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What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.
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Some R IDEs

• RStudio
Enormously popular. By JJ Allaire, developer of Cold
Fusion long ago.

• ESS—Emacs Speaks Statistics
For the really hard core R programmers.

• vim-r
Ditto, but for Vim.

• StatET
Nice, if you can deal with Eclipse.
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Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.
• Large number of variables.

• Machine Learning (old nonparametric methods but now
rebranded) tend to be very computationally intensive.
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Obstacles

• R was not designed for parallel computation.

• R is not threaded, probably won’t be in the future.

• R is a functional language, (mostly) free of side effects, so
assignment of a single matrix element

x [ 6 2 2 , 8 8 8 8 ] <− y

may cause the entire matrix storage to be reallocated.
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Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R.

But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert.

But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Major World Views

Major paradigms for general parallel programming:

• message passing:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
p . 3 s e n d s x
p . 8 r e c e i v e s
p . 8 does y = x

Used on both clusters and multicore.

• shared-memory:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
y = x

Technically usable only on multicore.
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Extent of Usage

• message passing:

• Got a head start, since shared-memory hardware affordable
only recently.

• MPI very popular.

• shared-memory:

• Small, medium multicore, and GPU, now common.
• OpenMP very popular, misc. (TBB, Cilk++).
• CUDA is big.

Yet the situation is quite different in parallel R:
Message-passing dominates.
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Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.
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Sample Application

As a sample application, let’s use Mutual Outlinks: Given n
Web sites, find the mean number of mutual outlinks over all
n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.)
Here is the serial code:

1 mutoutse r <− funct ion ( l i n k s ) {
2 nr <− nrow ( l i n k s ) ; nc <− ncol ( l i n k s )
3 t o t = 0
4 f o r ( i i n 1 : ( nr −1)) {
5 f o r ( j i n ( i +1): nr ) {
6 f o r ( k i n 1 : nc )
7 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
8 }
9 }

10 t o t / nr
11 }
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Sample Application, cont’d.

Improvement: 2 loops can be eliminated by noting that they
are equivalent to matrix multiplication.

1 f o r ( j i n ( i +1): nr ) {
2 f o r ( k i n 1 : nc )
3 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
4 }

becomes

tmp <− l i n k s [ ( i +1): nr , ] %∗% l i n k s [ i , ]
t o t <− t o t + sum( tmp )
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Sample Application, cont’d.

Improved version:

1 mutoutse r1<− funct ion ( l i n k s ) {
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Timings

size orig. improved

500x500 106.7s 1.5s

Wow! Vectorizing really helps.
But even the improved code takes 94.1s for 2000x2000.
Parallel computation is needed.
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How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.
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Mut. Outs. in Snow

1 do ichunk <− funct ion ( i c h u n k ) {
2 t o t <− 0
3 nr <− nrow ( l n k s )
4 f o r ( i i n i c h u n k ) {
5 tmp <− l n k s [ ( i +1): nr , ] %∗% l n k s [ i , ]
6 t o t <− t o t + sum( tmp )
7 }
8 t o t
9 }

10 mutoutpar <− funct ion ( c l s ) {
11 r e q u i r e ( p a r a l l e l )
12 nr <− nrow ( l n k s )
13 c l u s t e r E x p o r t ( c l s , ” l n k s ” )
14 i c h u n k s <− 1 : ( nr−1)
15 t o t s <− c l u s t e r A p p l y ( c l s , i c h u n k s , do ichunk )
16 Reduce (sum , t o t s ) / nr
17 }
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Timing, dual-core, machine, but hyperthreaded.

size improved. 2 wrkrs. 4 wrkrs.

2000x2000 94.5s 80.3s 70.1s

Get improvement, though not the theoretical 2X and 4X.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

Timing, dual-core, machine, but hyperthreaded.

size improved. 2 wrkrs. 4 wrkrs.

2000x2000 94.5s 80.3s 70.1s

Get improvement, though not the theoretical 2X and 4X.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

Timing, dual-core, machine, but hyperthreaded.

size improved. 2 wrkrs. 4 wrkrs.

