Norm Matloff University of California, Davis

Pete Mohanty Stanford University

toweranNA, a Novel, Prediction-Oriented R Package for Missing Values

Norm Matloff University of California, Davis

> Pete Mohanty Stanford University

R/FInance 2019, Chicago

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Overview

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University

Missing values (MVs):

- A perennial headache.
- Vast, VAST literature.
- Major R packages, e.g. mice and Amelia.
- New CRAN Task View, already quite extensive.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

- Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.
- Almost all of those methods are based on *imputation*.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

- Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.
- Almost all of those methods are based on *imputation*. Requires extra assumptions beyond usual MAR, e.g. multvar. normal.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

- Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.
- Almost all of those methods are based on *imputation*. Requires extra assumptions beyond usual MAR, e.g. multvar. normal.
- Time for a new paradigm!

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

- Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.
- Almost all of those methods are based on *imputation*. Requires extra assumptions beyond usual MAR, e.g. multvar. normal.
- Time for a new paradigm!
- We're interested in *prediction*.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

- Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.
- Almost all of those methods are based on *imputation*. Requires extra assumptions beyond usual MAR, e.g. multvar. normal.
 - Time for a new paradigm!
 - We're interested in *prediction*.
 - We'll present a novel new technique we call the Tower Method.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

- Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.
- Almost all of those methods are based on *imputation*. Requires extra assumptions beyond usual MAR, e.g. multvar. normal.
- Time for a new paradigm!
- We're interested in *prediction*.
- We'll present a novel new technique we call the Tower Method.
- Non-imputational.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Estimation vs. Prediction

- Almost all (all?) of the MV literature is on *estimation*, e.g. estimation of treatment effects.
- Almost all of those methods are based on *imputation*. Requires extra assumptions beyond usual MAR, e.g. multvar. normal.
 - Time for a new paradigm!
 - We're interested in *prediction*.
 - We'll present a novel new technique we call the Tower Method.
 - Non-imputational.
 - Available at http://github.com/matloff/toweranNA.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theorem from Probability Theory

[Please be patient; R code and real-data examples soon. :-)]

Famous formula in probability theory:

$$EY = E[E(Y|X)] = E[g(X)]$$

Here g() is regression function of Y on X.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theoretical Background for Use in MVs

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theoretical Background for Use in MVs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• (Matloff, *Biometrika*, 1981)

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theoretical Background for Use in MVs

- (Matloff, *Biometrika*, 1981)
- My first published stat paper!

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theoretical Background for Use in MVs

- (Matloff, *Biometrika*, 1981)
- My first published stat paper!

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theory Background (cont'd.)

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theory Background (cont'd.)

• My context: Est. E(Y).

$$\widehat{EY} = \frac{1}{n} \sum_{i=1}^{n} \widehat{g}(X_i)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Here \widehat{g} comes from linear model, logit, nonpar.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theory Background (cont'd.)

• My context: Est. E(Y).

$$\widehat{EY} = \frac{1}{n} \sum_{i=1}^{n} \widehat{g}(X_i)$$

Here \hat{g} comes from linear model, logit, nonpar. Maybe some Y_i missing; even if not, get smaller asympt. var.

• Steady stream of theory papers since then from various authors.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theory Background (cont'd.)

• My context: Est. E(Y).

$$\widehat{EY} = \frac{1}{n} \sum_{i=1}^{n} \widehat{g}(X_i)$$

Here \hat{g} comes from linear model, logit, nonpar. Maybe some Y_i missing; even if not, get smaller asympt. var.

- Steady stream of theory papers since then from various authors.
- E.g. (U. Müller, Annals of Stat., 2009).

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Theory Background (cont'd.)

• My context: Est. E(Y).

$$\widehat{EY} = \frac{1}{n} \sum_{i=1}^{n} \widehat{g}(X_i)$$

Here \hat{g} comes from linear model, logit, nonpar. Maybe some Y_i missing; even if not, get smaller asympt. var.

- Steady stream of theory papers since then from various authors.
- E.g. (U. Müller, Annals of Stat., 2009).
- But all theoretical. Not used (or even known) by practitioners.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Tower Property

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tower Property

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Norm Matloff University of California, Davis

toweranNA, a Novel,

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University More general version, known as the Tower Property:

$$E[E(Y|U,V)|U] = E(Y|U)$$

Tower Property

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University More general version, known as the Tower Property:

$$E[E(Y|U,V)|U] = E(Y|U)$$

Why is this relevant to us?

