
Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis Efficient R Parallel Loops on Long-Latency
Platforms

Norm Matloff
University of California at Davis

Interface 2012
Rice University, May, 2012

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

The Basic Problem

Given a loop of independent tasks,

p a r a l l e l f o r i = 1 , 2 , . . . , n
do t a s k i

how to make this fast in R?

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

The Basic Problem

Given a loop of independent tasks,

p a r a l l e l f o r i = 1 , 2 , . . . , n
do t a s k i

how to make this fast in R?

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

The Basic Problem

Given a loop of independent tasks,

p a r a l l e l f o r i = 1 , 2 , . . . , n
do t a s k i

how to make this fast in R?

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: Kendall’s τ Correlation

τ̂ =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

1((Xi ,Yi)concord. with(Xj ,Yj)

p a r a l l e l f o r i = 1 , 2 , . . . , n−1
// h e r e i s t a s k i :
count = 0
(n o n p a r a l l e l) f o r j = i + 1 , . . . , n

count = count +
1 [((X [i] , Y [i]) concord . w i t h (X [j] , Y [j])]

Major point: time(task i) ↘ in i, thus issue of load balancing.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: Kendall’s τ Correlation

τ̂ =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

1((Xi ,Yi)concord. with(Xj ,Yj)

p a r a l l e l f o r i = 1 , 2 , . . . , n−1
// h e r e i s t a s k i :
count = 0
(n o n p a r a l l e l) f o r j = i + 1 , . . . , n

count = count +
1 [((X [i] , Y [i]) concord . w i t h (X [j] , Y [j])]

Major point: time(task i) ↘ in i, thus issue of load balancing.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: Kendall’s τ Correlation

τ̂ =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

1((Xi ,Yi)concord. with(Xj ,Yj)

p a r a l l e l f o r i = 1 , 2 , . . . , n−1
// h e r e i s t a s k i :
count = 0
(n o n p a r a l l e l) f o r j = i + 1 , . . . , n

count = count +
1 [((X [i] , Y [i]) concord . w i t h (X [j] , Y [j])]

Major point: time(task i) ↘ in i, thus issue of load balancing.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: Kendall’s τ Correlation

τ̂ =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

1((Xi ,Yi)concord. with(Xj ,Yj)

p a r a l l e l f o r i = 1 , 2 , . . . , n−1
// h e r e i s t a s k i :
count = 0
(n o n p a r a l l e l) f o r j = i + 1 , . . . , n

count = count +
1 [((X [i] , Y [i]) concord . w i t h (X [j] , Y [j])]

Major point: time(task i) ↘ in i, thus issue of load balancing.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: All Possible Regressions

• Have n obs. on p vars.

• Find “best” predictor set accord to some criterion, e.g.
adjusted R2.

• Evaluate criterion on all predictor sets of size ≤ some k.

p a r a l l e l f o r i = 1 , 2 , . . . , t o t . # o f models
do r e g r e s s i o n i

Here time(task i) ↗ in i.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: All Possible Regressions

• Have n obs. on p vars.

• Find “best” predictor set accord to some criterion, e.g.
adjusted R2.

• Evaluate criterion on all predictor sets of size ≤ some k.

p a r a l l e l f o r i = 1 , 2 , . . . , t o t . # o f models
do r e g r e s s i o n i

Here time(task i) ↗ in i.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: All Possible Regressions

• Have n obs. on p vars.

• Find “best” predictor set accord to some criterion, e.g.
adjusted R2.

• Evaluate criterion on all predictor sets of size ≤ some k.

p a r a l l e l f o r i = 1 , 2 , . . . , t o t . # o f models
do r e g r e s s i o n i

Here time(task i) ↗ in i.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: All Possible Regressions

• Have n obs. on p vars.

• Find “best” predictor set accord to some criterion, e.g.
adjusted R2.

• Evaluate criterion on all predictor sets of size ≤ some k.

p a r a l l e l f o r i = 1 , 2 , . . . , t o t . # o f models
do r e g r e s s i o n i

Here time(task i) ↗ in i.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: All Possible Regressions

• Have n obs. on p vars.

