Norm Matloff University of California at Davis

Parallel R

Norm Matloff University of California at Davis

> LUGOD February 17, 2014

URL for these slides (repeated on final slide): http://heather.cs.ucdavis.edu/ParallelR.pdf

Norm Matloff University of California at Davis

What Is R?

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

What Is R?

• Open source tool for data science.

Norm Matloff University of California at Davis

What Is R?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Open source tool for data science.
- Open source version of old S (Bell Labs).

Norm Matloff University of California at Davis

What Is R?

- Open source tool for data science.
- Open source version of old S (Bell Labs).
- "We're not in Statisticsland anymore."

What Is R?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Open source tool for data science.

Parallel R

Norm Matloff University of California at Davis

- Open source version of old S (Bell Labs).
- "We're not in Statisticsland anymore."
- Statistically Correct (not all are)...

What Is R?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Open source tool for data science.

Parallel R

Norm Matloff University of California at Davis

- Open source version of old S (Bell Labs).
- "We're not in Statisticsland anymore."
- Statistically Correct (not all are)... but now used for general data manipulation, and especially graphics

What Is R?

• Open source tool for data science.

Parallel R

Norm Matloff University of California at Davis

- Open source version of old S (Bell Labs).
- "We're not in Statisticsland anymore."
- Statistically Correct (not all are)... but now used for general data manipulation, and especially graphics
- Typically used in interactive mode, like Python.

Norm Matloff University of California at Davis

Some R IDEs

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

Some R IDEs

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

RStudio

Enormously popular. By JJ Allaire, developer of Cold Fusion long ago.

• ESS—Emacs Speaks Statistics For the really hard core R programmers.

• vim-r

Ditto, but for Vim.

StatET

Nice, if you can deal with Eclipse.

Norm Matloff University of California at Davis

Need for Parallel Computation

Norm Matloff University of California at Davis

Need for Parallel Computation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We're in the era Big Data:

Norm Matloff University of California at Davis

Need for Parallel Computation

- We're in the era Big Data:
 - Large number of data points.

Norm Matloff University of California at Davis

Need for Parallel Computation

- We're in the era Big Data:
 - Large number of data points.
 - Large number of variables.

Norm Matloff University of California at Davis

Need for Parallel Computation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- We're in the era Big Data:
 - Large number of data points.
 - Large number of variables.
- Machine Learning

Norm Matloff University of California at Davis

Need for Parallel Computation

- We're in the era Big Data:
 - Large number of data points.
 - Large number of variables.
- Machine Learning (old nonparametric methods but now rebranded)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Norm Matloff University of California at Davis

Need for Parallel Computation

- We're in the era Big Data:
 - Large number of data points.
 - Large number of variables.
- Machine Learning (old nonparametric methods but now rebranded) tend to be very computationally intensive.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Norm Matloff University of California at Davis

Obstacles

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

Obstacles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• R was not designed for parallel computation.

Norm Matloff University of California at Davis

Obstacles

- R was not designed for parallel computation.
- R is not threaded, probably won't be in the future.

Norm Matloff University of California at Davis

Obstacles

- R was not designed for parallel computation.
- R is not threaded, probably won't be in the future.
- R is a functional language, (mostly) free of side effects,

Obstacles

- R was not designed for parallel computation.
- R is not threaded, probably won't be in the future.
- R is a functional language, (mostly) free of side effects, so assignment of a single matrix element

x[622,8888] <- y

Parallel R

Norm Matloff University of California at Davis

may cause the entire matrix storage to be reallocated.

Norm Matloff University of California at Davis

Workarounds

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

Workarounds

Norm Matloff University of California at Davis

Workarounds

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix multiplication in C/OpenMP, then interface to R.

Norm Matloff University of California at Davis

Workarounds

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix multiplication in C/OpenMP, then interface to R. But still have problems with the anti-side-effects "religion."

Norm Matloff University of California at Davis

Workarounds

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Implement some fundamental operations, say matrix multiplication in C/OpenMP, then interface to R. But still have problems with the anti-side-effects "religion."
- Same for GPU.

Norm Matloff University of California at Davis

Workarounds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Implement some fundamental operations, say matrix multiplication in C/OpenMP, then interface to R. But still have problems with the anti-side-effects "religion."
- Same for GPU.
- Have multiple instantiations of R act in concert.

