
Parallel R

Norm Matloff
University of
California at

Davis

Parallel R

Norm Matloff
University of California at Davis

LUGOD
February 17, 2014

URL for these slides (repeated on final slide):
http://heather.cs.ucdavis.edu/ParallelR.pdf

http://heather.cs.ucdavis.edu/ParallelR.pdf


Parallel R

Norm Matloff
University of
California at

Davis

What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.



Parallel R

Norm Matloff
University of
California at

Davis

What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.



Parallel R

Norm Matloff
University of
California at

Davis

What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.



Parallel R

Norm Matloff
University of
California at

Davis

What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.



Parallel R

Norm Matloff
University of
California at

Davis

What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)...

but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.



Parallel R

Norm Matloff
University of
California at

Davis

What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.



Parallel R

Norm Matloff
University of
California at

Davis

What Is R?

• Open source tool for data science.

• Open source version of old S (Bell Labs).

• “We’re not in Statisticsland anymore.”

• Statistically Correct (not all are)... but now used for
general data manipulation, and especially graphics

• Typically used in interactive mode, like Python.



Parallel R

Norm Matloff
University of
California at

Davis

Some R IDEs

• RStudio
Enormously popular. By JJ Allaire, developer of Cold
Fusion long ago.

• ESS—Emacs Speaks Statistics
For the really hard core R programmers.

• vim-r
Ditto, but for Vim.

• StatET
Nice, if you can deal with Eclipse.



Parallel R

Norm Matloff
University of
California at

Davis

Some R IDEs

• RStudio
Enormously popular. By JJ Allaire, developer of Cold
Fusion long ago.

• ESS—Emacs Speaks Statistics
For the really hard core R programmers.

• vim-r
Ditto, but for Vim.

• StatET
Nice, if you can deal with Eclipse.



Parallel R

Norm Matloff
University of
California at

Davis

Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.
• Large number of variables.

• Machine Learning (old nonparametric methods but now
rebranded) tend to be very computationally intensive.



Parallel R

Norm Matloff
University of
California at

Davis

Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.
• Large number of variables.

• Machine Learning (old nonparametric methods but now
rebranded) tend to be very computationally intensive.



Parallel R

Norm Matloff
University of
California at

Davis

Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.

• Large number of variables.

• Machine Learning (old nonparametric methods but now
rebranded) tend to be very computationally intensive.



Parallel R

Norm Matloff
University of
California at

Davis

Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.
• Large number of variables.

• Machine Learning (old nonparametric methods but now
rebranded) tend to be very computationally intensive.



Parallel R

Norm Matloff
University of
California at

Davis

Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.
• Large number of variables.

• Machine Learning

(old nonparametric methods but now
rebranded) tend to be very computationally intensive.



Parallel R

Norm Matloff
University of
California at

Davis

Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.
• Large number of variables.

• Machine Learning (old nonparametric methods but now
rebranded)

tend to be very computationally intensive.



Parallel R

Norm Matloff
University of
California at

Davis

Need for Parallel Computation

• We’re in the era Big Data:

• Large number of data points.
• Large number of variables.

• Machine Learning (old nonparametric methods but now
rebranded) tend to be very computationally intensive.



Parallel R

Norm Matloff
University of
California at

Davis

Obstacles

• R was not designed for parallel computation.

• R is not threaded, probably won’t be in the future.

• R is a functional language, (mostly) free of side effects, so
assignment of a single matrix element

x [ 6 2 2 , 8 8 8 8 ] <− y

may cause the entire matrix storage to be reallocated.



Parallel R

Norm Matloff
University of
California at

Davis

Obstacles

• R was not designed for parallel computation.

• R is not threaded, probably won’t be in the future.

• R is a functional language, (mostly) free of side effects, so
assignment of a single matrix element

x [ 6 2 2 , 8 8 8 8 ] <− y

may cause the entire matrix storage to be reallocated.



Parallel R

Norm Matloff
University of
California at

Davis

Obstacles

• R was not designed for parallel computation.

• R is not threaded, probably won’t be in the future.

• R is a functional language, (mostly) free of side effects, so
assignment of a single matrix element

x [ 6 2 2 , 8 8 8 8 ] <− y

may cause the entire matrix storage to be reallocated.



Parallel R

Norm Matloff
University of
California at

Davis

Obstacles

• R was not designed for parallel computation.

• R is not threaded, probably won’t be in the future.

• R is a functional language, (mostly) free of side effects,

so
assignment of a single matrix element

x [ 6 2 2 , 8 8 8 8 ] <− y

may cause the entire matrix storage to be reallocated.