• Find “best” predictor set accord to some criterion, e.g.
adjusted R2.

• Evaluate criterion on all predictor sets of size ≤ some k.

p a r a l l e l f o r i = 1 , 2 , . . . , t o t . # o f models
do r e g r e s s i o n i

Here time(task i) ↗ in i.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Example: All Possible Regressions

• Have n obs. on p vars.

• Find “best” predictor set accord to some criterion, e.g.
adjusted R2.

• Evaluate criterion on all predictor sets of size ≤ some k.

p a r a l l e l f o r i = 1 , 2 , . . . , t o t . # o f models
do r e g r e s s i o n i

Here time(task i) ↗ in i.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Goals of This Talk

• Overview of classical shared-memory loop scheduling
methods.

• Discussion of how well these might adapt to parallel R.

• Proposal of a new loop scheduling method, shown
“optimal.”

• Case study (all possible regressions).

• Discussion of a possible algorithmic shortcut.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Goals of This Talk

• Overview of classical shared-memory loop scheduling
methods.

• Discussion of how well these might adapt to parallel R.

• Proposal of a new loop scheduling method, shown
“optimal.”

• Case study (all possible regressions).

• Discussion of a possible algorithmic shortcut.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Goals of This Talk

• Overview of classical shared-memory loop scheduling
methods.

• Discussion of how well these might adapt to parallel R.

• Proposal of a new loop scheduling method, shown
“optimal.”

• Case study (all possible regressions).

• Discussion of a possible algorithmic shortcut.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Goals of This Talk

• Overview of classical shared-memory loop scheduling
methods.

• Discussion of how well these might adapt to parallel R.

• Proposal of a new loop scheduling method, shown
“optimal.”

• Case study (all possible regressions).

• Discussion of a possible algorithmic shortcut.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Goals of This Talk

• Overview of classical shared-memory loop scheduling
methods.

• Discussion of how well these might adapt to parallel R.

• Proposal of a new loop scheduling method, shown
“optimal.”

• Case study (all possible regressions).

• Discussion of a possible algorithmic shortcut.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Goals of This Talk

• Overview of classical shared-memory loop scheduling
methods.

• Discussion of how well these might adapt to parallel R.

• Proposal of a new loop scheduling method, shown
“optimal.”

• Case study (all possible regressions).

• Discussion of a possible algorithmic shortcut.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Research Literature

• Very extensively studied, e.g. (Hagerup, 1997).

• However, most are for shared-memory machines, in which
the overhead (task queue access latency) is low.

• Some work for the long-latency case, e.g. (Yang and
Chang, 2011), but limited.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Research Literature

• Very extensively studied, e.g. (Hagerup, 1997).

• However, most are for shared-memory machines, in which
the overhead (task queue access latency) is low.

• Some work for the long-latency case, e.g. (Yang and
Chang, 2011), but limited.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Research Literature

• Very extensively studied, e.g. (Hagerup, 1997).

• However, most are for shared-memory machines, in which
the overhead (task queue access latency) is low.

• Some work for the long-latency case, e.g. (Yang and
Chang, 2011), but limited.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Research Literature

• Very extensively studied, e.g. (Hagerup, 1997).

• However, most are for shared-memory machines, in which
the overhead (task queue access latency) is low.

• Some work for the long-latency case, e.g. (Yang and
Chang, 2011), but limited.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Overhead Issues with Parallel R

• snow: serializes/deserializes communications; often used
on clusters, incurring network delay

• Rmpi: more flexible than snow, but still has the above
serialization and network problems

• mclapply/multicore: each call involves new Unix process
creation

• gputools: each call involves a GPU kernel invocation,
major overhead

• These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Overhead Issues with Parallel R

• snow: serializes/deserializes communications; often used
on clusters, incurring network delay

• Rmpi: more flexible than snow, but still has the above
serialization and network problems

• mclapply/multicore: each call involves new Unix process
creation

• gputools: each call involves a GPU kernel invocation,
major overhead

• These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Overhead Issues with Parallel R

