff and Alex Rumbaugh
University of California at Davis

UCB R Group
May 19, 2015

Updated, May 22

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Visual Summary

My view: Plain Old R can work better in many situations

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Visual Summary

My view: Plain Old R can work better in many situations

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Visual Summary

My view: Plain Old R can work better in many situations

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Visual Summary

My view: Plain Old R can work better in many situations

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Visual Summary

My view: Plain Old R can work better in many situations

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.

• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark,

with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview

• When I was here one year ago, I speculated that Hadoop
would start to lose popularity sometime in the future.

• Too slow.
• Not many ops.

• That time seems to have begun.

• E.g. see The Hadoop Honeymoon Is Over,
http://smartdatacollective.com/martynjones/

318406/hadoop-honeymoon-over

• There is a new kid on the block, Spark, with an R
interface, SparkR, a big improvement

• But I will argue that for us R users, the utility of either
Hadoop or SparkR is much more limited than many people
realize.

• And I will present an alternative.

http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over
http://smartdatacollective.com/martynjones/318406/hadoop-honeymoon-over

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.
• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.
• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.
• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.
• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.
• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.

• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.
• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Overview of MapReduce

• Parallel ops (cluster or multicore).

• Work flow: map/sort/reduce.

• Example: word count.

• Map: Read a line, break into words, emit one record for
each (with count 1).

• Sort by word.
• Get counts by adding all the 1s for each unique word.

• Most famous example: Hadoop.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW.

Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.

• Sort phase (shuffle) is performed even if one’s algorithm
doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure.

Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert.

Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level.

“Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s Wrong with Hadoop

• SLOW. Like an elephant. :-)

• Input to code must come from disk, output must be
written to disk.

• Awful for iterative algorithms.
• Sort phase (shuffle) is performed even if one’s algorithm

doesn’t need it.

• Difficult to install/configure. Not everyone is a systems
expert. Even worse when also need to install R interface.

• Map and reduce ops too low-level. “Build a house from
matchsticks.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What Hadoop Gets Right

• Distributed file system (HDFS).

• “Move the computation to the data,” rather than vice
versa.

• Thus reduce time-consuming network communication
time.

• Redundancy/fault tolerance, very important if have a huge
cluster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What Hadoop Gets Right

• Distributed file system (HDFS).

• “Move the computation to the data,” rather than vice
versa.

• Thus reduce time-consuming network communication
time.

• Redundancy/fault tolerance, very important if have a huge
cluster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What Hadoop Gets Right

• Distributed file system (HDFS).

• “Move the computation to the data,” rather than vice
versa.

• Thus reduce time-consuming network communication
time.

• Redundancy/fault tolerance, very important if have a huge
cluster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What Hadoop Gets Right

• Distributed file system (HDFS).

• “Move the computation to the data,” rather than vice
versa.

• Thus reduce time-consuming network communication
time.

• Redundancy/fault tolerance, very important if have a huge
cluster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What Hadoop Gets Right

• Distributed file system (HDFS).

• “Move the computation to the data,” rather than vice
versa.

• Thus reduce time-consuming network communication
time.

• Redundancy/fault tolerance, very important if have a huge
cluster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS,

so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Spark

• Extended map/reduce paradigm.

• Cacheability of intermediate results, i.e. no costly writes to
disk.

• Lazy computation: programmer’s several specified ops
automatically combined into faster coalesced code.

• Shuffle often avoided.

• Runs on top of HDFS or other DFS, so retain “move the
computation to the data” philosoophy.

• Typically way faster than Hadoop.

• Has various high-level ops, not just map and reduce.

• Elegant, sophisticated fault-tolerance mechanism.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Drawbacks to Spark

• Still have installation/configuration headaches, even worse
than Hadoop. Ditto for SparkR.

• High-level ops are abstract, steep learning curve. (Where
have we heard that before?)

