
A Few Remarks About Debugging in R

Norm Matloff
Dept. of Computer Science

University of California, Davis

October 13, 2009



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.

I UCD CS Dept. since 1983. Main research areas:
probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.
(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17. (FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.
I I like to use the same text editor for everything I do.



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.
I UCD CS Dept. since 1983. Main research areas:

probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.

(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17. (FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.
I I like to use the same text editor for everything I do.



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.
I UCD CS Dept. since 1983. Main research areas:

probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.
(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17. (FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.
I I like to use the same text editor for everything I do.



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.
I UCD CS Dept. since 1983. Main research areas:

probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.
(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17. (FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.
I I like to use the same text editor for everything I do.



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.
I UCD CS Dept. since 1983. Main research areas:

probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.
(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17.

(FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.
I I like to use the same text editor for everything I do.



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.
I UCD CS Dept. since 1983. Main research areas:

probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.
(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17. (FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.
I I like to use the same text editor for everything I do.



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.
I UCD CS Dept. since 1983. Main research areas:

probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.
(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17. (FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.

I I like to use the same text editor for everything I do.



Where I’m Coming From

My sources of bias:
I Early career was as a statistics professor at UCD.
I UCD CS Dept. since 1983. Main research areas:

probabilistic/statistical modeling of computer systems;
parallel processing; computer architecture and networks;
Chinese-language computing.
(Will release my Rdsm shared-memory parallel R package
to CRAN in the next couple of weeks, much improved over
the α version.)

I I’m a longtime Linux fan/promoter. I use it for everything,
both professional and personal.

I Have been programming since I was 17. (FORTRAN,
punched cards.)

I GUIs and IDEs are nice, but:
I I didn’t grow up with it. Not a “necessity” to me like it is for

most new grads today.
I I like to use the same text editor for everything I do.



My Biases (cont’d.)

I Debugging is one of the most underrated software skills.

I may not think IDEs are important, but debugging tools are
crucial.
That’s why Pete Salzman and I wrote our book on
debugging.

I R’s debugging tools have been its weakest link.
I I thus am delighted that REvolution Computing is stepping

into the void. I hope they or others go to open source/cross
platform.



My Biases (cont’d.)

I Debugging is one of the most underrated software skills.
I may not think IDEs are important, but debugging tools are
crucial.

That’s why Pete Salzman and I wrote our book on
debugging.

I R’s debugging tools have been its weakest link.
I I thus am delighted that REvolution Computing is stepping

into the void. I hope they or others go to open source/cross
platform.



My Biases (cont’d.)

I Debugging is one of the most underrated software skills.
I may not think IDEs are important, but debugging tools are
crucial.
That’s why Pete Salzman and I wrote our book on
debugging.

I R’s debugging tools have been its weakest link.
I I thus am delighted that REvolution Computing is stepping

into the void. I hope they or others go to open source/cross
platform.



My Biases (cont’d.)

I Debugging is one of the most underrated software skills.
I may not think IDEs are important, but debugging tools are
crucial.
That’s why Pete Salzman and I wrote our book on
debugging.

I R’s debugging tools have been its weakest link.

I I thus am delighted that REvolution Computing is stepping
into the void. I hope they or others go to open source/cross
platform.



My Biases (cont’d.)

I Debugging is one of the most underrated software skills.
I may not think IDEs are important, but debugging tools are
crucial.
That’s why Pete Salzman and I wrote our book on
debugging.

I R’s debugging tools have been its weakest link.
I I thus am delighted that REvolution Computing is stepping

into the void. I hope they or others go to open source/cross
platform.



What Has Been Available?

I R’s built-in debug() function: non-GUI, limited capabilities
but serviceable. Somewhat improved in R 2.10.0.

I R’s built-in trace(), browser(), recovery() etc. functions:
These add finer control, e.g. conditional breakpoints, crash
post mortems, etc.

I Mark Bravington’s debug package: GUI view of one’s
source code as one traverses it. But can’t use mouse to
click-and-set breakpoints, query values of variables, etc.
“If it doesn’t click, you must acquit.”
(Mark just informed me today he’s preparing an update to
the package.)



What Has Been Available?

I R’s built-in debug() function: non-GUI, limited capabilities
but serviceable. Somewhat improved in R 2.10.0.

I R’s built-in trace(), browser(), recovery() etc. functions:
These add finer control, e.g. conditional breakpoints, crash
post mortems, etc.

I Mark Bravington’s debug package: GUI view of one’s
source code as one traverses it. But can’t use mouse to
click-and-set breakpoints, query values of variables, etc.
“If it doesn’t click, you must acquit.”
(Mark just informed me today he’s preparing an update to
the package.)



What Has Been Available?

I R’s built-in debug() function: non-GUI, limited capabilities
but serviceable. Somewhat improved in R 2.10.0.

I R’s built-in trace(), browser(), recovery() etc. functions:
These add finer control, e.g. conditional breakpoints, crash
post mortems, etc.

I Mark Bravington’s debug package: GUI view of one’s
source code as one traverses it. But can’t use mouse to
click-and-set breakpoints, query values of variables, etc.

“If it doesn’t click, you must acquit.”
(Mark just informed me today he’s preparing an update to
the package.)



What Has Been Available?

I R’s built-in debug() function: non-GUI, limited capabilities
but serviceable. Somewhat improved in R 2.10.0.

I R’s built-in trace(), browser(), recovery() etc. functions:
These add finer control, e.g. conditional breakpoints, crash
post mortems, etc.

I Mark Bravington’s debug package: GUI view of one’s
source code as one traverses it. But can’t use mouse to
click-and-set breakpoints, query values of variables, etc.
“If it doesn’t click, you must acquit.”

