'revisit': an R Package for Taming the Reproducibility Problem

Norm Matloff
Dept. of Computer Science
University of California at Davis

with Laurel Beckett, Tiffany Chen, Reed Davis, Paul Thompson and Emily Watkins

Stanford R Group, 7 November, 2017

These slides will be available at
'revisit': an R Package for Taming the Reproducibility Problem

Norm Matloff
Dept. of Computer Science
University of California at Davis

with Laurel Beckett,
Tiffany Chen,
Reed Davis,
Paul Thompson
and Emily Watkins

If You Are Curious

• PhD in pure math, abstract probability theory.
• Joined UCD, working on statistical methodology.
• Was one of the founders of the UCD Stat Dept.
• Moved to CS Dept. long ago, but "Once a statistician, always a statistician."
If You Are Curious

Why is a CS professor interested in this?
If You Are Curious

Why is a CS professor interested in this?

- PhD in pure math, abstract probability theory.
- Joined UCD, working on statistical methodology.
- Was one of the founders of the UCD Stat Dept.
- Moved to CS Dept. long ago, but “Once a statistician, always a statistician.”
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\Rightarrow \) weaker/negative economic growth. The finding was strongly influential.

- Much cited by deficit hawks in Congress.
- Often reported by the Washington Post as "consensus among economists."

And yet:

- Analysis had spreadsheet errors, data available but missing in the spreadsheet.
- Dubious weighting used (some say).
- Should have used a longer time window (some say).
- After correction, -0.1% growth becomes +2.2%.
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\rightarrow\) weaker/negative economic growth.
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt → weaker/negative economic growth. The finding was strongly influential.
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\Rightarrow \) weaker/negative economic growth.
The finding was strongly influential.

- Much cited by deficit hawks in Congress.
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\implies \) weaker/negative economic growth. The finding was strongly influential.

- Much cited by deficit hawks in Congress.
- Often reported by the *Washington Post* as “consensus among economists.”
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\Rightarrow \) weaker/negative economic growth. The finding was strongly influential.

- Much cited by deficit hawks in Congress.
- Often reported by the *Washington Post* as “consensus among economists.”

And yet:
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\implies\) weaker/negative economic growth. The finding was strongly influential.

- Much cited by deficit hawks in Congress.
- Often reported by the *Washington Post* as “consensus among economists.”

And yet:

- Analysis had spreadsheet errors, data available but missing in the spreadsheet.
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\implies \) weaker/negative economic growth. The finding was strongly influential.

- Much cited by deficit hawks in Congress.
- Often reported by the *Washington Post* as “consensus among economists.”

And yet:

- Analysis had spreadsheet errors, data available but missing in the spreadsheet.
- Dubious weighting used (some say).
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \(\implies\) weaker/negative economic growth.

The finding was strongly influential.

- Much cited by deficit hawks in Congress.
- Often reported by the *Washington Post* as “consensus among economists.”

And yet:

- Analysis had spreadsheet errors, data available but missing in the spreadsheet.
- Dubious weighting used (some say).
- Should have used a longer time window (some say).
Reinhart and Rogoff Case

Reinhart and Rogoff (2010) found that high government debt \implies weaker/negative economic growth.
The finding was strongly influential.

- Much cited by deficit hawks in Congress.
- Often reported by the *Washington Post* as “consensus among economists.”

And yet:

- Analysis had spreadsheet errors, data available but missing in the spreadsheet.
- Dubious weighting used (some say).
- Should have used a longer time window (some say).
- After correction, -0.1% growth becomes +2.2%
Eichengreen Comment

The brouhaha over Carmen Reinhart and Kenneth Rogoff’s article “Growth in a Time of Debt” has raised troubling questions not only about the efficacy of [fiscal] austerity, but also about the reliability of economic analysis. If a flawed study could appear in a prestigious working-paper series, why should anyone trust economic research?
Eichengreen Comment

The brouhaha over Carmen Reinhart and Kenneth Rogoffs article "Growth in a Time of Debt" has raised troubling questions not only about the efficacy of [fiscal] austerity, but also about the reliability of economic analysis. If a flawed study could appear in a prestigious working-paper series, why should anyone trust economic research?
Who’s Right?

• Reinhart and Rogoff defended their basic findings.
• Lots of controversy back and forth.
• But the incident shows this:
• Research should be transparent.
• We need to facilitate a healthy skepticism, by facilitating the asking of “What if” questions.
• In this case, e.g. “What if a different time frame had been used?” “What if a different weighting had been used?”
Who’s Right?