• snow: serializes/deserializes communications; often used
on clusters, incurring network delay

• Rmpi: more flexible than snow, but still has the above
serialization and network problems

• mclapply/multicore: each call involves new Unix process
creation

• gputools: each call involves a GPU kernel invocation,
major overhead

• These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Overhead Issues with Parallel R

• snow: serializes/deserializes communications; often used
on clusters, incurring network delay

• Rmpi: more flexible than snow, but still has the above
serialization and network problems

• mclapply/multicore: each call involves new Unix process
creation

• gputools: each call involves a GPU kernel invocation,
major overhead

• These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Overhead Issues with Parallel R

• snow: serializes/deserializes communications; often used
on clusters, incurring network delay

• Rmpi: more flexible than snow, but still has the above
serialization and network problems

• mclapply/multicore: each call involves new Unix process
creation

• gputools: each call involves a GPU kernel invocation,
major overhead

• These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Overhead Issues with Parallel R

• snow: serializes/deserializes communications; often used
on clusters, incurring network delay

• Rmpi: more flexible than snow, but still has the above
serialization and network problems

• mclapply/multicore: each call involves new Unix process
creation

• gputools: each call involves a GPU kernel invocation,
major overhead

• These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Overhead Issues with Parallel R

• snow: serializes/deserializes communications; often used
on clusters, incurring network delay

• Rmpi: more flexible than snow, but still has the above
serialization and network problems

• mclapply/multicore: each call involves new Unix process
creation

• gputools: each call involves a GPU kernel invocation,
major overhead

• These can be especially problematic with iterative
algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared
to C, in order to yield a “win.”

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Taxonomy of Classical Loop
Scheduling Parameters

• static: iterations pre-assigned to processes

• dynamic: task queue or equivalent

• chunk size: number of consecutive values of i handled by a
process

• above are options in the shared-memory system OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Taxonomy of Classical Loop
Scheduling Parameters

• static: iterations pre-assigned to processes

• dynamic: task queue or equivalent

• chunk size: number of consecutive values of i handled by a
process

• above are options in the shared-memory system OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Taxonomy of Classical Loop
Scheduling Parameters

• static: iterations pre-assigned to processes

• dynamic: task queue or equivalent

• chunk size: number of consecutive values of i handled by a
process

• above are options in the shared-memory system OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Taxonomy of Classical Loop
Scheduling Parameters

• static: iterations pre-assigned to processes

• dynamic: task queue or equivalent

• chunk size: number of consecutive values of i handled by a
process

• above are options in the shared-memory system OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Taxonomy of Classical Loop
Scheduling Parameters

• static: iterations pre-assigned to processes

• dynamic: task queue or equivalent

• chunk size: number of consecutive values of i handled by a
process

• above are options in the shared-memory system OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but

• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end;

aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Tradeoffs

• static case:

• no task queue overhead, but
• possible load balance problem (idle processes near end).

• dynamic case:

• larger chunk size ⇒ smaller overhead but poorer load
balance

• smaller chunk size ⇒ larger overhead but better load
balance

• time-varying chunk size:

• large for early i, smaller near the end; aims for “best of
both worlds”

• guided option in OpenMP

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni);

use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static,

with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc.

Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

A “New” Scheduling Method

Notation:

• ni: Total number of iterations in loop.

• np: Number of processes (e.g. num. workers in snow).

Method:

• Randomly permute the i’s , i.e. (1,2,...,ni); use static, with
full chunk size (ni/np).

• Sometimes mentioned briefly in lit., but “new,” since not
studied analytically before.

• Easy to show this method asymp. yields full load balance.

• Has zero overhead, achieves full load balance ⇒ optimal!

• But only asympotically. :-)

• Not a bad choice, if you don’t want to bother tweaking
chunk size, etc. Simplify your life!

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Proof of Load Balance

• No assumptions (contrast to other research); data not
even considered random.

• Chunk size c is ni / np.

• Set tj = task time for iter. j; set µ and σ2 to mean and
variance of t1,...,tni .