Norm Matloff University of California at Davis

Workarounds

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Implement some fundamental operations, say matrix multiplication in C/OpenMP, then interface to R. But still have problems with the anti-side-effects "religion."
- Same for GPU.
- Have multiple instantiations of R act in concert. But have overhead from process-to-process copying, especially on clusters.

Norm Matloff University of California at Davis

Workarounds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

All of the below are done, though with some drawbacks.

- Implement some fundamental operations, say matrix multiplication in C/OpenMP, then interface to R. But still have problems with the anti-side-effects "religion."
- Same for GPU.
- Have multiple instantiations of R act in concert. But have overhead from process-to-process copying, especially on clusters.

I'll focus on that last approach.

Norm Matloff University of California at Davis

Major World Views

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Norm Matloff University of California at Davis

Major World Views

Major paradigms for general parallel programming:

Norm Matloff University of California at Davis

Major World Views

Major paradigms for general parallel programming:

• message passing:

Norm Matloff University of California at Davis

Major World Views

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Major paradigms for general parallel programming:

```
• message passing:
```

```
// copy x (process 3) to y (process 8) p.3 sends x
```

```
p.8 receives
```

```
p.8 does y = x
```

Used on both clusters and multicore.

shared-memory:

Norm Matloff University of California at Davis

Major World Views

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Major paradigms for general parallel programming:

```
• message passing:
```

// copy x (process 3) to y (process 8)
p.3 sends x

- p.8 receives
- p.8 does y = x

Used on both clusters and multicore.

shared-memory:

// copy x (process 3) to y (process 8) y = x

Technically usable only on multicore.

Norm Matloff University of California at Davis

Extent of Usage

<□ > < @ > < E > < E > E のQ @
Extent of Usage

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• message passing:

- Got a head start, since shared-memory hardware affordable only recently.
- MPI very popular.
- shared-memory:
 - Small, medium multicore, and GPU, now common.
 - OpenMP very popular, misc. (TBB, Cilk++).
 - CUDA is big.

Norm Matloff University of California at Davis

Parallel R

Extent of Usage

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• message passing:

Parallel R

Norm Matloff University of California at Davis

- Got a head start, since shared-memory hardware affordable only recently.
- MPI very popular.
- shared-memory:
 - Small, medium multicore, and GPU, now common.
 - OpenMP very popular, misc. (TBB, Cilk++).
 - CUDA is big.

Yet the situation is quite different in parallel R:

Message-passing dominates.

Norm Matloff University of California at Davis

Multiprocess R

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Norm Matloff University of California at Davis

Multiprocess R

Norm Matloff University of California at Davis

Multiprocess R

• message passing:

• "snow" part of **parallel** (L. Tierney, U. of Iowa) Was a contributed package, now part of base R.

Norm Matloff University of California at Davis

Multiprocess R

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- "snow" part of **parallel** (L. Tierney, U. of Iowa) Was a contributed package, now part of base R.
- "multicore" part of parallel (S. Urbanek, ATT&T) Was a contributed package, now part of base R.

Norm Matloff University of California at Davis

Multiprocess R

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- "snow" part of **parallel** (L. Tierney, U. of Iowa) Was a contributed package, now part of base R.
- "multicore" part of parallel (S. Urbanek, ATT&T)
 Was a contributed package, now part of base R.
- **Rmpi** (Hao Yu, U. of Western Ontario) Contributed.

Norm Matloff University of California at Davis

Multiprocess R

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- "snow" part of **parallel** (L. Tierney, U. of Iowa) Was a contributed package, now part of base R.
- "multicore" part of parallel (S. Urbanek, ATT&T)
 Was a contributed package, now part of base R.
- **Rmpi** (Hao Yu, U. of Western Ontario) Contributed.
- **foreach()** (Revolution Analytics) Contributed, wrapper to the others above.

