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1 INTRODUCTION

1 Introduction

The termRISC is an acronym for reduced instruction set computer, the antonym beingCISC, for complex
instruction set computer.

During the 1970s and early 1980s, computers became more and more CISC-like, with richer and richer
instruction sets. The most cited example is that of the VAX family (highly popular in the early 1980s),
whose architecture included 304 instructions, including such highly specialized instructions aspoly, which
evaluates polynomials. By contrast, the UC Berkeley RISC I architecture, which later became the basis for
what is now the commercial SPARC chip in Sun Microsystems computers, had only 32 instructions.

At the same time, the single-chip CPU was starting out on its path to dominance of the market. The more
components a computer has, the more expensive it is to manufacture, so single-chip CPUs became very
attractive.1 But the problem then became that the very limited space on a chip—this space is colloquially
called “real estate”—made it very difficult, if not impossible, to fit a CISC architecture onto a single chip.2

The VAX was a clear casualty of this. When the Digital Equipment Corporation (DEC) tried to produce a
“VAX-on-a-chip,” they found that they could not fit the entire instruction set on one chip. They were then
forced to implement the remaining instructions in software. For example, when the CPU encountered apoly
instruction, that would cause an “illegal op code” condition, which triggered atrap (i.e. internal interrupt);
the trap-service routine would then be a procedure consisting of ordinaryadd andmul instructions which
compute the polynomial.

At this point, some researchers at IBM3 decided to take a fresh look at the whole question of instruction set
formulation. The main point is optimal use of real estate. In a CISC CPU chip, a large portion of the chip is
devoted to circuitry which is rarely, if ever used.4 For example, most users of VAX machines did not make
use of thepoly instruction, and yet the circuitry for that instruction would occupy valuable-but-wasted real
estate in the chips comprising a VAX CPU.

True, for those programs which did use thepoly instruction, execution speed increased somewhat,5 but for
most programs thepoly instruction was just getting in the way of fast performance.

Other factors came into play. For example, the richer the instruction set, the longer the decode portion of the
instruction cycle would take. Even more important is the issue of pipelining, which is much harder to do in
CISC machine, due to lack of uniformity in the instruction set (in a CISC machine, instructions tend to have
different lengths).

For this reason, the IBM people asked, “Why do we need all this complexity,” and they built the first RISC
machine. Unfortunately, IBM scrapped their RISC project, but later David Patterson of the Division of

1And there is a performance gain as well. Multi-chip CPUs suffer from the problem that off-chip communication is slower than
within-chip.

2It would seem that the solution is to simply make larger chips. However, this idea has not yet worked. For example, larger
chips have loweryield rates, i.e. lower rates of flaw-free chips. Of course, one can try to make chips denser as well, but there are
limits here too.

3Thoug Professor Patterson at UC Berkeley is the one who really popularized the RISC idea, it was actually invented at IBM
first. Actually, the old CDC machines designed by Seymour Cray had many RISC characteristics, i.e. small instruction sets and
load/store architecture.

4Actually, most CISC chips use a technique calledmicrocode, which would make the use of the word “circuitry” here a bit
overly simplistic, but we will not pursue that here.

5You should think about this. First,poly, being a single instruction, would require only one instruction fetch, compared to many
fetches which would be needed if one wrote a function consisting of many instructions which would collectively perform the work
thatpoly does. Second, at the circuitry level, we might be able to perform more than one register transfer at once.
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2 A DEFINITION OF RISC

Computer Science at UC Berkeley became interested in the idea, and developed two RISC CPU chips,
RISC I and RISC II, which later became the basis of the commercial SPARC chip, as mentioned earlier.