- Y: variable to be predicted
- U: vector of known predictor values
- V: vector of uknown predictor values

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Example: Census Data

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

• Programmer/engineer data, Silicon Valley, 2000 (prgeng in pkg).

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Example: Census Data

- Programmer/engineer data, Silicon Valley, 2000 (**prgeng** in pkg).
- Predict Y = wage income. In one particular case to be predicted, we might have

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Example: Census Data

- Programmer/engineer data, Silicon Valley, 2000 (**prgeng** in pkg).
- Predict Y = wage income. In one particular case to be predicted, we might have
 - U = (education,occupation,weeks worked)
 - V = (age,gender)

In another case, maybe U = (age,gender,education,weeks worked) and V = (occupation). Etc.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Example: Census Data

- Programmer/engineer data, Silicon Valley, 2000 (**prgeng** in pkg).
- Predict Y = wage income. In one particular case to be predicted, we might have
 - U = (education,occupation,weeks worked)
 - V = (age,gender)

In another case, maybe U = (age,gender,education,weeks worked) and V = (occupation). Etc.

- Wish we had U,V, for prediction E(Y|U,V), but forced to use E(Y|U).
- But then must estimate many E(Y | U), since many different patterns for MVs (2^5 here).

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Example: Census Data

- Programmer/engineer data, Silicon Valley, 2000 (**prgeng** in pkg).
- Predict Y = wage income. In one particular case to be predicted, we might have
 - U = (education,occupation,weeks worked)
 - V = (age,gender)

In another case, maybe U = (age,gender,education,weeks worked) and V = (occupation). Etc.

- Wish we had U,V, for prediction E(Y|U,V), but forced to use E(Y|U).
- But then must estimate many E(Y \mid U), since many different patterns for MVs (2⁵ here).
- Hard enough to fit one good model, let alone dozens or more.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Example: Census Data

- Programmer/engineer data, Silicon Valley, 2000 (**prgeng** in pkg).
- Predict Y = wage income. In one particular case to be predicted, we might have
 - U = (education,occupation,weeks worked)
 - V = (age,gender)

In another case, maybe U = (age,gender,education,weeks worked) and V = (occupation). Etc.

- Wish we had U,V, for prediction E(Y|U,V), but forced to use E(Y|U).
- But then must estimate many E(Y | U), since many different patterns for MVs (2^5 here).
- Hard enough to fit one good model, let alone dozens or more.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• With Tower, need only one.

Tower (cont'd.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University Basic idea:

- Fit full regression model to the complete cases.
- Use Tower to get the marginal models from the full one:

$$\widehat{E}(Y \mid U = s) = \text{avg.} \quad \underbrace{\widehat{E}(Y \mid U = s, V)}_{\text{full model}}$$

over all complete cases with U = s

 In practice, use U ≈ s instead of U = s, using k nearest neighbors.

Tower (cont'd.)

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University Basic idea:

- Fit full regression model to the complete cases.
- Use Tower to get the marginal models from the full one:

$$\widehat{E}(Y \mid U = s) = \text{avg.} \quad \underbrace{\widehat{E}(Y \mid U = s, V)}_{\text{full model}}$$

over all complete cases with U = s

In practice, use U ≈ s instead of U = s, using k nearest neighbors.
 In practice, k = 1 usually fine:

In practice, k = 1 usually fine;

Tower (cont'd.)

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University Basic idea:

- Fit full regression model to the complete cases.
- Use Tower to get the marginal models from the full one:

$$\widehat{E}(Y \mid U = s) = \text{avg.} \quad \underbrace{\widehat{E}(Y \mid U = s, V)}_{\text{full model}}$$

over all complete cases with U = s

 In practice, use U ≈ s instead of U = s, using k nearest neighbors.

In practice, k = 1 usually fine; fitted values already smoothed, don't need more smoothing.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Census Example (cont'd.)

- (a) Use, say, Im() on the complete cases, predicting wage income from (age,gender,education,occupation,weeks worked).
- (b) Save the fitted values, e.g. **fitted.values** from **Im()** output.
- (c) Say need to predict case with education = MS, occupation = 102, weeks worked = 52 but with age and gender missing.
- (d) Find the complete cases for which (education, occupation, weeks worked) = (MS, 102, 52).
- (e) Predicted value for this case is average of the fitted values for the cases in (d).

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

toweranNA Package API

• toweranNA(x,fittedReg,k,newx,scaleX=TRUE)

- x: Data frame of complete cases.
- **fittedReg:** Estimated values of full regress. ftn. at those cases (from **Im()**, **gIm()**, random forests, neural nets, whatever).