- Reinhart and Rogoff defended their basic findings.
Who’s Right?

- Reinhart and Rogoff defended their basic findings.
- Lots of controversy back and forth.
Who’s Right?

- Reinhart and Rogoff defended their basic findings.
- Lots of controversy back and forth.
- But the incident shows this:
Who’s Right?

- Reinhart and Rogoff defended their basic findings.
- Lots of controversy back and forth.
- But the incident shows this:
 - Research should be **transparent**.
Who’s Right?

- Reinhart and Rogoff defended their basic findings.
- Lots of controversy back and forth.
- But the incident shows this:
 - Research should be **transparent**.
 - We need to facilitate a **healthy skepticism**, by facilitating the asking of “What if” questions.
Who’s Right?

- Reinhart and Rogoff defended their basic findings.
- Lots of controversy back and forth.
- But the incident shows this:
 - Research should be **transparent**.
 - We need to facilitate a **healthy skepticism**, by facilitating the asking of “What if” questions.
 - In this case, e.g. “What if a different time frame had been used?” “What if a different weighting had been used?”
Goals of 'revisit': Part 1
Goals of 'revisit': Part 1

• An R-language package, usable in GUI and text forms.
Goals of ‘revisit’: Part 1

• An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
Goals of 'revisit': Part 1

- An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
- A “statistical audit.”
Goals of ‘revisit’: Part 1

• An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
• A “statistical audit.”
• Enable other scientists to “revisit” all numerical aspects of a scientific investigation:
Goals of ‘revisit’: Part 1

• An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
• A “statistical audit.”
• Enable other scientists to “revisit” all numerical aspects of a scientific investigation:
 • Data wrangling — dealing with outliers, missing values etc.
Goals of 'revisit': Part 1

- An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
- A “statistical audit.”
- Enable other scientists to “revisit” all numerical aspects of a scientific investigation:
 - Data wrangling — dealing with outliers, missing values etc.
 - Statistical analyses — assumptions, methods, variables, time frames, etc.
Goals of 'revisit': Part 1

- An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
- A “statistical audit.”
- Enable other scientists to “revisit” all numerical aspects of a scientific investigation:
 - Data wrangling — dealing with outliers, missing values etc.
 - Statistical analyses — assumptions, methods, variables, time frames, etc.
 - Allows users to ask the “What if?” questions, in nested manners.
Goals of 'revisit': Part 1

• An R-language package, usable in GUI and text forms. (Text form does have some advantages.)

• A “statistical audit.”

• Enable other scientists to “revisit” all numerical aspects of a scientific investigation:
 • Data wrangling — dealing with outliers, missing values etc.
 • Statistical analyses — assumptions, methods, variables, time frames, etc.
 • Allows users to ask the “What if?” questions, in nested manners. E.g. asking 3 binary What Ifs forms 8 scenarios,
Goals of ’revisit’: Part 1

• An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
• A “statistical audit.”
• Enable other scientists to “revisit” all numerical aspects of a scientific investigation:
 • Data wrangling — dealing with outliers, missing values etc.
 • Statistical analyses — assumptions, methods, variables, time frames, etc.
 • Allows users to ask the “What if?” questions, in nested manners. E.g. asking 3 binary What Ifs forms 8 scenarios, which in revisit we call branches after GitHub.
Goals of 'revisit': Part 1

- An R-language package, usable in GUI and text forms. (Text form does have some advantages.)
- A “statistical audit.”
- Enable other scientists to “revisit” all numerical aspects of a scientific investigation:
 - Data wrangling — dealing with outliers, missing values etc.
 - Statistical analyses — assumptions, methods, variables, time frames, etc.
 - Allows users to ask the “What if?” questions, in nested manners. E.g. asking 3 binary What Ifs forms 8 scenarios, which in revisit we call branches after GitHub.
- Enable the original research team itself to do the above during the research project.
Potti Case
Potti Case

• Cancer, genomics research.
Potti Case

- Cancer, genomics research.
- Clinical trials patients sued.
Potti Case

- Cancer, genomics research.
- Clinical trials patients sued.
- Sloppiness, apparent fraud.
Potti Case

- Cancer, genomics research.
- Clinical trials patients sued.
- Sloppiness, apparent fraud.
- But also *poor use of statistical methods*.
The Statistical Methodology Aspect