Norm Matloff University of California at Davis

Multiprocess R

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- "snow" part of **parallel** (L. Tierney, U. of Iowa) Was a contributed package, now part of base R.
- "multicore" part of parallel (S. Urbanek, ATT&T) Was a contributed package, now part of base R.
- **Rmpi** (Hao Yu, U. of Western Ontario) Contributed.
- **foreach()** (Revolution Analytics) Contributed, wrapper to the others above.
- shared-memory

Norm Matloff University of California at Davis

Multiprocess R

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- "snow" part of **parallel** (L. Tierney, U. of Iowa) Was a contributed package, now part of base R.
- "multicore" part of parallel (S. Urbanek, ATT&T) Was a contributed package, now part of base R.
- **Rmpi** (Hao Yu, U. of Western Ontario) Contributed.
- **foreach()** (Revolution Analytics) Contributed, wrapper to the others above.
- shared-memory
 - Rdsm (NM)

Norm Matloff University of California at Davis

Multiprocess R

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- "snow" part of **parallel** (L. Tierney, U. of Iowa) Was a contributed package, now part of base R.
- "multicore" part of parallel (S. Urbanek, ATT&T) Was a contributed package, now part of base R.
- **Rmpi** (Hao Yu, U. of Western Ontario) Contributed.
- **foreach()** (Revolution Analytics) Contributed, wrapper to the others above.
- shared-memory
 - Rdsm (NM) Contributed.
 - **gputools** (Buckner *et al*, U. of Mich.) Contributed.

Norm Matloff University of California at Davis

Sample Application

Norm Matloff University of California at Davis

Sample Application

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

As a sample application, let's use Mutual Outlinks: Given n Web sites, find the mean number of mutual outlinks over all n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.)

Norm Matloff University of California at Davis

Sample Application

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

As a sample application, let's use Mutual Outlinks: Given n Web sites, find the mean number of mutual outlinks over all n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.) Here is the serial code:

Norm Matloff University of California at Davis

Sample Application

As a sample application, let's use Mutual Outlinks: Given n Web sites, find the mean number of mutual outlinks over all n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.) Here is the serial code:

```
mutoutser <- function(links) {</pre>
1
       nr <- nrow(links); nc <- ncol(links)</pre>
2
3
       tot = 0
4
       for (i in 1:(nr-1)) {
5
         for (j in (i+1):nr) {
            for (k in 1:nc)
6
7
              tot <- tot + links[i,k] * links[j,k]</pre>
8
          }
9
10
       tot / nr
11
```

Norm Matloff University of California at Davis

Sample Application, cont'd.

Norm Matloff University of California at Davis

Sample Application, cont'd.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Improvement: 2 loops can be eliminated by noting that they are equivalent to matrix multiplication.

Norm Matloff University of California at Davis

Sample Application, cont'd.

Improvement: 2 loops can be eliminated by noting that they are equivalent to matrix multiplication.

becomes

3

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Sample Application, cont'd.

Norm Matloff University of California at Davis

Sample Application, cont'd.

Improved version:

```
mutoutser1<- function(links) {</pre>
1
2
       nr <- nrow(links)
3
       nc <- ncol(links)</pre>
4
       tot < -0
5
       for (i in 1:(nr-1)) {
6
          # matrix mult. operator is %*%
7
          tmp <- links [(i+1):nr,] %*% links [i,]
8
          tot <- tot + sum(tmp)
9
10
       tot / nr
11
```

Norm Matloff University of California at Davis

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

Timings

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

size	orig.	improved
500×500	106.7s	1.5s

Norm Matloff University of California at Davis Timings

size	orig.	improved
500×500	106.7s	1.5s

Wow! Vectorizing really helps.

Norm Matloff University of California at Davis

Timings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

size	orig.	improved
500×500	106.7s	1.5s

Wow! Vectorizing really helps. But even the improved code takes 94.1s for 2000x2000.

Norm Matloff University of California at Davis

Timings

size	orig.	improved
500×500	106.7s	1.5s

Wow! Vectorizing really helps.

But even the improved code takes 94.1s for 2000x2000. Parallel computation is needed.

Norm Matloff University of California at Davis

How Snow Works

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

How Snow Works

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

How Snow Works

The **snow** contributed package is now part of base R, in the **parallel** package.

• Say have Machines A, B and C, networked.

Norm Matloff University of California at Davis

How Snow Works

The **snow** contributed package is now part of base R, in the **parallel** package.

• Say have Machines A, B and C, networked. R is running on all 3.

Norm Matloff University of California at Davis

How Snow Works

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Say have Machines A, B and C, networked. R is running on all 3.
- "Manager" R process, at A, divvies up the workload, sends chunks to "workers" B, C.

