Efficient R Parallel Loops on Long-Latency Platforms

Norm Matloff
University of California at Davis

Interface 2012
Rice University, May, 2012
The Basic Problem
The Basic Problem

Given a loop of independent tasks,

```
parallel for i = 1, 2, ..., n
do task i
```
The Basic Problem

Given a loop of independent tasks,

```
parallel for i = 1, 2, ..., n
do task i
```

how to make this fast in R?
Example: Kendall’s τ Correlation
Example: Kendall’s τ Correlation

\[\hat{\tau} = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1((X_i, Y_i) \text{ concord. with } (X_j, Y_j)} \]
Example: Kendall’s τ Correlation

$$\hat{\tau} = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1((X_i, Y_i) \text{ concord. with } (X_j, Y_j))$$

parallel for $i = 1, 2, \ldots, n-1$

// here is task i:

```
count = 0
(nonparallel) for $j = i+1, \ldots, n$
  count = count +
  1[((X[i], Y[i]) \text{ concord. with } (X[j], Y[j]))]
```
Example: Kendall’s τ Correlation

$$\hat{\tau} = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1((X_i, Y_i) \text{ concord. with } (X_j, Y_j))$$

parallel for $i = 1, 2, \ldots, n-1$
 // here is task i:
 count = 0
 (nonparallel) for $j = i+1, \ldots, n$
 count = count + $1[((X[i], Y[i]) \text{ concord. with } (X[j], Y[j]))$

Major point: $\text{time(task } i) \downarrow$ in i, thus issue of load balancing.
Example: All Possible Regressions

• Have n obs. on p vars.
• Find "best" predictor set according to some criterion, e.g., adjusted R^2.
• Evaluate criterion on all predictor sets of size $\leq k$.

parallel for $i = 1, 2, \ldots, \text{# of models}$ do regression i

Here time(task i) \uparrow in i.
Example: All Possible Regressions

- Have \(n \) obs. on \(p \) vars.
Example: All Possible Regressions

- Have n obs. on p vars.
- Find “best” predictor set accord to some criterion, e.g. adjusted R^2.
Example: All Possible Regressions

- Have n obs. on p vars.
- Find “best” predictor set accord to some criterion, e.g. adjusted R^2.
- Evaluate criterion on all predictor sets of size \leq some k.
Example: All Possible Regressions

- Have n obs. on p vars.
- Find "best" predictor set accord to some criterion, e.g. adjusted R^2.
- Evaluate criterion on all predictor sets of size \leq some k.

```r
parallel for i = 1, 2, ..., tot. # of models
do regression i
```
Example: All Possible Regressions

- Have n obs. on p vars.
- Find “best” predictor set accord to some criterion, e.g. adjusted R^2.
- Evaluate criterion on all predictor sets of size \leq some k.

\[
\text{parallel for } i = 1, 2, \ldots, \text{tot. } \# \text{ of models} \\
do \text{ regression } i
\]

Here time(task i) ↗ in i.
Goals of This Talk

• Overview of classical shared-memory loop scheduling methods.
• Discussion of how well these might adapt to parallel R.
• Proposal of a new loop scheduling method, shown "optimal."
• Case study (all possible regressions).
• Discussion of a possible algorithmic shortcut.
Goals of This Talk

- Overview of classical shared-memory loop scheduling methods.
Goals of This Talk

- Overview of classical shared-memory loop scheduling methods.
- Discussion of how well these might adapt to parallel R.
Goals of This Talk

- Overview of classical shared-memory loop scheduling methods.
- Discussion of how well these might adapt to parallel R.
- Proposal of a new loop scheduling method, shown “optimal.”
Goals of This Talk

- Overview of classical shared-memory loop scheduling methods.
- Discussion of how well these might adapt to parallel R.
- Proposal of a new loop scheduling method, shown “optimal.”
- Case study (all possible regressions).
Goals of This Talk

- Overview of classical shared-memory loop scheduling methods.
- Discussion of how well these might adapt to parallel R.
- Proposal of a new loop scheduling method, shown “optimal.”
- Case study (all possible regressions).
- Discussion of a possible algorithmic shortcut.
Research Literature
• Very extensively studied, e.g. (Hagerup, 1997).
Research Literature