Nature reported on a survey of scientists about the reproducibility problem (emphasis added), More than 60% of respondents [cited]...pressure to publish and selective reporting...More than half pointed to insufficient replication in the lab, poor oversight or low statistical power. Respondents were asked to rate 11 different approaches to improving reproducibility...Nearly 90%—more than 1,000 people—ticked "More robust experimental design," "better statistics"...
Nature reported on a survey of scientists about the reproducibility problem (emphasis added),
The Statistical Methodology Aspect

Nature reported on a survey of scientists about the reproducibility problem (emphasis added),

More than 60% of respondents [cited]...pressure to publish and selective reporting...More than half pointed to insufficient replication in the lab, poor oversight or low statistical power.

Respondents were asked to rate 11 different approaches to improving reproducibility...Nearly 90% — more than 1,000 people — ticked “More robust experimental design,” “better statistics”...
ASA Statement on P-Values
ASA Statement on P-Values

- The problems have been known all along, e.g. Meehl, “Ronald [Fisher] has befuddled us, mesmerized us, and led us down the primrose path.”
ASA Statement on P-Values

• The problems have been known all along, e.g. Meehl, “Ronald [Fisher] has befuddled us, mesmerized us, and led us down the primrose path.”

• But as Twain said, “Everyone talks about the weather but no one does anything about it.”
ASA Statement on P-Values

• The problems have been known all along, e.g. Meehl, “Ronald [Fisher] has befuddled us, mesmerized us, and led us down the primrose path.”

• But as Twain said, “Everyone talks about the weather but no one does anything about it.”

• Hence ASA’s first-ever, and long overdue, policy statement, 2016.
ASA Statement on P-Values

- The problems have been known all along, e.g. Meehl, “Ronald [Fisher] has befuddled us, mesmerized us, and led us down the primrose path.”
- But as Twain said, “Everyone talks about the weather but no one does anything about it.”
- Hence ASA’s first-ever, and long overdue, policy statement, 2016.
- “The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative science and inform the growing emphasis on reproducibility of science research.”
Multiple Inference Methods

Lack of use of multiple/simultaneous inference procedures, a severe problem:

• Even if there are no underlying interesting effects, if one performs enough tests, some "significant" ones will be found.

• Old statistical joke: "If you beat the data long enough, they will confess."

• ASA statement decries "p-hacking," "data dredging," and "publishing only significant results."

• One of the problems cited in the Potti case was "overfitting," here meaning the above.
Multiple Inference Methods

Lack of use of multiple/simultaneous inference procedures, a severe problem:
Multiple Inference Methods

Lack of use of multiple/simultaneous inference procedures, a severe problem:

- Even if there are no underlying interesting effects, if one performs enough tests, some “significant” ones will be found.
Multiple Inference Methods

Lack of use of multiple/simultaneous inference procedures, a severe problem:

- Even if there are no underlying interesting effects, if one performs enough tests, some “significant” ones will be found.
- Old statistical joke: “If you beat the data long enough, they will confess.”
Multiple Inference Methods

Lack of use of multiple/simultaneous inference procedures, a severe problem:

- Even if there are no underlying interesting effects, if one performs enough tests, some “significant” ones will be found.
- Old statistical joke: “If you beat the data long enough, they will confess.”
- ASA statement decries “p-hacking,” “data dredging,” and “publishing only significant results.”
Multiple Inference Methods

Lack of use of multiple/simultaneous inference procedures, a severe problem:

• Even if there are no underlying interesting effects, if one performs enough tests, some “significant” ones will be found.

• Old statistical joke: “If you beat the data long enough, they will confess.”

• ASA statement decries “p-hacking,” “data dredging,” and “publishing only significant results.”

• One of the problems cited in the Potti case was “overfitting,” here meaning the above.
Goals of 'revisit': Part 2

Encourage statistical best practices.
• The revisit package aims to wean users away from relying much on p-values.
• Unfortunately, scientific journals will still require p-values, but revisit users can learn to de-emphasize them, and add confidence intervals, much more informative.
• The package will be adding confidence interval alternatives to testing-only procedures.
 • E.g. log-linear model.
 • Presently even point estimates in R are available only on request, and even then without standard errors.
 • Solution: Apply the "Poisson trick" and use glm().
Goals of 'revisit': Part 2

Encourage statistical best practices.
Goals of 'revisit': Part 2

Encourage statistical best practices.