Norm Matloff University of California at Davis

How Snow Works

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Say have Machines A, B and C, networked. R is running on all 3.
- "Manager" R process, at A, divvies up the workload, sends chunks to "workers" B, C.
- B, C work on their chunks, send results back to A.

Norm Matloff University of California at Davis

How Snow Works

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Say have Machines A, B and C, networked. R is running on all 3.
- "Manager" R process, at A, divvies up the workload, sends chunks to "workers" B, C.
- B, C work on their chunks, send results back to A.
- R process A receives, and combines the results into the final answer.

Norm Matloff University of California at Davis

How Snow Works

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The **snow** contributed package is now part of base R, in the **parallel** package.

- Say have Machines A, B and C, networked. R is running on all 3.
- "Manager" R process, at A, divvies up the workload, sends chunks to "workers" B, C.
- B, C work on their chunks, send results back to A.
- R process A receives, and combines the results into the final answer.

Communication between R processes done by sockets or other.

Norm Matloff University of California at Davis

Mut. Outs. in Snow

<□ > < @ > < E > < E > E のQ @

```
Parallel R
                                 Mut. Outs. in Snow
Norm Matloff
University of
California at
          doichunk <- function(ichunk) {</pre>
  Davis
       L
       2
             tot <-0
       3
             nr <- nrow(lnks)</pre>
       4
             for (i in ichunk) {
       5
                 tmp <- lnks[(i+1):nr,] %*% lnks[i,]
       6
                 tot <- tot + sum(tmp)
       8
             tot
       9
      10
          mutoutpar <- function(cls) {</pre>
      11
             require (parallel)
      12
             nr <- nrow(lnks)</pre>
      13
             clusterExport(cls,"lnks")
             ichunks <-1:(nr-1)
      14
      15
             tots <- clusterApply(cls,ichunks,doichunk)</pre>
      16
             Reduce(sum, tots) / nr
      17
```

Norm Matloff University of California at Davis

<□ > < @ > < E > < E > E のQ @
Norm Matloff University of California at Davis

Timings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Timing, dual-core, machine, but hyperthreaded.

size	improved.	2 wrkrs.	4 wrkrs.
2000×2000	94.5s	80.3s	70.1s

Norm Matloff University of California at Davis

Timings

Timing, dual-core, machine, but hyperthreaded.

size	improved.	2 wrkrs.	4 wrkrs.
2000×2000	94.5s	80.3s	70.1s

Get improvement, though not the theoretical 2X and 4X.

Norm Matloff University of California at Davis

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Norm Matloff University of California at Davis

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Norm Matloff University of California at Davis

Overhead in Snow

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

Overhead in Snow

• Data copied from manager to workers at beginning of run.

Norm Matloff University of California at Davis

Overhead in Snow

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

- Data copied from manager to workers at beginning of run.
- Data copied from workers to manager at end of run.

Norm Matloff University of California at Davis

Overhead in Snow

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Data copied from manager to workers at beginning of run.
- Data copied from workers to manager at end of run.
- More copying from manager to manager at end of run; see calls to **Reduce()** above.

Norm Matloff University of California at Davis

How Multicore Works

Norm Matloff University of California at Davis

How Multicore Works

The **multicore** contributed package is now part of base R, in the **parallel** package.

Norm Matloff University of California at Davis

How Multicore Works

The **multicore** contributed package is now part of base R, in the **parallel** package.

• API, operation similar to **snow**.

Norm Matloff University of California at Davis

How Multicore Works

The **multicore** contributed package is now part of base R, in the **parallel** package.

- API, operation similar to **snow**.
- Should be somewhat faster than snow,

Norm Matloff University of California at Davis

How Multicore Works

The **multicore** contributed package is now part of base R, in the **parallel** package.

- API, operation similar to **snow**.
- Should be somewhat faster than snow, as it uses fork() on the original (manager) R process¹—no copying data at the beginning.

Norm Matloff University of California at Davis

How Multicore Works

The **multicore** contributed package is now part of base R, in the **parallel** package.

- API, operation similar to **snow**.
- Should be somewhat faster than snow, as it uses fork() on the original (manager) R process¹—no copying data at the beginning.
- But has the same copying delays at the end.

Norm Matloff University of California at Davis

How Multicore Works

The **multicore** contributed package is now part of base R, in the **parallel** package.