• Cast the problem as one of sampling without replacement.

• Total time for iters. for process j has coeff. of variation√
(1− c

ni)cσ
2

cµ
→ 0 as c →∞

• Etc.

• So, total task time ≈ constant across processes, i.e. have
load balance.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Proof of Load Balance

• No assumptions (contrast to other research); data not
even considered random.

• Chunk size c is ni / np.

• Set tj = task time for iter. j; set µ and σ2 to mean and
variance of t1,...,tni .

• Cast the problem as one of sampling without replacement.

• Total time for iters. for process j has coeff. of variation√
(1− c

ni)cσ
2

cµ
→ 0 as c →∞

• Etc.

• So, total task time ≈ constant across processes, i.e. have
load balance.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Proof of Load Balance

• No assumptions (contrast to other research); data not
even considered random.

• Chunk size c is ni / np.

• Set tj = task time for iter. j; set µ and σ2 to mean and
variance of t1,...,tni .

• Cast the problem as one of sampling without replacement.

• Total time for iters. for process j has coeff. of variation√
(1− c

ni)cσ
2

cµ
→ 0 as c →∞

• Etc.

• So, total task time ≈ constant across processes, i.e. have
load balance.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Proof of Load Balance

• No assumptions (contrast to other research); data not
even considered random.

• Chunk size c is ni / np.

• Set tj = task time for iter. j; set µ and σ2 to mean and
variance of t1,...,tni .

• Cast the problem as one of sampling without replacement.

• Total time for iters. for process j has coeff. of variation√
(1− c

ni)cσ
2

cµ
→ 0 as c →∞

• Etc.

• So, total task time ≈ constant across processes, i.e. have
load balance.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Proof of Load Balance

• No assumptions (contrast to other research); data not
even considered random.

• Chunk size c is ni / np.

• Set tj = task time for iter. j; set µ and σ2 to mean and
variance of t1,...,tni .

• Cast the problem as one of sampling without replacement.

• Total time for iters. for process j has coeff. of variation√
(1− c

ni)cσ
2

cµ
→ 0 as c →∞

• Etc.

• So, total task time ≈ constant across processes, i.e. have
load balance.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Proof of Load Balance

• No assumptions (contrast to other research); data not
even considered random.

• Chunk size c is ni / np.

• Set tj = task time for iter. j; set µ and σ2 to mean and
variance of t1,...,tni .

• Cast the problem as one of sampling without replacement.

• Total time for iters. for process j has coeff. of variation√
(1− c

ni)cσ
2

cµ
→ 0 as c →∞

• Etc.

• So, total task time ≈ constant across processes, i.e. have
load balance.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Proof of Load Balance

• No assumptions (contrast to other research); data not
even considered random.

• Chunk size c is ni / np.

• Set tj = task time for iter. j; set µ and σ2 to mean and
variance of t1,...,tni .

• Cast the problem as one of sampling without replacement.

• Total time for iters. for process j has coeff. of variation√
(1− c

ni)cσ
2

cµ
→ 0 as c →∞

• Etc.

• So, total task time ≈ constant across processes, i.e. have
load balance.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

• clusterApply(): static

• clusterApplyLB(): dynamic

• both limited to a fixed chunk size of 1

• chunk size > 1 must be programmed with user’s own code

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scheduling Options in Snow

Our analysis here will focus on snow.

Scheduling options:

• clusterApply(): static

• clusterApplyLB(): dynamic

• both limited to a fixed chunk size of 1

• chunk size > 1 must be programmed with user’s own code

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

• clusterApply(): static

• clusterApplyLB(): dynamic

• both limited to a fixed chunk size of 1

• chunk size > 1 must be programmed with user’s own code

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

• clusterApply(): static

• clusterApplyLB(): dynamic

• both limited to a fixed chunk size of 1

• chunk size > 1 must be programmed with user’s own code

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

• clusterApply(): static

• clusterApplyLB(): dynamic

• both limited to a fixed chunk size of 1

• chunk size > 1 must be programmed with user’s own code

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

• clusterApply(): static

• clusterApplyLB(): dynamic

• both limited to a fixed chunk size of 1

• chunk size > 1 must be programmed with user’s own code

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

• clusterApply(): static

• clusterApplyLB(): dynamic

• both limited to a fixed chunk size of 1

• chunk size > 1 must be programmed with user’s own code

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Code for All Possible Regressions