Parallel R

Norm Matloff
University of
California at

Davis

Obstacles

• R was not designed for parallel computation.

• R is not threaded, probably won’t be in the future.

• R is a functional language, (mostly) free of side effects, so
assignment of a single matrix element

x [ 6 2 2 , 8 8 8 8 ] <− y

may cause the entire matrix storage to be reallocated.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R.

But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert.

But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Workarounds

All of the below are done, though with some drawbacks.

• Implement some fundamental operations, say matrix
multiplication in C/OpenMP, then interface to R. But still
have problems with the anti-side-effects “religion.”

• Same for GPU.

• Have multiple instantiations of R act in concert. But have
overhead from process-to-process copying, especially on
clusters.

I’ll focus on that last approach.



Parallel R

Norm Matloff
University of
California at

Davis

Major World Views

Major paradigms for general parallel programming:

• message passing:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
p . 3 s e n d s x
p . 8 r e c e i v e s
p . 8 does y = x

Used on both clusters and multicore.

• shared-memory:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
y = x

Technically usable only on multicore.



Parallel R

Norm Matloff
University of
California at

Davis

Major World Views

Major paradigms for general parallel programming:

• message passing:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
p . 3 s e n d s x
p . 8 r e c e i v e s
p . 8 does y = x

Used on both clusters and multicore.

• shared-memory:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
y = x

Technically usable only on multicore.



Parallel R

Norm Matloff
University of
California at

Davis

Major World Views

Major paradigms for general parallel programming:

• message passing:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
p . 3 s e n d s x
p . 8 r e c e i v e s
p . 8 does y = x

Used on both clusters and multicore.

• shared-memory:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
y = x

Technically usable only on multicore.



Parallel R

Norm Matloff
University of
California at

Davis

Major World Views

Major paradigms for general parallel programming:

• message passing:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
p . 3 s e n d s x
p . 8 r e c e i v e s
p . 8 does y = x

Used on both clusters and multicore.

• shared-memory:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
y = x

Technically usable only on multicore.



Parallel R

Norm Matloff
University of
California at

Davis

Major World Views

Major paradigms for general parallel programming:

• message passing:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
p . 3 s e n d s x
p . 8 r e c e i v e s
p . 8 does y = x

Used on both clusters and multicore.

• shared-memory:

// copy x ( p r o c e s s 3) to y ( p r o c e s s 8)
y = x

Technically usable only on multicore.



Parallel R

Norm Matloff
University of
California at

Davis

Extent of Usage

• message passing:

• Got a head start, since shared-memory hardware affordable
only recently.

• MPI very popular.

• shared-memory:

• Small, medium multicore, and GPU, now common.
• OpenMP very popular, misc. (TBB, Cilk++).
• CUDA is big.

Yet the situation is quite different in parallel R:
Message-passing dominates.



Parallel R

Norm Matloff
University of
California at

Davis

Extent of Usage

• message passing:

• Got a head start, since shared-memory hardware affordable
only recently.

• MPI very popular.

• shared-memory:

• Small, medium multicore, and GPU, now common.
• OpenMP very popular, misc. (TBB, Cilk++).
• CUDA is big.

Yet the situation is quite different in parallel R:
Message-passing dominates.



Parallel R

Norm Matloff
University of
California at

Davis

Extent of Usage

• message passing:

• Got a head start, since shared-memory hardware affordable
only recently.

• MPI very popular.

• shared-memory:

• Small, medium multicore, and GPU, now common.
• OpenMP very popular, misc. (TBB, Cilk++).
• CUDA is big.

Yet the situation is quite different in parallel R:
Message-passing dominates.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)

Contributed.
• gputools (Buckner et al, U. of Mich.)

Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Multiprocess R

• message passing:

• “snow” part of parallel (L. Tierney, U. of Iowa)
Was a contributed package, now part of base R.

• “multicore” part of parallel (S. Urbanek, ATT&T)
Was a contributed package, now part of base R.

• Rmpi (Hao Yu, U. of Western Ontario)
Contributed.

• foreach() (Revolution Analytics)
Contributed, wrapper to the others above.

• shared-memory

• Rdsm (NM)
Contributed.

• gputools (Buckner et al, U. of Mich.)
Contributed.