• Not clear that SparkR has much advantage over Plain Old
R (POR). See next slide.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Drawbacks to Spark

• Still have installation/configuration headaches, even worse
than Hadoop.

Ditto for SparkR.

• High-level ops are abstract, steep learning curve. (Where
have we heard that before?)

• Not clear that SparkR has much advantage over Plain Old
R (POR). See next slide.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Drawbacks to Spark

• Still have installation/configuration headaches, even worse
than Hadoop. Ditto for SparkR.

• High-level ops are abstract, steep learning curve. (Where
have we heard that before?)

• Not clear that SparkR has much advantage over Plain Old
R (POR). See next slide.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Drawbacks to Spark

• Still have installation/configuration headaches, even worse
than Hadoop. Ditto for SparkR.

• High-level ops are abstract, steep learning curve.

(Where
have we heard that before?)

• Not clear that SparkR has much advantage over Plain Old
R (POR). See next slide.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Drawbacks to Spark

• Still have installation/configuration headaches, even worse
than Hadoop. Ditto for SparkR.

• High-level ops are abstract, steep learning curve. (Where
have we heard that before?)

• Not clear that SparkR has much advantage over Plain Old
R (POR). See next slide.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Drawbacks to Spark

• Still have installation/configuration headaches, even worse
than Hadoop. Ditto for SparkR.

• High-level ops are abstract, steep learning curve. (Where
have we heard that before?)

• Not clear that SparkR has much advantage over Plain Old
R (POR).

See next slide.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Drawbacks to Spark

• Still have installation/configuration headaches, even worse
than Hadoop. Ditto for SparkR.

• High-level ops are abstract, steep learning curve. (Where
have we heard that before?)

• Not clear that SparkR has much advantage over Plain Old
R (POR). See next slide.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.
• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.
• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.
• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.
• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.

• No need to learn new abstractions.
• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.

• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.
• No forced shuffle.

• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.
• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

What’s in It for R Users?

• Granted, Hadoop/Spark have automatic fault tolerance,
and an efficient sort, both important.

• But many apps don’t need a sort, and many Hadoop users
have small clusters (Hadoop Wiki,
https://wiki.apache.org/hadoop/PoweredBy).

• So, POR seems preferable for many users.

• No Java/database/configuration issues.
• No need to learn new abstractions.
• No forced shuffle.
• POR at least as expressive as SparkR, and already familiar.

• We’ve developed Snowdoop as an alternative:

https://wiki.apache.org/hadoop/PoweredBy

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop Overview

• Pure POR! Uses the portion of R’s parallel package
adapted from the old Snow.

• Retains the DFS philosoophy.

• Includes a distributed sort; could be optimized.

• So simple, it’s embarrassing, tough to call it a “package.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop Overview

• Pure POR!

Uses the portion of R’s parallel package
adapted from the old Snow.

• Retains the DFS philosoophy.

• Includes a distributed sort; could be optimized.

• So simple, it’s embarrassing, tough to call it a “package.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop Overview

• Pure POR! Uses the portion of R’s parallel package
adapted from the old Snow.

• Retains the DFS philosoophy.

• Includes a distributed sort; could be optimized.

• So simple, it’s embarrassing, tough to call it a “package.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop Overview

• Pure POR! Uses the portion of R’s parallel package
adapted from the old Snow.

• Retains the DFS philosoophy.

• Includes a distributed sort; could be optimized.

• So simple, it’s embarrassing, tough to call it a “package.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop Overview

• Pure POR! Uses the portion of R’s parallel package
adapted from the old Snow.

• Retains the DFS philosoophy.

• Includes a distributed sort; could be optimized.

• So simple, it’s embarrassing, tough to call it a “package.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop Overview

• Pure POR! Uses the portion of R’s parallel package
adapted from the old Snow.

• Retains the DFS philosoophy.

• Includes a distributed sort; could be optimized.

• So simple, it’s embarrassing, tough to call it a “package.”