- API, operation similar to **snow**.
- Should be somewhat faster than snow, as it uses fork() on the original (manager) R process¹—no copying data at the beginning.
- But has the same copying delays at the end.

Norm Matloff University of California at Davis

The foreach() Package

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

²And add **%dopar%**.

Norm Matloff University of California at Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

²And add **%dopar%**.

Norm Matloff University of California at Davis

The foreach() Package

- Probably the most popular type of parallel R currently.
- Actually just a wrapper to **snow**, **multicore** etc.

Norm Matloff University of California at Davis

The foreach() Package

- Probably the most popular type of parallel R currently.
- Actually just a wrapper to **snow**, **multicore** etc.
- Major attraction:

Norm Matloff University of California at Davis

The foreach() Package

- Probably the most popular type of parallel R currently.
- Actually just a wrapper to **snow**, **multicore** etc.
- Major attraction: Just replace for() in your serial code with foreach()!²

Norm Matloff University of California at Davis

The foreach() Package

- Probably the most popular type of parallel R currently.
- Actually just a wrapper to **snow**, **multicore** etc.
- Major attraction: Just replace for() in your serial code with foreach()!²

E.g. Mutual Outlinks:

Norm Matloff University of California at Davis

The foreach() Package

- Probably the most popular type of parallel R currently.
- Actually just a wrapper to **snow**, **multicore** etc.
- Major attraction: Just replace for() in your serial code with foreach()!²

E.g. Mutual Outlinks:

• But that "attraction" is a "fatal attraction" ...

²And add %dopar%.

Norm Matloff University of California at Davis

More on foreach()

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

More on foreach()

Simply replacing foreach() can really rob your code of speed.

Norm Matloff University of California at Davis

More on foreach()

- Simply replacing **foreach()** can really rob your code of speed.
- E.g. Mutual Outlinks.

Norm Matloff University of California at Davis

More on foreach()

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Simply replacing **foreach()** can really rob your code of speed.
- E.g. Mutual Outlinks. The original serial code did NOT take advantage of matrix multiplication,

Norm Matloff University of California at Davis

More on foreach()

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Simply replacing **foreach()** can really rob your code of speed.
- E.g. Mutual Outlinks. The original serial code did NOT take advantage of matrix multiplication, so a naive use of **foreach()** can cause a substantial slowdown:

Norm Matloff University of California at Davis

More on foreach()

- Simply replacing **foreach()** can really rob your code of speed.
- E.g. Mutual Outlinks. The original serial code did NOT take advantage of matrix multiplication, so a naive use of **foreach()** can cause a substantial slowdown:

size	# wrkrs.	foreach()	snow
500×500	2	17.7s	11.3s
500×500	4	13.6s	6.0s
500×500	8	7.4s	3.4s

Of course, you can parameterize your **for()** loop to use chunking, but this weakens the appeal of being able to simply change one line of one's serial code.

Norm Matloff University of California at Davis

Rmpi

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

• Provides R interfaces to most MPI functions,

Norm Matloff University of California at Davis

Rmpi

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Provides R interfaces to most MPI functions, plus some new ones specific to R.

Norm Matloff University of California at Davis

Rmpi

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Provides R interfaces to most MPI functions, plus some new ones specific to R.
- Very versatile.

Norm Matloff University of California at Davis

Rmpi

- Provides R interfaces to most MPI functions, plus some new ones specific to R.
- Very versatile.
- Can be a (big) pain to configure.

Norm Matloff University of California at Davis

Rdsm

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

• Shared-memory.

Norm Matloff University of California at Davis

Rdsm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Shared-memory.
- Add threads to R programming!
Norm Matloff University of California at Davis

Rdsm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Shared-memory.
- Add threads to R programming!
- Builds on my old parallel Perl package, PerlDSM.

Norm Matloff University of California at Davis

Rdsm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Shared-memory.
- Add threads to R programming!
- Builds on my old parallel Perl package, PerlDSM.

Norm Matloff University of California at Davis

Rdsm Shared-Memory

Norm Matloff University of California at Davis Rdsm Shared-Memory

• R's array-access function "["()³ is overloaded, with the access being rerouted.

³Remember, R is a functional language. Even array read/write are functions.

Norm Matloff University of California at Davis

Rdsm Shared-Memory

- R's array-access function "["()³ is overloaded, with the access being rerouted.
- In Rdsm 1.0, array access was routed to a server.