1 prsnow <− f u n c t i o n (c l s , x , y , k ,
2 rnd=F , chunk=NULL , dyn=F) {
3 p <− n c o l (x) ; a l l c <<− g e n a l l c o m b s (p , k)
4 i f (rnd) a l l c <− randperm (a l l c)
5 n i <<− nrow (a l l c ; np <− l e n g t h (c l s))
6 i f (i s . n u l l (chunk)) chunk <− f l o o r (n i /np))
7 chunk <<− chunk
8 c l u s t e r E x p o r t (c l s , c (” a l l c ” ,” n i ” ,” chunk ” ,” x ” ,” y ”))
9 c l u s t e r E x p o r t (c l s , ” d o 1 p s e t ”)

10 i s <− seq (1 , n i , chunk)
11 i f (! dyn) { a r 2 s <<−
12 c l u s t e r A p p l y (c l s , i s , dochunk)
13 } e l s e { a r 2 s <<−
14 c l u s t e r A p p l y L B (c l s , i s , dochunk)
15 }
16 }

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Code for All Possible Regressions

1 prsnow <− f u n c t i o n (c l s , x , y , k ,
2 rnd=F , chunk=NULL , dyn=F) {
3 p <− n c o l (x) ; a l l c <<− g e n a l l c o m b s (p , k)
4 i f (rnd) a l l c <− randperm (a l l c)
5 n i <<− nrow (a l l c ; np <− l e n g t h (c l s))
6 i f (i s . n u l l (chunk)) chunk <− f l o o r (n i /np))
7 chunk <<− chunk
8 c l u s t e r E x p o r t (c l s , c (” a l l c ” ,” n i ” ,” chunk ” ,” x ” ,” y ”))
9 c l u s t e r E x p o r t (c l s , ” d o 1 p s e t ”)

10 i s <− seq (1 , n i , chunk)
11 i f (! dyn) { a r 2 s <<−
12 c l u s t e r A p p l y (c l s , i s , dochunk)
13 } e l s e { a r 2 s <<−
14 c l u s t e r A p p l y L B (c l s , i s , dochunk)
15 }
16 }

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Code, cont’d.

1 dochunk <− f u n c t i o n (p s e t c h u n k) {
2 l a s t t a s k <− min (p s e t c h u n k+chunk−1, nc)
3 out <− NULL
4 f o r (tasknum i n p s e t c h u n k : l a s t t a s k) {
5 out <− c (out , d o 1 p s e t (tasknum))
6 }
7 r e t u r n (out)
8 }
9

10 d o 1 p s e t <− f u n c t i o n (p s e t) {
11 onerow <− a l l c o m b s [pset ,]
12 nps <− onerow [1]
13 ps <− onerow [2 : (1 + nps)]
14 slm <− summary (lm (y ˜ x [, ps]))
15 r e t u r n (Reduce (paste , c (s l m $ a d j .
16 r . squared , m y i n f o $ i d , onerow [−1])))
17 }

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Code, cont’d.

1 dochunk <− f u n c t i o n (p s e t c h u n k) {
2 l a s t t a s k <− min (p s e t c h u n k+chunk−1, nc)
3 out <− NULL
4 f o r (tasknum i n p s e t c h u n k : l a s t t a s k) {
5 out <− c (out , d o 1 p s e t (tasknum))
6 }
7 r e t u r n (out)
8 }
9

10 d o 1 p s e t <− f u n c t i o n (p s e t) {
11 onerow <− a l l c o m b s [pset ,]
12 nps <− onerow [1]
13 ps <− onerow [2 : (1 + nps)]
14 slm <− summary (lm (y ˜ x [, ps]))
15 r e t u r n (Reduce (paste , c (s l m $ a d j .
16 r . squared , m y i n f o $ i d , onerow [−1])))
17 }

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Options

• chunk: Chunk size. Default value is ni/np.