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Word Count

prep : use SD f i l e s p l i t () , l o ad SD at nodes

nd i g s i s number o f d i g i s t s i n f i l e s u f f i x

f u l l w o r d c o un t <− f unct ion (c l s , basename , n d i g s) {
count s <− c l u s t e r C a l l (c l s , wordcensus , basename , n d i g s)
a dd l i s t s s um <− f unct ion (l s t 1 , l s t 2)

a d d l i s t s (l s t 1 , l s t 2 , sum) # SD
Reduce (add l i s t s s um , count s)

}

wordcensus <− f unct ion (basename , n d i g s) {
fname <− f i l e chunkname (basename , n d i g s) # SD
words <− scan (fname , what=””)
tapp ly (words , words , length , s i m p l i f y=FALSE)

}

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Word Count

prep : use SD f i l e s p l i t () , l o ad SD at nodes

nd i g s i s number o f d i g i s t s i n f i l e s u f f i x

f u l l w o r d c o un t <− f unct ion (c l s , basename , n d i g s) {
count s <− c l u s t e r C a l l (c l s , wordcensus , basename , n d i g s)
a dd l i s t s s um <− f unct ion (l s t 1 , l s t 2)

a d d l i s t s (l s t 1 , l s t 2 , sum) # SD
Reduce (add l i s t s s um , count s)

}

wordcensus <− f unct ion (basename , n d i g s) {
fname <− f i l e chunkname (basename , n d i g s) # SD
words <− scan (fname , what=””)
tapp ly (words , words , length , s i m p l i f y=FALSE)

}

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Word Count, cont’d.

Test:

l i b r a r y (p a r t o o l s)
c l s <− makeC lus te r (2)
s e t c l s i n f o (c l s) # SD
c l u s t e r E v a lQ (c l s , l i b r a r y (p a r t o o l s))
f i l e s p l i t (c l s , ”x”) # SD
f u l l w o r d c o un t (c l s , ”x” ,1) # SD

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Word Count, cont’d.

Test:

l i b r a r y (p a r t o o l s)
c l s <− makeC lus te r (2)
s e t c l s i n f o (c l s) # SD
c l u s t e r E v a lQ (c l s , l i b r a r y (p a r t o o l s))
f i l e s p l i t (c l s , ”x”) # SD
f u l l w o r d c o un t (c l s , ”x” ,1) # SD

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Word Count, cont’d.

Test:

l i b r a r y (p a r t o o l s)
c l s <− makeC lus te r (2)
s e t c l s i n f o (c l s) # SD
c l u s t e r E v a lQ (c l s , l i b r a r y (p a r t o o l s))
f i l e s p l i t (c l s , ”x”) # SD
f u l l w o r d c o un t (c l s , ”x” ,1) # SD

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Output

> f u l l w o r d c o u n t (c l s , ” x ” , 1)
$a
[1] 2

$ chuck
[1] 2

$Could
[1] 2

$How
[1] 1

$much
[1] 1

$wood
[1] 1

$woodchuck
[1] 2

$ I f
[1] 1

$ ‘Wood? ‘
[1] 1

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Output

> f u l l w o r d c o u n t (c l s , ” x ” , 1)
$a
[1] 2

$ chuck
[1] 2

$Could
[1] 2

$How
[1] 1

$much
[1] 1

$wood
[1] 1

$woodchuck
[1] 2

$ I f
[1] 1

$ ‘Wood? ‘
[1] 1

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed

Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.

Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. Hadoop Speed
Disclaimer: No serious experiments done yet, just some small,
very preliminary simulations.

k-Means Clustering:

• Antonio, author of the R-Hadoop interface rmr, told me
that the k-Means example is “just an example,” not
claimed to be fast.

• Our simulations (though not for large n, only 105) indicate
that Snowdoop is about 100X faster than Hadoop.

• Same simulations show Snowdoop gives about a 50%
speedup over R’s serial kmeans() function, with 5 nodes.
Note: kmeans() is written in C, not R.

sorting:

• This should be Hadoop’s forte’.