• The \textit{revisit} package aims to wean users away from relying much on p-values.
Goals of ‘revisit’: Part 2

Encourage statistical best practices.

- The *revisit* package aims to wean users away from relying much on p-values.
- Unfortunately, scientific journals will still require p-values,
Goals of 'revisit': Part 2

Encourage statistical best practices.

- The revisit package aims to wean users away from relying much on p-values.
- Unfortunately, scientific journals will still require p-values, but revisit users can learn to de-emphasize them, and add confidence intervals, much more informative.

The revisit package aims to wean users away from relying much on p-values.

Unfortunately, scientific journals will still require p-values, but revisit users can learn to de-emphasize them, and add confidence intervals, much more informative.
Goals of 'revisit': Part 2

Encourage statistical best practices.

- **The revisit** package aims to wean users away from relying much on p-values.
- Unfortunately, scientific journals will still require p-values, but **revisit** users can learn to de-emphasize them, and add confidence intervals, much more informative.
- The package will be adding confidence interval alternatives to testing-only procedures.
Goals of 'revisit': Part 2

Encourage statistical best practices.

- The **revisit** package aims to wean users away from relying much on p-values.
- Unfortunately, scientific journals will still require p-values, but **revisit** users can learn to de-emphasize them, and add confidence intervals, much more informative.
- The package will be adding confidence interval alternatives to testing-only procedures.
- E.g. log-linear model.
Goals of 'revisit': Part 2

Encourage statistical best practices.

- The revisit package aims to wean users away from relying much on p-values.
- Unfortunately, scientific journals will still require p-values, but revisit users can learn to de-emphasize them, and add confidence intervals, much more informative.
- The package will be adding confidence interval alternatives to testing-only procedures.
- E.g. log-linear model. Presently even point estimates in R are available only on request, and even then without standard errors.
Goals of 'revisit': Part 2

Encourage statistical best practices.

- The revisit package aims to wean users away from relying much on p-values.
- Unfortunately, scientific journals will still require p-values, but revisit users can learn to de-emphasize them, and add confidence intervals, much more informative.
- The package will be adding confidence interval alternatives to testing-only procedures.
- E.g. log-linear model. Presently even point estimates in R are available only on request, and even then without standard errors.
- Solution: Apply the “Poisson trick” and use glm().
Goals, Part 2, cont’d.

Dealing with the multiple inference issue:

• The package attempts to count how many tests/confidence intervals the user has (directly or indirectly) performed.
 E.g., a call to `lm()` gives a p-value for each estimated coefficient.

• If too many (value might be user-defined), `revisit` issues a warning, “Consider using multiple inference methods.”
 • Kind of like, “This deduction may result in an IRS audit.”

• Currently only Bonferroni offered, more coming.
Dealing with the multiple inference issue:
Dealing with the multiple inference issue:

- The package attempts to count how many tests/confidence intervals the user has (directly or indirectly) performed.
Goals, Part 2, cont’d.

Dealing with the multiple inference issue:

- The package attempts to count how many tests/confidence intervals the user has (directly or indirectly) performed. E.g., a call to `lm()` gives a p-value for each estimated coefficient.
Dealing with the multiple inference issue:

- The package attempts to count how many tests/confidence intervals the user has (directly or indirectly) performed. E.g., a call to `lm()` gives a p-value for each estimated coefficient.

- If too many (value might be user-defined), `revisit` issues a warning, “Consider using multiple inference methods.”
Goals, Part 2, cont’d.

Dealing with the multiple inference issue:

- The package attempts to count how many tests/confidence intervals the user has (directly or indirectly) performed. E.g., a call to `lm()` gives a p-value for each estimated coefficient.
- If too many (value might be user-defined), `revisit` issues a warning, “Consider using multiple inference methods.”
- Kind of like, “This deduction may result in an IRS audit.”
Goals, Part 2, cont’d.

Dealing with the multiple inference issue:

- The package attempts to count how many tests/confidence intervals the user has (directly or indirectly) performed. E.g., a call to `lm()` gives a p-value for each estimated coefficient.
- If too many (value might be user-defined), `revisit` issues a warning, “Consider using multiple inference methods.”
- Kind of like, “This deduction may result in an IRS audit.”