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application

As a sample application, let’s use Mutual Outlinks: Given n
Web sites, find the mean number of mutual outlinks over all
n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.)
Here is the serial code:

1 mutoutse r <− funct ion ( l i n k s ) {
2 nr <− nrow ( l i n k s ) ; nc <− ncol ( l i n k s )
3 t o t = 0
4 f o r ( i i n 1 : ( nr −1)) {
5 f o r ( j i n ( i +1): nr ) {
6 f o r ( k i n 1 : nc )
7 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
8 }
9 }

10 t o t / nr
11 }



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application

As a sample application, let’s use Mutual Outlinks: Given n
Web sites, find the mean number of mutual outlinks over all
n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.)

Here is the serial code:

1 mutoutse r <− funct ion ( l i n k s ) {
2 nr <− nrow ( l i n k s ) ; nc <− ncol ( l i n k s )
3 t o t = 0
4 f o r ( i i n 1 : ( nr −1)) {
5 f o r ( j i n ( i +1): nr ) {
6 f o r ( k i n 1 : nc )
7 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
8 }
9 }

10 t o t / nr
11 }



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application

As a sample application, let’s use Mutual Outlinks: Given n
Web sites, find the mean number of mutual outlinks over all
n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.)
Here is the serial code:

1 mutoutse r <− funct ion ( l i n k s ) {
2 nr <− nrow ( l i n k s ) ; nc <− ncol ( l i n k s )
3 t o t = 0
4 f o r ( i i n 1 : ( nr −1)) {
5 f o r ( j i n ( i +1): nr ) {
6 f o r ( k i n 1 : nc )
7 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
8 }
9 }

10 t o t / nr
11 }



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application

As a sample application, let’s use Mutual Outlinks: Given n
Web sites, find the mean number of mutual outlinks over all
n(n-1)/2 pairs. (Matrix is coded with 0s and 1s.)
Here is the serial code:

1 mutoutse r <− funct ion ( l i n k s ) {
2 nr <− nrow ( l i n k s ) ; nc <− ncol ( l i n k s )
3 t o t = 0
4 f o r ( i i n 1 : ( nr −1)) {
5 f o r ( j i n ( i +1): nr ) {
6 f o r ( k i n 1 : nc )
7 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
8 }
9 }

10 t o t / nr
11 }



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application, cont’d.

Improvement: 2 loops can be eliminated by noting that they
are equivalent to matrix multiplication.

1 f o r ( j i n ( i +1): nr ) {
2 f o r ( k i n 1 : nc )
3 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
4 }

becomes

tmp <− l i n k s [ ( i +1): nr , ] %∗% l i n k s [ i , ]
t o t <− t o t + sum( tmp )



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application, cont’d.

Improvement: 2 loops can be eliminated by noting that they
are equivalent to matrix multiplication.

1 f o r ( j i n ( i +1): nr ) {
2 f o r ( k i n 1 : nc )
3 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
4 }

becomes

tmp <− l i n k s [ ( i +1): nr , ] %∗% l i n k s [ i , ]
t o t <− t o t + sum( tmp )



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application, cont’d.

Improvement: 2 loops can be eliminated by noting that they
are equivalent to matrix multiplication.

1 f o r ( j i n ( i +1): nr ) {
2 f o r ( k i n 1 : nc )
3 t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]
4 }

becomes

tmp <− l i n k s [ ( i +1): nr , ] %∗% l i n k s [ i , ]
t o t <− t o t + sum( tmp )



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application, cont’d.

Improved version:

1 mutoutse r1<− funct ion ( l i n k s ) {
2 nr <− nrow ( l i n k s )
3 nc <− ncol ( l i n k s )
4 t o t <− 0
5 f o r ( i i n 1 : ( nr −1)) {
6 # mat r i x mult . o p e r a t o r i s %∗%
7 tmp <− l i n k s [ ( i +1): nr , ] %∗% l i n k s [ i , ]
8 t o t <− t o t + sum( tmp )
9 }

10 t o t / nr
11 }



Parallel R

Norm Matloff
University of
California at

Davis

Sample Application, cont’d.

Improved version:

1 mutoutse r1<− funct ion ( l i n k s ) {
2 nr <− nrow ( l i n k s )
3 nc <− ncol ( l i n k s )
4 t o t <− 0
5 f o r ( i i n 1 : ( nr −1)) {
6 # mat r i x mult . o p e r a t o r i s %∗%
7 tmp <− l i n k s [ ( i +1): nr , ] %∗% l i n k s [ i , ]
8 t o t <− t o t + sum( tmp )
9 }

10 t o t / nr
11 }



Parallel R

Norm Matloff
University of
California at

Davis

Timings

size orig. improved

500x500 106.7s 1.5s

Wow! Vectorizing really helps.
But even the improved code takes 94.1s for 2000x2000.
Parallel computation is needed.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

size orig. improved

500x500 106.7s 1.5s

Wow! Vectorizing really helps.
But even the improved code takes 94.1s for 2000x2000.
Parallel computation is needed.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

size orig. improved

500x500 106.7s 1.5s

Wow! Vectorizing really helps.