• Yet we are finding Snowdoop 2X faster.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. SparkR Speed

• Haven’t done a comparison yet.

• But SparkR has no right to be faster than Snowdoop for
nonsort apps.

• None of the apps in MLlib, Spark’s machine learning (aka
statistics) library uses sorting.

• A BARUG speaker from Spark said that they haven’t
compared timings to non-MapReduce platforms.

• With both Hadoop and Spark, is it really a matter of “It’s
not important how well the dog could walk on his hind
legs, but that he could do it at all”?

Stay tuned.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. SparkR Speed

• Haven’t done a comparison yet.

• But SparkR has no right to be faster than Snowdoop for
nonsort apps.

• None of the apps in MLlib, Spark’s machine learning (aka
statistics) library uses sorting.

• A BARUG speaker from Spark said that they haven’t
compared timings to non-MapReduce platforms.

• With both Hadoop and Spark, is it really a matter of “It’s
not important how well the dog could walk on his hind
legs, but that he could do it at all”?

Stay tuned.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. SparkR Speed

• Haven’t done a comparison yet.

• But SparkR has no right to be faster than Snowdoop for
nonsort apps.

• None of the apps in MLlib, Spark’s machine learning (aka
statistics) library uses sorting.

• A BARUG speaker from Spark said that they haven’t
compared timings to non-MapReduce platforms.

• With both Hadoop and Spark, is it really a matter of “It’s
not important how well the dog could walk on his hind
legs, but that he could do it at all”?

Stay tuned.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. SparkR Speed

• Haven’t done a comparison yet.

• But SparkR has no right to be faster than Snowdoop for
nonsort apps.

• None of the apps in MLlib, Spark’s machine learning (aka
statistics) library uses sorting.

• A BARUG speaker from Spark said that they haven’t
compared timings to non-MapReduce platforms.

• With both Hadoop and Spark, is it really a matter of “It’s
not important how well the dog could walk on his hind
legs, but that he could do it at all”?

Stay tuned.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. SparkR Speed

• Haven’t done a comparison yet.

• But SparkR has no right to be faster than Snowdoop for
nonsort apps.

• None of the apps in MLlib, Spark’s machine learning (aka
statistics) library uses sorting.

• A BARUG speaker from Spark said that they haven’t
compared timings to non-MapReduce platforms.

• With both Hadoop and Spark, is it really a matter of “It’s
not important how well the dog could walk on his hind
legs, but that he could do it at all”?

Stay tuned.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. SparkR Speed

• Haven’t done a comparison yet.

• But SparkR has no right to be faster than Snowdoop for
nonsort apps.

• None of the apps in MLlib, Spark’s machine learning (aka
statistics) library uses sorting.

• A BARUG speaker from Spark said that they haven’t
compared timings to non-MapReduce platforms.

• With both Hadoop and Spark, is it really a matter of “It’s
not important how well the dog could walk on his hind
legs, but that he could do it at all”?

Stay tuned.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Snowdoop vs. SparkR Speed

• Haven’t done a comparison yet.

• But SparkR has no right to be faster than Snowdoop for
nonsort apps.

• None of the apps in MLlib, Spark’s machine learning (aka
statistics) library uses sorting.

• A BARUG speaker from Spark said that they haven’t
compared timings to non-MapReduce platforms.

• With both Hadoop and Spark, is it really a matter of “It’s
not important how well the dog could walk on his hind
legs, but that he could do it at all”?

Stay tuned.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Obtaining Snowdoop

• Still under development.

• In our partools package, on CRAN and GitHub.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Obtaining Snowdoop

• Still under development.

• In our partools package, on CRAN and GitHub.

Revisiting the
MapReduce

Paradigm: an
R-Specific

View

Norm Matloff
and Alex

Rumbaugh
University of
California at

Davis

Obtaining Snowdoop

• Still under development.

• In our partools package, on CRAN and GitHub.