![Turbotax Advertisement]
Dealing with the multiple inference issue:

- The package attempts to count how many tests/confidence intervals the user has (directly or indirectly) performed. E.g., a call to `lm()` gives a p-value for each estimated coefficient.
- If too many (value might be user-defined), `revisit` issues a warning, “Consider using multiple inference methods.”
- Kind of like, “This deduction may result in an IRS audit.”
- Currently only Bonferroni offered, more coming.
Wrapper Functions
Wrapper Functions

- Users call `revisit` functions, as wrappers to standard R functions.
Wrapper Functions

• Users call **revisit** functions, as wrappers to standard R functions.

• E.g., **lm()** (not implemented yet).
Wrapper Functions

- Users call \texttt{revisit} functions, as wrappers to standard R functions.
- E.g., \texttt{lm()} (not implemented yet). User runs our wrapper, \texttt{lm.rv()}.
Wrapper Functions

• Users call `revisit` functions, as wrappers to standard R functions.
• E.g., `lm()` (not implemented yet). User runs our wrapper, `lm.rv()`.
• Among other things, `lm.rv()` will run, say, `qr()` from the `quantreg` package, then display for the user the two sets of estimated regression coefficients. If they differ much, some outlier hunting/deletion might be warranted.
Wrapper Functions

- Users call `revisit` functions, as wrappers to standard R functions.
- E.g., `lm()` (not implemented yet). User runs our wrapper, `lm.rv()`.
- Among other things, `lm.rv()` will run, say, `qr()` from the `quantreg` package, then display for the user the two sets of estimated regression coefficients. If they differ much, some outlier hunting/deletion might be warranted.
- In addition, some plots from my `regtools` package will be run (on CRAN, coordinated with my new book).
Structure of the revisit Package
Structure of the revisit Package

- Available at github/matloff.
Structure of the revisit Package

- Available at github/matloff.
- GUI and text versions.
Structure of the revisit Package

- Available at github/matloff.
- GUI and text versions.
- Case studies.
Structure of the revisit Package

- Available at github/matlof.
- GUI and text versions.
- Case studies.
- GitHub-inspired branch structure. Each “What if?” scenario is saved as a separate file.
Structure of the revisit Package

- Available at github/matloff.
- GUI and text versions.
- Case studies.
- GitHub-inspired branch structure. Each “What if?” scenario is saved as a separate file.
- Example scenario: Delete outliers x, y and z; choose predictor variables u and v; use Bonferroni adjustments.
Structure of the revisit Package

- Available at github/matloff.
- GUI and text versions.
- Case studies.
- GitHub-inspired branch structure. Each “What if?” scenario is saved as a separate file.
- Example scenario: Delete outliers x, y and z; choose predictor variables u and v; use Bonferroni adjustments.
- A scientist who has explored several scenarios can package these branches and send them to others for further exploration.
GUI Example
'revisit': an R Package for Taming the Reproducibility Problem
Norm Matloff Dept. of Computer Science University of California at Davis
with Laurel Beckett, Tiffany Chen, Reed Davis, Paul Thompson and Emily Watkins

GUI Example

RStudio

data(pima)
divide into diabetic, non-diabetic
d <- which(pima$Diab == 1)
diab <- pima[d,]
nondiab <- pima[-d,]
form a confidence interval
for (i in 1:8) {
tmp <- t.test(diab[i],
cat(names(pima)[i]),
17
}

load(pima)
divide into diabetic, non-diabetic
d <- which(pima$Diab == 1)
diab <- pima[d,]
nondiab <- pima[-d,]
form a confidence interval
for (i in 1:8) {
tmp <- t.test.diab[,i],nondiab[,i],bonf=8)$conf.int
cat(names(pima)[i],'
16

print(apply(pima[,1:8],2,range))

.load Code
.next
.run/Continue
.save Code

Filename (w/o Branch# or.R) code/pima
Run Start Line 17
Load Branch #
Run Through Line 16
Save Branch #
Description Use t.test.rv with bonf=8

RUN FROM 1 THROUGH 16
Use t.test.rv with bonf=8
RV history end
data(pima)
divide into diabetic, non-diabetics
d <- which(pima$Diab == 1)
diab <- pima[d,]
nondiab <- pima[-d,]
form a confidence interval for each variable, difference between
diabetics and non-diabetics
for (i in 1:8) {
tmp <- t.test.rv(diab[,i],nondiab[,i],bonf=8)$conf.int
cat(names(pima)[i],'
14

bmp(apply(pima[,1:8],2,range))
GUI Example

But it will be clearer to display text here.
Case Study: Zavodny

Zavodny study, commissioned by an advocacy group in 2011, of impact of H-1B work visa program on U.S. workers.