Patterson’s team did not invent the RISC concept, nor did they invent the specific features of their design
such as delayed branch (see below). Nevertheless, these people singlehandedly changed the thinking of the
entire computer industry, by showing that RISC could really work well. The team considered the problem as
a whole, investigating all aspects, ranging from the questions of chip layout and VLSI electronics technology
to issues of compiler writing, and through this integrated approach were able to make a good case for the
RISC concept. Manolis Katevenis, a Ph.D. student who wrote his dissertation on RISC under Professor
Patterson, won the annual ACM award for the best dissertation in Computer Science.6

Today virtually every computer manufacturer has placed a major emphasis on RISC. Sun Microsystems has
the SPARC chip, SGI uses MIPS, IBM and Motorola have the Power PC chip series, and so on. (On the
other hand, this does not imply that RISC is inherently “superior,” and as electronic technologies advance in
the future, there may well be some resurgence of CISC ideas, at least to some degree.)

2 A Definition of RISC

There is no universally-agreed-upon definition of RISC, but most people would agree at least to the following
characteristics:

• Most instructions execute in a single clock cycle.

• “Load/store architecture”—the only instructions which access memory are of the LOAD and STORE
type, i.e. instructions that merely copy from memory to a register or vice versa, such as Intel’s

movl (%eax), %ebx

and

movl %ecx, (%edx)

For example, memory-to-register adds like Intel’s

addl %eax, (%ebx)

are not possible.

• Every instruction has the same length, e.g. 4 bytes. By contrast, Intel instructions range in length
from 1 to several bytes.

6Published asReduced Instruction Set Computer Architectures for VLSI, M. Katevenis, MIT Press, 1984.
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3 EFFECTS ON COMPILER WRITERS

• “Orthogonal architecture”—any operation can use any operand. This is in contrast, for example, to the
Intel instruction STOS, which stores multiple copies of a string.7 Here the operands are the registers
EAX, ECX and EDI; one is not allowed to use any other register in place of these.

• The instruction set is limited to only those instructions which are truly justified in terms of perfor-
mance/space/pipeline tradeoffs. The SPARC chip, for instance, does not even have a multiply instruc-
tion. If the compiler sees an expression like, say,

I = J * K;

in a source code file, the compiler must generate a set of add and shift instructions to synthesize the
multiply operation, compared to the Intel case, in which the compiler would simply generate animull
instruction.

• Hardwired implementation, i.e. not microcoded.8

All but the last of the traits listed above make pipelining smoother and easier.

3 Effects on Compiler Writers

Computer architects used to partly justify including instructions likepoly in the instruction set by saying
that this made the job of compiler writers easier. However, it was discovered that this was not the case, for
several reasons.

• Compiler writers found it difficult to write compilers which would automatically recognize situations
in (say) C source code in which instructions likepoly could be used.

• Compiler writers found that some specialized instructions that were actually motivated by high-level
language constructs did not match the latter well. For example, the VAX had a CASE instruction,
obviously motivated by the Pascalcaseand Cswitch constructs; yet it turned out to be too restrictive
to use well for compiling those constructs.

• CISC generally led to very nonorthogonal architectures, which made the job of compiler writers quite
difficult. For instance, in Intel, the requirement that the EAX, ECX and EDI registers be used in
STOS, plusthe requirement that some of these registers be used in certain other instructions, implies
that compiler writers “don’t have any spare registers to work with,” and thus they must have the
compiler generate code to save and restore “popular” registers such as EAX; this is a headache for the
compiler writer.

Most RISC machines do ask that the compiler writers do additional work of other kinds, though, in that they
have to try to filldelay slots; more on this below.

7In this context it must be used with the REP prefix.
8Again, we will not discuss microcode here.
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4 DEALING WITH THE BRANCH PROBLEM

4 Dealing With the Branch Problem

As you know, a major problem with pipelined CPUs is that the pipeline must be drained when a branch is
taken. If for example there are n stages to the pipe, and the instruction is a conditional branch (so that we
won’t know until the last stage whether the branch will be taken), we will have n-1 empty clock cycles in
which no instruction is executed.

4.1 Branch Delay Slots

Many RISC processors use something called adelayed branchto deal with the branch problem. The term
means that the execution of thebranch target, i.e. the place to which we jump on the branch , is delayed
by one cycle. This is accomplished in an odd but actually quite clever way: Regardless of whether a branch
is taken or not, we still execute the instruction following the branch.