• dyn: Use dynamic scheduling, i.e. clusterApplyLB()
instead of clusterApply(). Default value is False.

• rnd: Use random scheduling. Default value is False.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Options

• chunk: Chunk size. Default value is ni/np.

• dyn: Use dynamic scheduling, i.e. clusterApplyLB()
instead of clusterApply(). Default value is False.

• rnd: Use random scheduling. Default value is False.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Options

• chunk: Chunk size. Default value is ni/np.

• dyn: Use dynamic scheduling, i.e. clusterApplyLB()
instead of clusterApply(). Default value is False.

• rnd: Use random scheduling. Default value is False.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Options

• chunk: Chunk size. Default value is ni/np.

• dyn: Use dynamic scheduling, i.e. clusterApplyLB()
instead of clusterApply(). Default value is False.

• rnd: Use random scheduling. Default value is False.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Timings

• 10,000
obs., 8
predictors

• k = 4 (i.e.
up to 4
preds.)

• 2 procs.,
same
machine

• chunk sizes
1,5,10,...,50;
5 reps.
each

0

2

4

6

8

0 10 20 30 40 50
chunk

tim
e

Chunks too small ⇒ overhead problem.
Chunks too large ⇒ load balance problem.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Timings

• 10,000
obs., 8
predictors

• k = 4 (i.e.
up to 4
preds.)

• 2 procs.,
same
machine

• chunk sizes
1,5,10,...,50;
5 reps.
each

0

2

4

6

8

0 10 20 30 40 50
chunk

tim
e

Chunks too small ⇒ overhead problem.
Chunks too large ⇒ load balance problem.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Timings

• 10,000
obs., 8
predictors

• k = 4 (i.e.
up to 4
preds.)

• 2 procs.,
same
machine

• chunk sizes
1,5,10,...,50;
5 reps.
each

0

2

4

6

8

0 10 20 30 40 50
chunk

tim
e

Chunks too small ⇒ overhead problem.
Chunks too large ⇒ load balance problem.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Timings

• 10,000
obs., 8
predictors

• k = 4 (i.e.
up to 4
preds.)

• 2 procs.,
same
machine

• chunk sizes
1,5,10,...,50;
5 reps.
each

0

2

4

6

8

0 10 20 30 40 50
chunk

tim
e

Chunks too small ⇒ overhead problem.

Chunks too large ⇒ load balance problem.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Timings

• 10,000
obs., 8
predictors

• k = 4 (i.e.
up to 4
preds.)

• 2 procs.,
same
machine

• chunk sizes
1,5,10,...,50;
5 reps.
each

0

2

4

6

8

0 10 20 30 40 50
chunk

tim
e

Chunks too small ⇒ overhead problem.
Chunks too large ⇒ load balance problem.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Network Platform

Same setting, but on a network platform.
Worker nodes chosen to be distant from manager node, to
highlight overhead issue.

0

2

4

6

8

10

12

0 10 20 30 40 50
chunk

tim
e

setting

loc

net

Impact
of choice
of chunk
size more
dramatic
here.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Network Platform
Same setting, but on a network platform.

Worker nodes chosen to be distant from manager node, to
highlight overhead issue.

0

2

4

6

8

10

12

0 10 20 30 40 50
chunk

tim
e

setting

loc

net

Impact
of choice
of chunk
size more
dramatic
here.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Network Platform
Same setting, but on a network platform.
Worker nodes chosen to be distant from manager node, to
highlight overhead issue.

0

2

4

6

8

10

12

0 10 20 30 40 50
chunk

tim
e

setting

loc

net

Impact
of choice
of chunk
size more
dramatic
here.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Network Platform
Same setting, but on a network platform.
Worker nodes chosen to be distant from manager node, to
highlight overhead issue.

0

2

4

6

8

10

12

0 10 20 30 40 50
chunk

tim
e

setting

loc

net

Impact
of choice
of chunk
size more
dramatic
here.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Network Platform
Same setting, but on a network platform.
Worker nodes chosen to be distant from manager node, to
highlight overhead issue.