(Mark just informed me today he’s preparing an update to
the package.)



What Has Been Available?

I R’s built-in debug() function: non-GUI, limited capabilities
but serviceable. Somewhat improved in R 2.10.0.

I R’s built-in trace(), browser(), recovery() etc. functions:
These add finer control, e.g. conditional breakpoints, crash
post mortems, etc.

I Mark Bravington’s debug package: GUI view of one’s
source code as one traverses it. But can’t use mouse to
click-and-set breakpoints, query values of variables, etc.
“If it doesn’t click, you must acquit.”
(Mark just informed me today he’s preparing an update to
the package.)



Desiderata for Debugging Tools

I Viewable breakpoints.

“It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”

Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)

Not in the above tools.
I User-customizable: Ability to program macros, etc.

Doable in above tools via trace() and browser().
I GUI. Most people other than me really want it (me too, to a

large degree).
I Watchpoints. Run until specified variable changes value.

Fairly easy to implement in an interpreted language like R.
I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.

Doable in above tools via trace() and browser().
I GUI. Most people other than me really want it (me too, to a

large degree).
I Watchpoints. Run until specified variable changes value.

Fairly easy to implement in an interpreted language like R.
I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Desiderata for Debugging Tools

I Viewable breakpoints. “It’s 10 p.m. Do you where your
breakpoints are?”
Not in the above tools. (An example in my forthcoming R
book has a kludge fix for this.)

I Saveable debugging sessions. So can come back the next
day for more torture without setup time. :-)
Not in the above tools.

I User-customizable: Ability to program macros, etc.
Doable in above tools via trace() and browser().

I GUI. Most people other than me really want it (me too, to a
large degree).

I Watchpoints. Run until specified variable changes value.
Fairly easy to implement in an interpreted language like R.

I Ability to debug parallel code (next slide).



Debugging Parallel Code

I Debugging of parallel processes much harder than for
single process.

I Not many tools out there even for C/C++. TotalView
(commercial), XMPI (open source, for MPI).

I Screen footprint problem: If have n processes, that means
n windows. Problem is compounded if use GUI.

I Many existing parallel R platforms make parallel debugging
very difficult, due to lack of terminals for the processes.
(One of my Rdsm modes allows it.)



Debugging Parallel Code

I Debugging of parallel processes much harder than for
single process.

I Not many tools out there even for C/C++. TotalView
(commercial), XMPI (open source, for MPI).

I Screen footprint problem: If have n processes, that means
n windows. Problem is compounded if use GUI.

I Many existing parallel R platforms make parallel debugging
very difficult, due to lack of terminals for the processes.
(One of my Rdsm modes allows it.)



Debugging Parallel Code

I Debugging of parallel processes much harder than for
single process.

I Not many tools out there even for C/C++. TotalView
(commercial), XMPI (open source, for MPI).

I Screen footprint problem: If have n processes, that means
n windows. Problem is compounded if use GUI.

I Many existing parallel R platforms make parallel debugging
very difficult, due to lack of terminals for the processes.
(One of my Rdsm modes allows it.)



Debugging Parallel Code

I Debugging of parallel processes much harder than for
single process.

I Not many tools out there even for C/C++. TotalView
(commercial), XMPI (open source, for MPI).

I Screen footprint problem: If have n processes, that means
n windows. Problem is compounded if use GUI.

I Many existing parallel R platforms make parallel debugging
very difficult, due to lack of terminals for the processes.
(One of my Rdsm modes allows it.)



Debugging Parallel Code

I Debugging of parallel processes much harder than for
single process.

I Not many tools out there even for C/C++. TotalView
(commercial), XMPI (open source, for MPI).

I Screen footprint problem: If have n processes, that means
n windows. Problem is compounded if use GUI.

I Many existing parallel R platforms make parallel debugging
very difficult, due to lack of terminals for the processes.
(One of my Rdsm modes allows it.)



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:
I Principle of Confirmation: Even though you are “sure” a

certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:
I Principle of Confirmation: Even though you are “sure” a

certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:

I Principle of Confirmation: Even though you are “sure” a
certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:
I Principle of Confirmation:

Even though you are “sure” a
certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:
I Principle of Confirmation: Even though you are “sure” a

certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:
I Principle of Confirmation: Even though you are “sure” a

certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:
I Principle of Confirmation: Even though you are “sure” a

certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips on Debugging R

Sorry, no magic bullets.

I Fundamental principles of debugging:
I Principle of Confirmation: Even though you are “sure” a

certain variable has a certain value, or that a certain
if-condition holds, confirm it.

I Start small: Try the program on a small vector, maybe in
with a scaled-down version of the program itself.

I Top-down approach: When debugging f() which calls g(),
don’t follow calls to g() at first. Check first whether the
return value of g() is correct.

I Use binary search: Say you have a syntax error that’s
baffling you. Comment-out half the code of the function, to
see if the error disappears. Then comment-out half of the
half that triggers the error, etc.



Tips (cont’d.)

I Have a boolean global variable, say dbg, that turns
debugging on and off, and then insert breakpoints with
something like

if (dbg) browser()

I My aforementioned kludge may help you organize better,
e.g. keep track of your breakpoints. Download from http:
//heather.cs.ucdavis.edu/DebugKludge.r.

I If you are using a terminal-less parallel R package and are
forced to use print statements in lieu of a debugging tool,
use message() instead of print(). (The latter may not
actually print.)

http://heather.cs.ucdavis.edu/DebugKludge.r
http://heather.cs.ucdavis.edu/DebugKludge.r