- Very extensively studied, e.g. (Hagerup, 1997).
- However, most are for shared-memory machines, in which the overhead (task queue access latency) is low.
Research Literature

- Very extensively studied, e.g. (Hagerup, 1997).
- However, most are for shared-memory machines, in which the overhead (task queue access latency) is low.
- Some work for the long-latency case, e.g. (Yang and Chang, 2011), but limited.
Overhead Issues with Parallel R

- **snow**: serializes/deserializes communications; often used on clusters, incurring network delay
- **Rmpi**: more flexible than snow, but still has the above serialization and network problems
- **mclapply/multicore**: each call involves new Unix process creation
- **gputools**: each call involves a GPU kernel invocation, major overhead

These can be especially problematic with iterative algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared to C, in order to yield a "win."
Overhead Issues with Parallel R

- **snow**: serializes/deserializes communications; often used on clusters, incurring network delay
Efficient R
Parallel Loops on
Long-Latency Platforms

Norm Matloff
University of California at Davis

Overhead Issues with Parallel R

- **snow**: serializes/deserializes communications; often used on clusters, incurring network delay
- **Rmpi**: more flexible than **snow**, but still has the above serialization and network problems
Overhead Issues with Parallel R

- **snow**: serializes/deserializes communications; often used on clusters, incurring network delay
- **Rmpi**: more flexible than **snow**, but still has the above serialization and network problems
- **mclapply/multicore**: each call involves new Unix process creation

Bottom line: R typically needs larger applications, compared to C, in order to yield a “win.”
Overhead Issues with Parallel R

- **snow**: serializes/deserializes communications; often used on clusters, incurring network delay
- **Rmpi**: more flexible than **snow**, but still has the above serialization and network problems
- **mclapply/multicore**: each call involves new Unix process creation
- **gputools**: each call involves a GPU kernel invocation, major overhead
Overhead Issues with Parallel R

- **snow**: serializes/deserializes communications; often used on clusters, incurring network delay
- **Rmpi**: more flexible than **snow**, but still has the above serialization and network problems
- **mclapply/multicore**: each call involves new Unix process creation
- **gputools**: each call involves a GPU kernel invocation, major overhead
- These can be especially problematic with iterative algorithms, overhead incurred at every iteration.
Overhead Issues with Parallel R

- **snow**: serializes/deserializes communications; often used on clusters, incurring network delay
- **Rmpi**: more flexible than **snow**, but still has the above serialization and network problems
- **mclapply/multicore**: each call involves new Unix process creation
- **gputools**: each call involves a GPU kernel invocation, major overhead
- These can be especially problematic with iterative algorithms, overhead incurred at every iteration.

Bottom line: R typically needs larger applications, compared to C, in order to yield a “win.”
Taxonomy of Classical Loop Scheduling Parameters
Taxonomy of Classical Loop Scheduling Parameters

- static: iterations pre-assigned to processes
Taxonomy of Classical Loop Scheduling Parameters

- static: iterations pre-assigned to processes
- dynamic: task queue or equivalent
Taxonomy of Classical Loop Scheduling Parameters

- static: iterations pre-assigned to processes
- dynamic: task queue or equivalent
- chunk size: number of consecutive values of i handled by a process
Taxonomy of Classical Loop Scheduling Parameters

- static: iterations pre-assigned to processes
- dynamic: task queue or equivalent
- chunk size: number of consecutive values of i handled by a process
- above are options in the shared-memory system OpenMP
Tradeoffs

- **Static case:**
 - No task queue overhead, but
 - Possible load balance problem (idle processes near end).

- **Dynamic case:**
 - Larger chunk size ⇒ smaller overhead but poorer load balance
 - Smaller chunk size ⇒ larger overhead but better load balance

- **Time-varying chunk size:**
 - Large for early i, smaller near the end;
 - Aims for "best of both worlds"
 - Guided option in OpenMP
Tradeoffs

• static case:
Tradeoffs

- static case:
 - no task queue overhead, but
Tradeoffs

- static case:
 - no task queue overhead, but
 - possible load balance problem (idle processes near end).