Highly controversial, much criticism of the visa by Clinton, Sanders, Trump etc. in 2016 election.

Zavodny found that each visa worker creates 2.62 new jobs for Americans. Peri (2014), also funded by an advocacy group, had similar findings. Gelber et al. found the opposite, a crowding-out of U.S. workers.

Dr. Zavodny kindly shared her code and data with Reed Davis, one of the revisit authors.
Case Study: Zavodny

- Zavodny study, commissioned by an advocacy group in 2011, of impact of H-1B work visa program on U.S. workers.
Case Study: Zavodny

- Zavodny study, commissioned by an advocacy group in 2011, of impact of H-1B work visa program on U.S. workers.
- Highly controversial, much criticism of the visa by Clinton, Sanders, Trump etc. in 2016 election.
Case Study: Zavodny

- Zavodny study, commissioned by an advocacy group in 2011, of impact of H-1B work visa program on U.S. workers.
- Highly controversial, much criticism of the visa by Clinton, Sanders, Trump etc. in 2016 election.
- Zavodny found that each visa worker creates 2.62 new jobs for Americans. Peri (2014), also funded by an advocacy group, had similar findings. Gelber et al found the opposite, a crowding-out of U.S. workers.
Case Study: Zavodny

- Zavodny study, commissioned by an advocacy group in 2011, of impact of H-1B work visa program on U.S. workers.
- Highly controversial, much criticism of the visa by Clinton, Sanders, Trump etc. in 2016 election.
- Zavodny found that each visa worker creates 2.62 new jobs for Americans. Peri (2014), also funded by an advocacy group, had similar findings. Gelber et al found the opposite, a crowding-out of U.S. workers.
- Dr. Zavodny kindly shared her code and data with Reed Davis, one of the revisit authors.
'revisit': an R Package for Taming the Reproducibility Problem

Norm Matloff
Dept. of Computer Science
University of California at Davis

with Laurel Beckett,
Tiffany Chen,
Reed Davis,
Paul Thompson
and Emily Watkins

Zavodny, cont’d.
Zavodny, cont’d.

```r
> library(revisit)
> rvinit() # required initialization
> loadb('ols262.R') # load the branch
> lcc() # list the code

... 
...

4 data(zav)
5 zav = zav[zav$year < 2008,] # 2008–2010 removed
...
...

Again, this is R code converted from Stata. Does it reproduce Zavodny’s results? Yes:

> runb()
[1] “Slope = 0.00446438147988468”
[1] “P–value = 0.0140870195483076”
[1] “Jobs = 262.985782017836”
```
But Zavodny omitted 2008-2010. What if...?

We call `revisit` function `edt()` to edit the code (visual editor in GUI), commenting out line 5. Then:

```
> runb()
[1] "Slope = 0.00180848722715659"
[1] "P-value = 0.33637275201986"
[1] "Jobs = 124.352299406043"
```

Now, the result is no longer significant [sic], and the point estimate has been cut in half.
But Zavodny omitted 2008-2010. What if...?
But Zavodny omitted 2008-2010. What if...?
We call **revisit** function **edt()** to edit the code (visual editor in GUI),
But Zavodny omitted 2008-2010. What if...?

We call `revisit` function `edt()` to edit the code (visual editor in GUI), commenting out line 5. Then:

```
> runb()
[1] "Slope = 0.00180848722715659"
[1] "P-value = 0.33637275201986"
[1] "Jobs = 124.352299406043"
```

Now, the result is no longer significant [sic], and the point estimate has been cut in half.
But Zavodny omitted 2008-2010. What if...?
We call \texttt{revisit} function \texttt{edt()} to edit the code (visual editor in GUI), commenting out line 5. Then:

\begin{verbatim}
> runb()
[1] "Slope = 0.00180848722715659"
[1] "P-value = 0.33637275201986"
[1] "Jobs = 124.352299406043"
\end{verbatim}
But Zavodny omitted 2008-2010. What if...?

We call \texttt{revisit} function \texttt{edt()} to edit the code (visual editor in GUI), commenting out line 5. Then:

\begin{verbatim}
> runb()
[1] "Slope = 0.00180848722715659"
[1] "P-value = 0.33637275201986"
[1] "Jobs = 124.352299406043"
\end{verbatim}

Now, the result is no longer significant [sic], and the point estimate has been cut in half.
Norm Matloff
Dept. of
Computer Science
University of California at Davis

with Laurel Beckett, Tiffany Chen, Reed Davis, Paul Thompson and Emily Watkins

Zavodny, cont’d.
Some other What Ifs:
Some other What Ifs:
Adj. R^2 is 0.91, quite high.
Some other What Ifs:

Adj. R^2 is 0.91, quite high. The author’s model include dummies for state effects. What if we remove them?