But even the improved code takes 94.1s for 2000x2000.
Parallel computation is needed.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

size orig. improved

500x500 106.7s 1.5s

Wow! Vectorizing really helps.
But even the improved code takes 94.1s for 2000x2000.

Parallel computation is needed.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

size orig. improved

500x500 106.7s 1.5s

Wow! Vectorizing really helps.
But even the improved code takes 94.1s for 2000x2000.
Parallel computation is needed.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked.

R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

How Snow Works

The snow contributed package is now part of base R, in the
parallel package.

• Say have Machines A, B and C, networked. R is running
on all 3.

• “Manager” R process, at A, divvies up the workload, sends
chunks to “workers” B, C.

• B, C work on their chunks, send results back to A.

• R process A receives, and combines the results into the
final answer.

Communication between R processes done by sockets or other.



Parallel R

Norm Matloff
University of
California at

Davis

Mut. Outs. in Snow

1 do ichunk <− funct ion ( i c h u n k ) {
2 t o t <− 0
3 nr <− nrow ( l n k s )
4 f o r ( i i n i c h u n k ) {
5 tmp <− l n k s [ ( i +1): nr , ] %∗% l n k s [ i , ]
6 t o t <− t o t + sum( tmp )
7 }
8 t o t
9 }

10 mutoutpar <− funct ion ( c l s ) {
11 r e q u i r e ( p a r a l l e l )
12 nr <− nrow ( l n k s )
13 c l u s t e r E x p o r t ( c l s , ” l n k s ” )
14 i c h u n k s <− 1 : ( nr−1)
15 t o t s <− c l u s t e r A p p l y ( c l s , i c h u n k s , do ichunk )
16 Reduce (sum , t o t s ) / nr
17 }



Parallel R

Norm Matloff
University of
California at

Davis

Mut. Outs. in Snow

1 do ichunk <− funct ion ( i c h u n k ) {
2 t o t <− 0
3 nr <− nrow ( l n k s )
4 f o r ( i i n i c h u n k ) {
5 tmp <− l n k s [ ( i +1): nr , ] %∗% l n k s [ i , ]
6 t o t <− t o t + sum( tmp )
7 }
8 t o t
9 }

10 mutoutpar <− funct ion ( c l s ) {
11 r e q u i r e ( p a r a l l e l )
12 nr <− nrow ( l n k s )
13 c l u s t e r E x p o r t ( c l s , ” l n k s ” )
14 i c h u n k s <− 1 : ( nr−1)
15 t o t s <− c l u s t e r A p p l y ( c l s , i c h u n k s , do ichunk )
16 Reduce (sum , t o t s ) / nr
17 }



Parallel R

Norm Matloff
University of
California at

Davis

Timings

Timing, dual-core, machine, but hyperthreaded.

size improved. 2 wrkrs. 4 wrkrs.

2000x2000 94.5s 80.3s 70.1s

Get improvement, though not the theoretical 2X and 4X.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

Timing, dual-core, machine, but hyperthreaded.

size improved. 2 wrkrs. 4 wrkrs.

2000x2000 94.5s 80.3s 70.1s

Get improvement, though not the theoretical 2X and 4X.



Parallel R

Norm Matloff
University of
California at

Davis

Timings

Timing, dual-core, machine, but hyperthreaded.

size improved. 2 wrkrs. 4 wrkrs.

2000x2000 94.5s 80.3s 70.1s

Get improvement, though not the theoretical 2X and 4X.



Parallel R

Norm Matloff
University of
California at

Davis



Parallel R

Norm Matloff
University of
California at

Davis



Parallel R

Norm Matloff
University of
California at

Davis

Overhead in Snow

• Data copied from manager to workers at beginning of run.

• Data copied from workers to manager at end of run.

• More copying from manager to manager at end of run; see
calls to Reduce() above.



Parallel R

Norm Matloff
University of
California at

Davis

Overhead in Snow

• Data copied from manager to workers at beginning of run.

• Data copied from workers to manager at end of run.

• More copying from manager to manager at end of run; see
calls to Reduce() above.



Parallel R

Norm Matloff
University of
California at

Davis

Overhead in Snow

• Data copied from manager to workers at beginning of run.

• Data copied from workers to manager at end of run.

• More copying from manager to manager at end of run; see
calls to Reduce() above.