For example, suppose we have a 2-stage pipe, with Stage 0 being the instruction fetch and Stage 1 being
decode and execute; while one instruction is executing, the next one is being fetched. Note that this implicitly
means that we are assuming that it takes one pipe-stage time to read memory.9 Now consider the following
generic (not RISC I/II) code:

ADD R5,R3
ADD R2,R4
JNEG T
n.s.i.

Here n.s.i. stands for “next sequential instruction,” i.e. the instruction following JNEG in memory. Using
the normal scheme, if the condition in JNEG is satisfied and we jump to T, we will have one empty clock
cycle in which no instruction is executed, because we will have to fetch the instruction at T (which had not
been prefetched).

Under the delayed-branch scheme, the n.s.i. will be executed regardless of whether we jump to T! By the
time we start execution of the n.s.i., we will know whether the condition in the JNEG was satisfied, and so
during this time we either fetch from T (if it was satisfied) or from the location following the n.s.i. (if it was
not satisfied). In either case, we will have no empty clock cycles.

A potential problem arises in that we may not want to have the n.s.i. executed. Thus the compiler (or
assembly-language programmer) would first tentatively produce code like this

ADD R5,R3
ADD R2,R4
JNEG T
NOP

so that the delayed-branch mechanism will not harm correct execution of the program. (Recall that most
machines have an NOP instruction, pronounced “no-opp,” which does literally that, i.e. no operation at all.)

This code would work properly, but it would not exploit the parallelism idea of delayed branches. Instead,
what we would like to do is change the order of the instructions:

9Or possibly to read from a cache.
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5 SPARC EXAMPLE: DELAYED BRANCH

ADD R2,R4
JNEG T
ADD R5,R3

Here the ADD to R5 has been moved to follow the JNEG, and this ADD will be done right after the JNEG.
The change in order won’t affect the correct execution of the code,10, but the key point is that in the case the
branch is taken, we save one cycle! The time that would have been wasted fetching the instruction at T is
now usefully employed by execution of the ADD at R5 at the same time. And of course if the branch is not
taken, no harm is done.

The instruction position following a branch is called adelay slot. Machines such as MIPS and SPARC have
one delay slot, but some other machines have more than one. Clearly, the more delay slots there are, the
harder it is to “fill” them, i.e. to find instructions to move to put in the slots, and thus avoid simply putting
wasteful NOPs in them.

How hard is it to fill even one delay slot? The Katevenis dissertation on RISC says:

Measurements have shown [citation given] that the [compiler] optimizer is able to remove about
90% of the no-ops following unconditional transfers and 40% to 60% of those following con-
ditional branches. The unconditional and conditional transfer-instructions each represent ap-
proximately 10% of all executed instructions (20% total). Thus, while a conventional pipeline
would lose≈ 20% of the cycles, optimized RISC code only loses about 6% of them.

5 SPARC Example: Delayed Branch

1 Script started on Sun Mar 10 16:19:06 1996
2 taco 1: m a.c
3
4 int a,b;
5
6 main(argc,argv)
7 int argc; char **argv;
8
9 { int x,y;

10
11
12 a = atoi(argv[1]);
13 b = atoi(argv[2]);
14 if (a < b) x = a;
15 else y = a+b;
16 }
17
18 taco 2:
19 taco 2:

10If we had moved the other ADD, there would have been an effect.
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5 SPARC EXAMPLE: DELAYED BRANCH