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>4.1780416</td>
<td>0.0106922</td>
</tr>
<tr>
<td>lnimmshare</td>
<td>-0.0130295</td>
<td>0.0036493</td>
</tr>
<tr>
<td>emp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grad</td>
<td>0.0005722</td>
<td>0.0040274</td>
</tr>
<tr>
<td>fyeard</td>
<td>-0.0098670</td>
<td>0.0104854</td>
</tr>
</tbody>
</table>

Multiple R^2 square: 0.372, Adj. R^2 square: 0.3517
Some other What Ifs:
Adj. R^2 is 0.91, quite high. The author's model include dummies for state effects. What if we remove them?

...

Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>4.1780416</td>
<td>0.0106922</td>
</tr>
<tr>
<td>lnimmshare_emp</td>
<td>-0.0130295</td>
<td>0.0036493</td>
</tr>
<tr>
<td>stem_e_grad</td>
<td>0.0005722</td>
<td>0.0040274</td>
</tr>
<tr>
<td>lnimmshare_emp</td>
<td>0.0005722</td>
<td>0.0040274</td>
</tr>
<tr>
<td>stem_n_grad</td>
<td>-0.0098670</td>
<td>0.0104854</td>
</tr>
</tbody>
</table>

...

Multiple R–squared: 0.372, Adj. R–squared: 0.3517
Some other What Ifs:

Adj. R^2 is 0.91, quite high. The author’s model include dummies for state effects. What if we remove them?

\[
\begin{array}{lcccc}
\text{Coefficient} & \text{Estimate} & \text{Std. Error} \\
(\text{Intercept}) & 4.1780416 & 0.0106922 \\
\text{lnimmshare_emp_stem_e_grad} & -0.0130295 & 0.0036493 \\
\text{lnimmshare_emp_stem_n_grad} & 0.0005722 & 0.0040274 \\
fyear2001 & -0.0098670 & 0.0104854 \\
\end{array}
\]

Multiple R-squared: 0.372, Adj. R-squared: 0.3517

Using only immigrant share and time effects, R^2 drops a lot.
Very complex topic, many assumptions etc. But clearly Zavodny's "2.62 jobs created by each H-1B" figure—very widely cited in the press—cannot be taken as definitive.
Very complex topic, many assumptions etc. But clearly Zavodny’s “2.62 jobs created by each H-1B” figure — very widely cited in the press — cannot be taken as definitive.
Who Might Use revisit?

Norm Matloff
Dept. of
Computer
Science
University of
California at
Davis

with Laurel
Beckett,
Tiffany Chen,
Reed Davis,
Paul
Thompson
and Emily
Watkins
Who Might Use revisit?

- Good for coordination within a research team, during a project, asking a lot of What If questions.
Who Might Use revisit?

- Good for coordination within a research team, during a project, asking a lot of What If questions.
- Voluntary publication of the data and `revisit` files by a research team, in the spirit of open intellectual inquiry and reproducibility.
Who Might Use revisit?

- Good for coordination within a research team, during a project, asking a lot of What If questions.
- Voluntary publication of the data and revisit files by a research team, in the spirit of open intellectual inquiry and reproducibility. Would have been nice if Reinhart, Rogoff, Potti and Zavodny had done this.
Who Might Use revisit?

- Good for coordination within a research team, during a project, asking a lot of What If questions.
- Voluntary publication of the data and revisit files by a research team, in the spirit of open intellectual inquiry and reproducibility. Would have been nice if Reinhart, Rogoff, Potti and Zavodny had done this.
- Possible adoption by journals and funding agencies, as a requirement for publication/funding?
Who Might Use revisit?

- Good for coordination within a research team, during a project, asking a lot of What If questions.
- Voluntary publication of the data and `revisit` files by a research team, in the spirit of open intellectual inquiry and reproducibility. Would have been nice if Reinhart, Rogoff, Potti and Zavodny had done this.
- Possible adoption by journals and funding agencies, as a requirement for publication/funding?
- Use as a teaching tool, especially with the case studies.