- dynamic case:
 - larger chunk size ⇒ smaller overhead but poorer load balance
 - smaller chunk size ⇒ larger overhead but better load balance

- time-varying chunk size:
 - large for early i, smaller near the end; aims for “best of both worlds”
 - guided option in OpenMP
Tradeoffs

- static case:
 - no task queue overhead, but
 - possible load balance problem (idle processes near end).

- dynamic case:
Tradeoffs

- static case:
 - no task queue overhead, but
 - possible load balance problem (idle processes near end).

- dynamic case:
 - larger chunk size \Rightarrow smaller overhead but poorer load balance

- time-varying chunk size:
 - large for early i, smaller near the end;
 - aims for “best of both worlds”
 - guided option in OpenMP
Tradeoffs

• static case:
 • no task queue overhead, but
 • possible load balance problem (idle processes near end).

• dynamic case:
 • larger chunk size ⇒ smaller overhead but poorer load balance
 • smaller chunk size ⇒ larger overhead but better load balance
Tradeoffs

- static case:
 - no task queue overhead, but
 - possible load balance problem (idle processes near end).

- dynamic case:
 - larger chunk size \Rightarrow smaller overhead but poorer load balance
 - smaller chunk size \Rightarrow larger overhead but better load balance

- time-varying chunk size:
Tradeoffs

- **static case:**
 - no task queue overhead, but
 - possible load balance problem (idle processes near end).

- **dynamic case:**
 - larger chunk size \Rightarrow smaller overhead but poorer load balance
 - smaller chunk size \Rightarrow larger overhead but better load balance

- **time-varying chunk size:**
 - large for early i, smaller near the end;
Tradeoffs

- static case:
 - no task queue overhead, but
 - possible load balance problem (idle processes near end).

- dynamic case:
 - larger chunk size → smaller overhead but poorer load balance
 - smaller chunk size → larger overhead but better load balance

- time-varying chunk size:
 - large for early i, smaller near the end; aims for “best of both worlds”
Tradeoffs

- **static case:**
 - no task queue overhead, but
 - possible load balance problem (idle processes near end).

- **dynamic case:**
 - larger chunk size \Rightarrow smaller overhead but poorer load balance
 - smaller chunk size \Rightarrow larger overhead but better load balance

- **time-varying chunk size:**
 - large for early i, smaller near the end; aims for “best of both worlds”
 - **guided** option in OpenMP
A “New” Scheduling Method

Efficient R Parallel Loops on Long-Latency Platforms

Norm Matloff
University of California at Davis
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in `snow`).
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in `snow`).

Method:

- Randomly permute the i’s, i.e. (1,2,…,ni);
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in `snow`).

Method:

- Randomly permute the i’s, i.e. \(1, 2, \ldots, ni\); use static,
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in snow).

Method:

- Randomly permute the i’s, i.e. \((1,2,...,ni)\); use static, with full chunk size \((ni/np)\).
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in snow).

Method:

- Randomly permute the i’s, i.e. (1,2,...,ni); use static, with full chunk size (ni/np).
- Sometimes mentioned briefly in lit., but “new,” since not studied analytically before.

Easy to show this method asymp. yields full load balance.

Has zero overhead, achieves full load balance ⇒ optimal!

But only asymptotically. :-)

Not a bad choice, if you don’t want to bother tweaking chunk size, etc.

Simplify your life!
A “New” Scheduling Method

Notation:
- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in `snow`).

Method:
- Randomly permute the i’s, i.e. \((1,2,\ldots,ni)\); use static, with full chunk size \((ni/np)\).
- Sometimes mentioned briefly in lit., but “new,” since not studied analytically before.
- Easy to show this method asymp. yields full load balance.

⇒ optimal! :-)

But only asympotically. :-)

Not a bad choice, if you don’t want to bother tweaking chunk size, etc.

Simplify your life!
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in **snow**).