³Remember, R is a functional language. Even array read/write are functions.

Norm Matloff University of California at Davis

Rdsm Shared-Memory

- R's array-access function "["()³ is overloaded, with the access being rerouted.
- In Rdsm 1.0, array access was routed to a server.
- In Rdsm 2.0, array access is built on top of the R package bigmemory.

³Remember, R is a functional language. Even array read/write are functions.

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

• Goals of **bigmemory**: larger address space and ability to write to arrays without reallocation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

- Goals of **bigmemory**: larger address space and ability to write to arrays without reallocation.
- The **bigmemory** package is not a parallel programming system.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

- Goals of **bigmemory**: larger address space and ability to write to arrays without reallocation.
- The **bigmemory** package is not a parallel programming system.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• **Rdsm** adds parallel programming structure on top of **bigmemory**.

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

- Goals of **bigmemory**: larger address space and ability to write to arrays without reallocation.
- The **bigmemory** package is not a parallel programming system.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- **Rdsm** adds parallel programming structure on top of **bigmemory**.
- R's bigmemory is perfect for Rdsm;

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

- Goals of **bigmemory**: larger address space and ability to write to arrays without reallocation.
- The **bigmemory** package is not a parallel programming system.
- **Rdsm** adds parallel programming structure on top of **bigmemory**.
- R's **bigmemory** is perfect for **Rdsm**; it creates physically shared memory, using Unix **shmget()** etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

- Goals of **bigmemory**: larger address space and ability to write to arrays without reallocation.
- The **bigmemory** package is not a parallel programming system.
- **Rdsm** adds parallel programming structure on top of **bigmemory**.
- R's **bigmemory** is perfect for **Rdsm**; it creates physically shared memory, using Unix **shmget()** etc.
- Still have multiple R processes, as with **snow** etc., but they all read/write the same physical memory locations.

Norm Matloff University of California at Davis

Rdsm Shared-Memory (cont'd.)

- Goals of **bigmemory**: larger address space and ability to write to arrays without reallocation.
- The **bigmemory** package is not a parallel programming system.
- **Rdsm** adds parallel programming structure on top of **bigmemory**.
- R's **bigmemory** is perfect for **Rdsm**; it creates physically shared memory, using Unix **shmget()** etc.
- Still have multiple R processes, as with **snow** etc., but they all read/write the same physical memory locations.
- **snow** is used to launch the threads.

Norm Matloff University of California at Davis

Some Rdsm APIs

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

Some Rdsm APIs

```
mgrinit(): initialize system
mgrmakevar(): create a shared variable
mgrmakelock(): create a lock
makebarr(): create a barrier
etc.
```

Norm Matloff University of California at Davis

"Hello World" in Rdsm

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Norm Matloff University of California at Davis

"Hello World" in Rdsm

• Actually, matrix multiplication, the "Hello World" of the parallel processing community. :-)

Norm Matloff University of California at Davis

"Hello World" in Rdsm

- Actually, matrix multiplication, the "Hello World" of the parallel processing community. :-)
- 1 #code executed by each thread: 2 mmul <- function(u,v,w) { 3 # decide which rows of u this thread # will work on 4 5 myidxs <- splitIndices(**nrow**(u), 6 myinfo**\$**nwrkrs)[[myinfo**\$**id]] 7 *#* multiply this thread's part of u with 8 # v, placing the product in the corresp. 9 *# part of w* $w[myidxs,] <- u[myidxs,] \ \ v[,]$ 10 11

Norm Matloff University of California at Davis

Launching the Threads

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Norm Matloff University of California at Davis

Launching the Threads

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Norm Matloff University of California at Davis

Rdsm Can Bring a Substantial Performance Improvement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Norm Matloff University of California at Davis

Rdsm Can Bring a Substantial Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

Norm Matloff University of California at Davis

Rdsm Can Bring a Substantial Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n	# cores	Rdsm	Snow
2000	8	4.640	6.398
3000	16	10.892	18.010
3000	24	8.778	19.001

Norm Matloff University of California at Davis

Rdsm Can Bring a Substantial Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n	# cores	Rdsm	Snow
2000	8	4.640	6.398
3000	16	10.892	18.010
3000	24	8.778	19.001

The problem with **snow** (and **multicore**):

Norm Matloff University of California at Davis

Rdsm Can Bring a Substantial Performance Improvement

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

snow vs. Rdsm, nxn matrix multiply timings:

n	# cores	Rdsm	Snow
2000	8	4.640	6.398
3000	16	10.892	18.010
3000	24	8.778	19.001

The problem with **snow** (and **multicore**): Too much data copying!