20 taco 2:
21 taco 2: cc -S a.c
22 taco 3: m a.s
23 LL0:
24 .seg "data"
25 .common _a,0x4,"data"
26 .common _b,0x4,"data"
27 .seg "text"
28 .proc 04
29 .global _main
30 _main:
31 !#PROLOGUE# 0
32 sethi %hi(LF14),%g1
33 add %g1,%lo(LF14),%g1
34 save %sp,%g1,%sp
35 !#PROLOGUE# 1
36 st %i0,[%fp+0x44]
37 st %i1,[%fp+0x48]
38 ld [%fp+0x48],%o0
39 ld [%o0+0x4],%o0
40 call _atoi,1
41 nop
42 sethi %hi(_a),%o1
43 st %o0,[%o1+%lo(_a)]
44 ld [%fp+0x48],%o2
45 ld [%o2+0x8],%o0
46 call _atoi,1
47 nop
48 sethi %hi(_b),%o3
49 st %o0,[%o3+%lo(_b)]
50 sethi %hi(_a),%o4
51 ld [%o4+%lo(_a)],%o4
52 sethi %hi(_b),%o5
53 ld [%o5+%lo(_b)],%o5
54 cmp %o4,%o5
55 bge L17
56 nop
57 sethi %hi(_a),%o7
58 ld [%o7+%lo(_a)],%o7
59 st %o7,[%fp+-0x4]
60 b L18
61 nop
62 L17:
63 sethi %hi(_a),%l0
64 ld [%l0+%lo(_a)],%l0

Components of Computer “Engines”: 7



5 SPARC EXAMPLE: DELAYED BRANCH

65 sethi %hi(_b),%l1
66 ld [%l1+%lo(_b)],%l1
67 add %l0,%l1,%l2
68 st %l2,[%fp+-0x8]
69 L18:
70 LE14:
71 ret
72 restore
73 LF14 = -104
74 LP14 = 96
75 LST14 = 96
76 LT14 = 96
77 .seg "data"
78 taco 4:
79
80
81 taco 4:
82 taco 4:
83 taco 4: cc -S -O1 a.c
84 taco 5: m a.s
85 .seg "text" ! [internal]
86 .proc 4
87 .global _main
88 _main:
89 !#PROLOGUE# 0
90 !#PROLOGUE# 1
91 save %sp,-104,%sp
92 st %i0,[%fp+68]
93 st %i1,[%fp+72]
94 call _atoi,1
95 ld [%i1+4],%o0
96 sethi %hi(_a),%l0 ! [internal]
97 st %o0,[%l0+%lo(_a)]
98 ld [%fp+72],%o0
99 call _atoi,1

100 ld [%o0+8],%o0
101 sethi %hi(_b),%o1 ! [internal]
102 st %o0,[%o1+%lo(_b)]
103 ld [%l0+%lo(_a)],%l0
104 ld [%o1+%lo(_b)],%o1
105 cmp %l0,%o1
106 bge,a LY1
107 sethi %hi(_a),%l0
108 sethi %hi(_a),%o7
109 ld [%o7+%lo(_a)],%o7
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5 SPARC EXAMPLE: DELAYED BRANCH

110 b LE14
111 st %o7,[%fp-4]
112 LY1: ! [internal]
113 ld [%l0+%lo(_a)],%l0
114 sethi %hi(_b),%l1
115 ld [%l1+%lo(_b)],%l1
116 add %l0,%l1,%l0
117 st %l0,[%fp-8]
118 LE14:
119 ret
120 restore
121 .seg "data" ! [internal]
122 .common _a,4,"data"
123 .common _b,4,"data"
124 taco 6:
125 taco 6:
126 taco 6: e
127 exit
128
129 script done on Sun Mar 10 16:20:11 1996

In lines 3-17, we have a simple C source file a.c, which, in line 21 we compile, using the -S option. This
option produces a file a.s, which shows us the assembly language produced in the compilation. We look at
that file starting at line 22 (in my .cshrc file, I have aliased ‘m’ to ‘more’).

There are a number of assembler directives which have been inserted by the compiler, such as those seen in
lines 24-29, but they do not concern us here.

Recall that the SPARC was modeled on RISC I/II. In particular, it uses register windows. Remember that
registers r31-r26 in RISC I/II were used to send parameters to the child function, i.e. as “output” to the
called function. So, in SPARC these are denoted %o0, %o1, and so on. Similarly, r15-r10 in RISC I/II
are for receiving parameters from the function which called the current one, so the analogs in SPARC are
denoted %i0, %i1, etc. The registers named %gn are analogous to RISC I/II’s global registers r9-r0.

The %fp register is the frame pointer, which is a second copy of the stack pointer. So the expression
%fp+0x48 in line 38 refers to the location 0x48 bytes into the stack frame, for instance.