2000x2000 94.5s 80.3s 70.1s

Get improvement, though not the theoretical 2X and 4X.



Parallel R

Norm Matloff
University of
California at

Davis



Parallel R

Norm Matloff
University of
California at

Davis



Parallel R

Norm Matloff
University of
California at

Davis

Overhead in Snow

• Data copied from manager to workers at beginning of run.

• Data copied from workers to manager at end of run.

• More copying from manager to manager at end of run; see
calls to Reduce() above.
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How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow, as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option
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The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction: Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.
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More on foreach()

• Simply replacing foreach() can really rob your code of
speed.

• E.g. Mutual Outlinks. The original serial code did NOT
take advantage of matrix multiplication, so a naive use of
foreach() can cause a substantial slowdown:

size # wrkrs. foreach() snow
500x500 2 17.7s 11.3s

500x500 4 13.6s 6.0s

500x500 8 7.4s 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply
change one line of one’s serial code.
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• Provides R interfaces to most MPI functions, plus some
new ones specific to R.

• Very versatile.

• Can be a (big) pain to configure.
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• Add threads to R programming!

• Builds on my old parallel Perl package, PerlDSM.
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Rdsm Shared-Memory

• R’s array-access function ”[”()3 is overloaded, with the
access being rerouted.

• In Rdsm 1.0, array access was routed to a server.

• In Rdsm 2.0, array access is built on top of the R package
bigmemory.

3Remember, R is a functional language. Even array read/write are
functions.
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Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.
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they all read/write the same physical memory locations.

• snow is used to launch the threads.
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Some Rdsm APIs

m g r i n i t ( ) : i n i t i a l i z e system
mgrmakevar ( ) : create a s h a r e d v a r i a b l e
mgrmakelock ( ) : create a l o c k
makebarr ( ) : create a b a r r i e r
e t c .
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“Hello World” in Rdsm

• Actually, matrix multiplication, the “Hello World” of the
parallel processing community. :-)

1 #code execu ted by each th r ead :
2 mmul <− funct ion ( u , v , w) {
3 # dec i d e which rows o f u t h i s t h r ead
4 # w i l l work on
5 myidxs <− s p l i t I n d i c e s ( nrow ( u ) ,
6 myinfo $ n w r k r s ) [ [ myinfo $ i d ] ]
7 # mu l t i p l y t h i s thread ’ s p a r t o f u wi th
8 # v , p l a c i n g the p roduc t i n the c o r r e s p .
9 # pa r t o f w

10 w[ myidxs , ] <− u [ myidxs , ] \%∗\% v [ , ]
11 }
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Launching the Threads

1 # the c l u s t e r ∗ ( ) f u n c t i o n s a r e from Snow
2 # send mmul ( ) to the t h r e ad s
3 c l u s t e r E x p o r t ( c2 , ”mmul” )
4 # run the t h r e ad s
5 c l u s t e r E v a l Q ( c2 , mmul( a , b , c ) )
6 c [ , ] # check r e s u l t s
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Rdsm Can Bring a Substantial
Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n # cores Rdsm Snow
2000 8 4.640 6.398

3000 16 10.892 18.010

3000 24 8.778 19.001

The problem with snow (and multicore):
Too much data copying!
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Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.
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What About GPU?

• R’s gputools package offers some functions, mainly for
linear algebra operations.

• NVIDIA’s Thrust package offers a number of C++
routines for various parallel ops.

• Use chooses “back end,” either GPU, OpenMP or TBB.
• So, your same code can work either on GPU or multicore

systems!
• I have developed an R interface to some Thrust-based

functions, named Rth.
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URLs

• CRAN, for Rdsm 2.0, foreach():
cran.us.r-project.org

• Rdsm 2.1:
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz

• my snow/Rdsm debugging tool:
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz

• Rth:
heather.cs.ucdavis.edu/~matloff/rth.html

• rough draft of the first 1/2 of my forthcoming book,
Parallel Computation for Data Science:
heather.cs.ucdavis.edu/paralleldatasci.pdf

• these slides:
heather.cs.ucdavis.edu/ParallelR.pdf

cran.us.r-project.org
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz
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