0

2

4

6

8

10

12

0 10 20 30 40 50
chunk

tim
e

setting

loc

net

Impact
of choice
of chunk
size more
dramatic
here.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Comparison to Random Scheduling

setting best chunk worst chunk random

localhost 3.410 4.873 3.794

network 4.582 10.455 4.723

Again, random method only asymp. optimal, but good choice
if don’t want to spend time tweaking the chunk size.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Comparison to Random Scheduling

setting best chunk worst chunk random

localhost 3.410 4.873 3.794

network 4.582 10.455 4.723

Again, random method only asymp. optimal, but good choice
if don’t want to spend time tweaking the chunk size.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Comparison to Random Scheduling

setting best chunk worst chunk random

localhost 3.410 4.873 3.794

network 4.582 10.455 4.723

Again, random method only asymp. optimal, but good choice
if don’t want to spend time tweaking the chunk size.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scalability

• 10000 obs., 20
vars.

• np =
2,4,8,16,32,64,
on localhost (>
64 cores)

• Random sched.
(“representa-
tive”).

20

40

60

80

100

0 10 20 30 40 50 60
np

tim
e

Overhead ⇒ diminishing returns—eventually negative.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scalability

• 10000 obs., 20
vars.

• np =
2,4,8,16,32,64,
on localhost (>
64 cores)

• Random sched.
(“representa-
tive”).

20

40

60

80

100

0 10 20 30 40 50 60
np

tim
e

Overhead ⇒ diminishing returns—eventually negative.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scalability

• 10000 obs., 20
vars.

• np =
2,4,8,16,32,64,
on localhost (>
64 cores)

• Random sched.
(“representa-
tive”).

20

40

60

80

100

0 10 20 30 40 50 60
np

tim
e

Overhead ⇒ diminishing returns—eventually negative.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scalability

• 10000 obs., 20
vars.

• np =
2,4,8,16,32,64,
on localhost (>
64 cores)

• Random sched.
(“representa-
tive”).

20

40

60

80

100

0 10 20 30 40 50 60
np

tim
e

Overhead ⇒ diminishing returns

—eventually negative.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Scalability

• 10000 obs., 20
vars.

• np =
2,4,8,16,32,64,
on localhost (>
64 cores)

• Random sched.
(“representa-
tive”).

20

40

60

80

100

0 10 20 30 40 50 60
np

tim
e

Overhead ⇒ diminishing returns—eventually negative.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Algorithmic Speedup

• Exploit matrix update: Get new (X ′X)−1 from the old one
when add a new variable. Possibly get a speedup?

• Scheduling may be rather intricate.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Algorithmic Speedup

• Exploit matrix update:

Get new (X ′X)−1 from the old one
when add a new variable. Possibly get a speedup?

• Scheduling may be rather intricate.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Algorithmic Speedup

• Exploit matrix update: Get new (X ′X)−1 from the old one
when add a new variable.

Possibly get a speedup?

• Scheduling may be rather intricate.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Algorithmic Speedup

• Exploit matrix update: Get new (X ′X)−1 from the old one
when add a new variable. Possibly get a speedup?

• Scheduling may be rather intricate.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Algorithmic Speedup

• Exploit matrix update: Get new (X ′X)−1 from the old one
when add a new variable. Possibly get a speedup?

• Scheduling may be rather intricate.

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Slides available at
http://heather.cs.ucdavis.edu/RiceSlides.pdf.

To learn about parallel programming, see my open source book
at http://heather.cs.ucdavis.edu/parprocbook.

http://heather.cs.ucdavis.edu/parprocbook

Efficient R
Parallel Loops

on
Long-Latency

Platforms

Norm Matloff
University of
California at

Davis

Slides available at
http://heather.cs.ucdavis.edu/RiceSlides.pdf.

To learn about parallel programming, see my open source book
at http://heather.cs.ucdavis.edu/parprocbook.

http://heather.cs.ucdavis.edu/parprocbook