Method:

- Randomly permute the i’s, i.e. (1,2,...,ni); use static, with full chunk size (ni/np).
- Sometimes mentioned briefly in lit., but “new,” since not studied analytically before.
- Easy to show this method asymp. yields full load balance.
- Has zero overhead, achieves full load balance ⇒ optimal!
A “New” Scheduling Method

Notation:
- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in snow).

Method:
- Randomly permute the i’s, i.e. (1,2,…,ni); use static, with full chunk size (ni/np).
- Sometimes mentioned briefly in lit., but “new,” since not studied analytically before.
- Easy to show this method asymp. yields full load balance.
- Has zero overhead, achieves full load balance ⇒ optimal!
- But only asymptotically. :-(
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in *snow*).

Method:

- Randomly permute the i’s, i.e. (1,2,...,ni); use static, with full chunk size (ni/np).
- Sometimes mentioned briefly in lit., but “new,” since not studied analytically before.
- Easy to show this method asymp. yields full load balance.
- Has zero overhead, achieves full load balance ⇒ optimal!
- But only asymptotically. :-)
- Not a bad choice, if you don’t want to bother tweaking chunk size, etc.
A “New” Scheduling Method

Notation:

- **ni**: Total number of iterations in loop.
- **np**: Number of processes (e.g. num. workers in snow).

Method:

- Randomly permute the i’s, i.e. (1,2,...,ni); use static, with full chunk size (ni/np).
- Sometimes mentioned briefly in lit., but “new,” since not studied analytically before.
- Easy to show this method asympt. yields full load balance.
- Has zero overhead, achieves full load balance ⇒ optimal!
- But only asymptotically. :-)
- Not a bad choice, if you don’t want to bother tweaking chunk size, etc. Simplify your life!
Proof of Load Balance
Proof of Load Balance

- No assumptions (contrast to other research); data not even considered random.
Proof of Load Balance

- No assumptions (contrast to other research); data not even considered random.
- Chunk size c is $\frac{ni}{np}$.

Proof of Load Balance

- No assumptions (contrast to other research); data not even considered random.
- Chunk size \(c = \frac{ni}{np} \).
- Set \(t_j = \) task time for iter. \(j \); set \(\mu \) and \(\sigma^2 \) to mean and variance of \(t_1, \ldots, t_{ni} \).
Proof of Load Balance

- No assumptions (contrast to other research); data not even considered random.
- Chunk size c is $\frac{n_i}{n_p}$.
- Set $t_j =$ task time for iter. j; set μ and σ^2 to mean and variance of $t_1,...,t_{ni}$.
- Cast the problem as one of sampling without replacement.
Proof of Load Balance

- No assumptions (contrast to other research); data not even considered random.
- Chunk size c is $\frac{ni}{np}$.
- Set $t_j =$ task time for iter. j; set μ and σ^2 to mean and variance of t_1, \ldots, t_{ni}.
- Cast the problem as one of sampling without replacement.
- Total time for iters. for process j has coeff. of variation

$$\frac{\sqrt{(1 - \frac{c}{ni})c\sigma^2}}{c\mu} \rightarrow 0 \text{ as } c \rightarrow \infty$$

- Etc.
Proof of Load Balance

- No assumptions (contrast to other research); data not even considered random.
- Chunk size c is $\frac{ni}{np}$.
- Set $t_j =$ task time for iter. j; set μ and σ^2 to mean and variance of $t_1,...,t_{ni}$.
- Cast the problem as one of sampling without replacement.
- Total time for iters. for process j has coeff. of variation
 $$\frac{\sqrt{(1 - \frac{c}{ni})c\sigma^2}}{c\mu} \rightarrow 0 \text{ as } c \rightarrow \infty$$
- Etc.
- So, total task time \approx constant across processes, i.e. have load balance.
Scheduling Options in Snow

• clusterApply(): static
• clusterApplyLB(): dynamic
• both limited to a fixed chunk size of 1
• chunk size > 1 must be programmed with user’s own code
Scheduling Options in Snow

Our analysis here will focus on snow.
Scheduling Options in Snow

Our analysis here will focus on **snow**. Scheduling options:
Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

- `clusterApply()`: static
Scheduling Options in Snow

Our analysis here will focus on `snow`. Scheduling options:

- `clusterApply()`: static
- `clusterApplyLB()`: dynamic
Scheduling Options in Snow

Our analysis here will focus on snow. Scheduling options:

- `clusterApply()`: static
- `clusterApplyLB()`: dynamic
- both limited to a fixed chunk size of 1
Scheduling Options in Snow

Our analysis here will focus on **snow**. Scheduling options:

- `clusterApply()`: static
- `clusterApplyLB()`: dynamic
- both limited to a fixed chunk size of 1
- chunk size > 1 must be programmed with user’s own code
Code for All Possible Regressions

Norm Matloff
University of California at Davis
Code for All Possible Regressions

```r
prsnow <- function(clas, x, y, k, 
                    rnd=F, chunk=NULL, dyn=F) {
  p <- ncol(x); allc <- genallcombs(p, k)
  if (rnd) allc <- randperm(allc)
  ni <- nrow(allc; np <- length(cls))
  if (is.null(chunk)) chunk <- floor(ni/np)
  chunk <- chunk
  clusterExport(cls, c("allc", "ni", "chunk", "x")
  clusterExport(cls, "do1pset")
  is <- seq(1, ni, chunk)
  if (!dyn) { ar2s <-
    clusterApply(cls, is, dochunk)
  } else { ar2s <-
    clusterApplyLB(cls, is, dochunk)
  }
}
```
dochunk <- function (ps, chunk) {
 last task <- min (ps + chunk - 1, nc)
 out <- NULL
 for (tasknum in ps:last task) {
 out <- c (out, do1 (tasknum))
 }
 return (out)
}

do1 <- function (ps) {
 onerow <- allcomb [ps,]
 nps <- onerow [1]
 ps <- onerow [2: (1 + nps)]
 slm <- summary (lm (y ~ x [, ps]))
 return (Reduce (paste, c (slm $adj.r.squared, my.info $id, onerow [−1])))
}
Code, cont’d.

```r
dochunk <- function(psetchunk) {
  lasttask <- min(psetchunk + chunk - 1, nc)
  out <- NULL
  for (tasknum in psetchunk:lasttask) {
    out <- c(out, dolpset(tasknum))
  }
  return(out)
}

dolpset <- function(pset) {
  onerow <- allcombs[pset,]
  nps <- onerow[1]
  ps <- onerow[2:(1+nps)]
  slm <- summary(lm(y ~ x[ , ps ]))
  return(Reduce(paste, c(slm$adj.
    r.squared, myinfo$id, onerow[-1][]))
}
```
Options

- **chunk**: Chunk size. Default value is `ni / np`.
- **dyn**: Use dynamic scheduling, i.e. `clusterApplyLB()` instead of `clusterApply()`. Default value is False.
- **rnd**: Use random scheduling. Default value is False.
• **chunk**: Chunk size. Default value is \(ni/np\).
• **chunk**: Chunk size. Default value is ni/np.

• **dyn**: Use dynamic scheduling, i.e. `clusterApplyLB()` instead of `clusterApply()`. Default value is False.
Options

- **chunk**: Chunk size. Default value is ni/np.
- **dyn**: Use dynamic scheduling, i.e. `clusterApplyLB()` instead of `clusterApply()`. Default value is False.
- **rnd**: Use random scheduling. Default value is False.
Timings

- 10,000 obs., 8 predictors
- $k = 4$ (i.e. up to 4 preds.)
- 2 procs., same machine
- chunk sizes 1, 5, 10, ..., 50; 5 reps.

Chunks too small ⇒ overhead problem.
Chunks too large ⇒ load balance problem.
Timings

- 10,000 obs., 8 predictors
- \(k = 4 \) (i.e. up to 4 preds.)
- 2 procs., same machine
- chunk sizes 1, 5, 10, ..., 50; 5 reps. each

Chunks too small ⇒ overhead problem.
Chunks too large ⇒ load balance problem.
- 10,000 obs., 8 predictors
- \(k = 4 \) (i.e. up to 4 preds.)
- 2 procs., same machine
- chunk sizes 1,5,10,...,50; 5 reps. each
10,000 obs., 8 predictors

k = 4 (i.e. up to 4 preds.)