Norm Matloff University of California at Davis

Debugging

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Norm Matloff University of California at Davis

Debugging

• R includes some terminal-based primitive debugging tools (and IDEs include some nicer ones).

Norm Matloff University of California at Davis

Debugging

- R includes some terminal-based primitive debugging tools (and IDEs include some nicer ones).
- However, **snow**, **multicore** etc. **don't have a terminal!**. :-(

Norm Matloff University of California at Davis

Debugging

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- R includes some terminal-based primitive debugging tools (and IDEs include some nicer ones).
- However, snow, multicore etc. don't have a terminal!. :-(
- In **snow**, there at least is a "manual" mode, in which one can set up terminals in a very kludgy manner.

Debugging

- R includes some terminal-based primitive debugging tools (and IDEs include some nicer ones).
- However, snow, multicore etc. don't have a terminal!. :-(
- In **snow**, there at least is a "manual" mode, in which one can set up terminals in a very kludgy manner.
- I have developed my own debugging tool for **snow**, automating and hiding the kludge.

Parallel R

Norm Matloff University of California at Davis

Debugging

• R includes some terminal-based primitive debugging tools (and IDEs include some nicer ones).

Parallel R

Norm Matloff University of California at Davis

- However, snow, multicore etc. don't have a terminal!. :-(
- In **snow**, there at least is a "manual" mode, in which one can set up terminals in a very kludgy manner.
- I have developed my own debugging tool for **snow**, automating and hiding the kludge. Since **Rdsm** is launched by **snow**, my debugger works for **Rdsm** too.

Debugging

- R includes some terminal-based primitive debugging tools (and IDEs include some nicer ones).
- However, **snow**, **multicore** etc. **don't have a terminal!**. :-(
- In **snow**, there at least is a "manual" mode, in which one can set up terminals in a very kludgy manner.
- I have developed my own debugging tool for **snow**, automating and hiding the kludge. Since **Rdsm** is launched by **snow**, my debugger works for **Rdsm** too.
- As to multicore, the situation looks grim.

University of California at Davis

Norm Matloff University of California at Davis

What About GPU?

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

What About GPU?

• R's **gputools** package offers some functions, mainly for linear algebra operations.

Norm Matloff University of California at Davis

What About GPU?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- R's **gputools** package offers some functions, mainly for linear algebra operations.
- NVIDIA's Thrust package offers a number of C++ routines for various parallel ops.
Norm Matloff University of California at Davis

What About GPU?

- R's **gputools** package offers some functions, mainly for linear algebra operations.
- NVIDIA's Thrust package offers a number of C++ routines for various parallel ops.
 - Use chooses "back end," either GPU, OpenMP or TBB.

Norm Matloff University of California at Davis

What About GPU?

- R's **gputools** package offers some functions, mainly for linear algebra operations.
- NVIDIA's Thrust package offers a number of C++ routines for various parallel ops.
 - Use chooses "back end," either GPU, OpenMP or TBB.
 - So, your same code can work either on GPU or multicore systems!

Norm Matloff University of California at Davis

What About GPU?

- R's **gputools** package offers some functions, mainly for linear algebra operations.
- NVIDIA's Thrust package offers a number of C++ routines for various parallel ops.
 - Use chooses "back end," either GPU, OpenMP or TBB.
 - So, your same code can work either on GPU or multicore systems!
 - I have developed an R interface to some Thrust-based functions, named **Rth**.

Norm Matloff University of California at Davis

URLs

<□ > < @ > < E > < E > E のQ @

Norm Matloff University of California at Davis

URLs

- CRAN, for Rdsm 2.0, foreach(): cran.us.r-project.org
- Rdsm 2.1:

heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz

- my snow/Rdsm debugging tool: heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz
- Rth:

heather.cs.ucdavis.edu/~matloff/rth.html

- rough draft of the first 1/2 of my forthcoming book, *Parallel Computation for Data Science*: heather.cs.ucdavis.edu/paralleldatasci.pdf
- these slides:

heather.cs.ucdavis.edu/ParallelR.pdf