The assembly-language notation lists the destination operand last. For example, in line 39, the destination
operand is %o0.

Let’s go right to line 36, which (together with the lines following it) is the result of compiling line 12, the
call to atoi(). The call occurs at line 40, but first we have to get the parameter ready. This occurs in lines
36-39:

Keep in mind that main() isitself a function, whose parameters are argc and argv. So, argc and argv will be
in some %i registers, apparently %i0 and %i1, which are copied to the stack frame in lines 36 and 37.

Recall (line 7) that argv is a pointer-to-a-pointer. After line 38 is executed, %o0 now points to argv[0],
%o0+4 points to argv[1], %o0+8 points to argv[2], and so on. This is reflected in lines 39 and 45.

After line 39 sets up the parameter, line 40 then is the actual call to the function. Of particular interest to us
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6 SO, HOW WELL DOES RISC WORK?

here is that the compiler has placed anop in line 41, because after all, thecall in line 40 is a form of branch.
Since we did not request any optimization in our command line (line 21), the compiler has made no attempt
to fill this branch-delay slot.

The function’s return value will be in %o0. We now have to store it in the variable ‘a’, which is done in lines
42 and 43:

The sethi (“set high”) instruction (line 42) puts a value into the high 22 bits of the destination register.
Typically the value consists of the high bits of an address, andsethi is executed in preparation for a load or
store to that address, in this case thest in line 43.

Here are the details of line 43. The high 22 bits of the address of ‘a’ already have been copied (by line 42)
to the high 22 bits of the register %o1. By adding the low 10 bits of the address of ‘a’, we then get the full
address of ‘a’. Line 43 therefore stores to ‘a’.

Note, by the way, that the reason we must resort to this piecemeal way to set up the address of ‘a’ is that
under the RISC philosophy all instructions ought to be the same length, in this case 32 bits. Since the address
of ‘a’ is already 32 bits, we could not fit both it andan op code into one 32-bit instruction!

Now, in line 83, we have recompiled the program, using first-level optimization (-O1), to force the compiler
to attempt to fill the branch-delay slots.

To see an example of how the code has changed, note that theld which used to be just before the call, in line
39, now appears just after the call, in line 95. (It also now has slightly different form, because the compiler
has done some other optimizations in addition to trying to fill delay slots.)

Now look at lines 106-107. Thebge instruction in line 55 has been changed tobge,a,which means the
following: If the branch in line 55 is taken, do execute line 56; if the branch is not taken, then do not execute
line 56. Look at the lines following line 63 and line 113, and you will see why things are set up this way.

6 So, How Well Does RISC Work?

Some statistics from Katevenis:

• Due to the simple, orthogonal instruction set, the load/store architecture, etc., the C compiler for the
machine was easy to write, taking only 6 person-months, including the optimization components.

• Though RISC’s simpler instruction set means we sometimes need to use more instructions to accom-
plish a given task, the RISC I/II code was typically no more than 50% larger than that of the VAX.

• The ratio of execution times of hand-coded assembly language to C code was about 90% for RISC
I/II, but around 45% for the VAX. In other words, on a VAX you pay a much higher speed penalty for
the convenience of coding in a high-level language.

• Thecontrol area of the RISC II chip consists just of the opcode decoder, and occupied only 0.5% of
the chip. By contrast, in the Motorola 68000,11 the control area, in this case meaning the microcode,
occupied 68% of the chip.

• The chip layout design for RISC II was done by students in 12 person-months. For the 68000 the
process was done by experienced professionals, and took 70 person-months.

11The chip family formerly used in Macintoshes.
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7 WHAT TO DO WITH ALL THAT EXTRA SPACE?

• RISC II and a PDP-11/70, having the same clock speed and the same register-to-register addition time,
were compared over 11 programs. RISC II was on the average 2.1 times faster.

7 What to Do With All That Extra Space?

Now that RISC has liberated all this real estate, what might we do with it?

• cache

• more registers

• on-chip stack

• another CPU!
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