2 procs., same machine

chunk sizes 1, 5, 10, ..., 50; 5 reps. each

Chunks too small ⇒ overhead problem.
10,000 obs., 8 predictors

k = 4 (i.e. up to 4 preds.)

2 procs., same machine

chunk sizes 1, 5, 10, ..., 50; 5 reps. each

Chunks too small ⇒ overhead problem.
Chunks too large ⇒ load balance problem.
Network Platform

Impact of choice of chunk size more dramatic here.
Network Platform

Same setting, but on a network platform.
Network Platform

Same setting, but on a network platform. Worker nodes chosen to be distant from manager node, to highlight overhead issue.
Network Platform

Same setting, but on a network platform. Worker nodes chosen to be distant from manager node, to highlight overhead issue.
Network Platform

Same setting, but on a network platform. Worker nodes chosen to be distant from manager node, to highlight overhead issue.

Impact of choice of chunk size more dramatic here.
Comparison to Random Scheduling
Comparison to Random Scheduling

<table>
<thead>
<tr>
<th>setting</th>
<th>best chunk</th>
<th>worst chunk</th>
<th>random</th>
</tr>
</thead>
<tbody>
<tr>
<td>localhost</td>
<td>3.410</td>
<td>4.873</td>
<td>3.794</td>
</tr>
<tr>
<td>network</td>
<td>4.582</td>
<td>10.455</td>
<td>4.723</td>
</tr>
</tbody>
</table>
Comparison to Random Scheduling

<table>
<thead>
<tr>
<th>setting</th>
<th>best chunk</th>
<th>worst chunk</th>
<th>random</th>
</tr>
</thead>
<tbody>
<tr>
<td>localhost</td>
<td>3.410</td>
<td>4.873</td>
<td>3.794</td>
</tr>
<tr>
<td>network</td>
<td>4.582</td>
<td>10.455</td>
<td>4.723</td>
</tr>
</tbody>
</table>

Again, random method only asympt. optimal, but good choice if don’t want to spend time tweaking the chunk size.
Efficient R Parallel Loops on Long-Latency Platforms

Norm Matloff
University of California at Davis

Scalability

- 10000 obs., 20 vars.
- np = 2, 4, 8, 16, 32, 64, on localhost (> 64 cores)
- Random sched. ("representative")

Overhead ⇒ diminishing returns — eventually negative.
Scalability

- 10000 obs., 20 vars.
- \(np = 2,4,8,16,32,64, \) on localhost (> 64 cores)
- Random sched. ("representative").
• 10000 obs., 20 vars.

• \(np = 2, 4, 8, 16, 32, 64 \), on localhost (> 64 cores)

• Random sched. ("representative").
Efficient R Parallel Loops on Long-Latency Platforms

Norm Matloff
University of California at Davis

- 10000 obs., 20 vars.
- $np = 2, 4, 8, 16, 32, 64$, on localhost (> 64 cores)
- Random sched. ("representative").

Scalability

Overhead \Rightarrow diminishing returns
• 10000 obs., 20 vars.
• \textbf{np} = 2, 4, 8, 16, 32, 64, on localhost (> 64 cores)
• Random sched. ("representative").

Overhead \Rightarrow diminishing returns—eventually negative.
Algorithmic Speedup
Algorithmic Speedup

• Exploit matrix update:
Algorithmic Speedup

- Exploit matrix update: Get new $(X'X)^{-1}$ from the old one when add a new variable.
Algorithmic Speedup

- Exploit matrix update: Get new $(X'X)^{-1}$ from the old one when add a new variable. Possibly get a speedup?
Algorithmic Speedup

- Exploit matrix update: Get new \((X'X)^{-1}\) from the old one when add a new variable. Possibly get a speedup?
- Scheduling may be rather intricate.
Efficient R Parallel Loops on Long-Latency Platforms

Norm Matloff
University of California at Davis

To learn about parallel programming, see my open source book at http://heather.cs.ucdavis.edu/parprocbook.
Slides available at

To learn about parallel programming, see my open source book at http://heather.cs.ucdavis.edu/parprocbook.