- k: Number of nearest neighbors.
- newx: Data frame of new cases to be predicted.
- Return value: Vector of predictions.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Other Major Functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Other Major Functions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- towerLM(x,y,k,newx,useGLM=FALSE)
 Wrapper for toweranNA().
- towerTS(x,lag,k)

Adaptation of Tower Method for time series; see below.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Structure of Examples

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- 3 real datasets.
- Break into random training and test sets.
- Predict all test-set cases with at least one MV.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Example: WordBank Data

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Kids' vocabulary growth trajectories.
- About 5500 cases, 6 variables. About 29% MVs.

Mean Absolute Prediction Errors:

Amelia	Tower	
102.7	96.2	
122.9	119.9	
89.4	88.1	
115.3	107.0	
111.1	102.5	

- Times about 6s each.
- The mice package crashed.

UCI Bank Data

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University

- About 50K cases.
- Only about 2% MVs. Not much need for MV methods, but let's make sure Tower doesn't bring harm. :-)
- Tower run 8.3s, mice 442.2s.
- Too long to do multiple runs. About the same accuracy, 0.92 or 0.93.
- Amelia crashed.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

World Values Study

- World political survey.
- 48 countries, sample 500-3500 from each.
- MVs artifically added.
- Tower outperformed mice in 39 of 48 countries.

	Tower	Mice
Mean Absolute Predictive Error	1.7603	1.8270
Elapsed Time (seconds)	0.1825	14.0822

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Concerning Assumptions

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• Most MV methods assume MAR, Missing at Random.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Concerning Assumptions

- Most MV methods assume MAR, Missing at Random.
- Precise def. of MAR tricky (Seaman, Stat. Sci., 2013).

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Concerning Assumptions

- Most MV methods assume MAR, Missing at Random.
- Precise def. of MAR tricky (Seaman, Stat. Sci., 2013).
- Tower assumptions similar, but assumptions matter much less in prediction than in estimation.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Concerning Assumptions

- Most MV methods assume MAR, Missing at Random.
- Precise def. of MAR tricky (Seaman, *Stat. Sci.*, 2013).
- Tower assumptions similar, but assumptions matter much less in prediction than in estimation.
- Amelia, mice assume X multvar. normal, very distorting.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

What about Time Series?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• How adapt toweranNA to time series?

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

What about Time Series?

- How adapt toweranNA to time series?
- Predict X_i from $X_{i-1}, X_{i-2}, ..., X_{i-m}$, lag m.
- E.g. lag 3:

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

What about Time Series?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- How adapt toweranNA to time series?
- Predict X_i from $X_{i-1}, X_{i-2}, ..., X_{i-m}$, lag m.
- E.g. lag 3: x₁, NA, NA, NA, x₅, x₆, x₇, x₈, x₉, x₁₀, NA, NA becomes

<i>x</i> ₁	NA	NA	NA
<i>x</i> 5	<i>x</i> 6	X7	<i>x</i> 8
<i>X</i> 9	<i>x</i> ₁₀	NA	NA

Columns 1-3 are "X", col. 4 is "Y". Then use Tower on this data frame.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Time Series (cont'd.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Time Series (cont'd.)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• A work in progress.

Time Series (cont'd.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

- A work in progress.
- Example: NH4 data in imputeTS package.

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Time Series (cont'd.)

- A work in progress.
- Example: NH4 data in imputeTS package.
- Mean Absolute Prediction Error: na.ma (based on moving avg.): 1.51 towerTS: 1.37

Norm Matloff University of California, Davis

Pete Mohanty Stanford University

Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Norm Matloff University of California, Davis

toweranNA, a Novel,

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University • Most pressing issue: May have too few (or no) complete cases.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

Pete Mohanty Stanford University

- Most pressing issue: May have too few (or no) complete cases.
- Solution: Relax our "one size fits all" structure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

- Pete Mohanty Stanford University
- Most pressing issue: May have too few (or no) complete cases.
- Solution: Relax our "one size fits all" structure.
- Instead of generating all marginal regression functions from one full one, have several "almost-full" ones.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California, Davis

toweranNA, a Novel.

Prediction-Oriented R Package for Missing Values

- Pete Mohanty Stanford University
- Most pressing issue: May have too few (or no) complete cases.
- Solution: Relax our "one size fits all" structure.
- Instead of generating all marginal regression functions from one full one, have several "almost-full" ones.
- E.g. have *p* = 5 predictors. Maybe fit four 4-predictor models. Each would be based on more complete cases than the 5-predictor models.