Parallel R

Norm Matloff
University of
California at

Davis

Overhead in Snow

• Data copied from manager to workers at beginning of run.

• Data copied from workers to manager at end of run.

• More copying from manager to manager at end of run; see
calls to Reduce() above.



Parallel R

Norm Matloff
University of
California at

Davis

How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow, as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option



Parallel R

Norm Matloff
University of
California at

Davis

How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow, as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option



Parallel R

Norm Matloff
University of
California at

Davis

How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow, as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option



Parallel R

Norm Matloff
University of
California at

Davis

How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow,

as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option



Parallel R

Norm Matloff
University of
California at

Davis

How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow, as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option



Parallel R

Norm Matloff
University of
California at

Davis

How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow, as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option



Parallel R

Norm Matloff
University of
California at

Davis

How Multicore Works

The multicore contributed package is now part of base R, in
the parallel package.

• API, operation similar to snow.

• Should be somewhat faster than snow, as it uses fork()
on the original (manager) R process1—no copying data at
the beginning.

• But has the same copying delays at the end.

1Works on Unix-family systems only. Also, snow now includes this kind
of option



Parallel R

Norm Matloff
University of
California at

Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction: Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.



Parallel R

Norm Matloff
University of
California at

Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction: Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.



Parallel R

Norm Matloff
University of
California at

Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction: Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.



Parallel R

Norm Matloff
University of
California at

Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction:

Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.



Parallel R

Norm Matloff
University of
California at

Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction: Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.



Parallel R

Norm Matloff
University of
California at

Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction: Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.



Parallel R

Norm Matloff
University of
California at

Davis

The foreach() Package

• Probably the most popular type of parallel R currently.

• Actually just a wrapper to snow, multicore etc.

• Major attraction: Just replace for() in your serial code
with foreach()!2

E.g. Mutual Outlinks:

f o r e a c h ( i = 1 : ( nr −1)) %dopar% {
f o r ( j i n ( i +1): nr ) {

f o r ( k i n 1 : nc )
t o t <− t o t + l i n k s [ i , k ] ∗ l i n k s [ j , k ]

}
}

• But that “attraction” is a “fatal attraction”...

2And add %dopar%.



Parallel R

Norm Matloff
University of
California at

Davis

More on foreach()

• Simply replacing foreach() can really rob your code of
speed.

• E.g. Mutual Outlinks. The original serial code did NOT
take advantage of matrix multiplication, so a naive use of
foreach() can cause a substantial slowdown:

size # wrkrs. foreach() snow
500x500 2 17.7s 11.3s

500x500 4 13.6s 6.0s

500x500 8 7.4s 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply
change one line of one’s serial code.



Parallel R

Norm Matloff
University of
California at

Davis

More on foreach()

• Simply replacing foreach() can really rob your code of
speed.

• E.g. Mutual Outlinks. The original serial code did NOT
take advantage of matrix multiplication, so a naive use of
foreach() can cause a substantial slowdown:

size # wrkrs. foreach() snow
500x500 2 17.7s 11.3s

500x500 4 13.6s 6.0s

500x500 8 7.4s 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply
change one line of one’s serial code.



Parallel R

Norm Matloff
University of
California at

Davis

More on foreach()

• Simply replacing foreach() can really rob your code of
speed.

• E.g. Mutual Outlinks.

The original serial code did NOT
take advantage of matrix multiplication, so a naive use of
foreach() can cause a substantial slowdown:

size # wrkrs. foreach() snow
500x500 2 17.7s 11.3s

500x500 4 13.6s 6.0s

500x500 8 7.4s 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply
change one line of one’s serial code.



Parallel R

Norm Matloff
University of
California at

Davis

More on foreach()

• Simply replacing foreach() can really rob your code of
speed.

• E.g. Mutual Outlinks. The original serial code did NOT
take advantage of matrix multiplication,

so a naive use of
foreach() can cause a substantial slowdown:

size # wrkrs. foreach() snow
500x500 2 17.7s 11.3s

500x500 4 13.6s 6.0s

500x500 8 7.4s 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply
change one line of one’s serial code.



Parallel R

Norm Matloff
University of
California at

Davis

More on foreach()

• Simply replacing foreach() can really rob your code of
speed.

• E.g. Mutual Outlinks. The original serial code did NOT
take advantage of matrix multiplication, so a naive use of
foreach() can cause a substantial slowdown:

size # wrkrs. foreach() snow
500x500 2 17.7s 11.3s

500x500 4 13.6s 6.0s

500x500 8 7.4s 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply
change one line of one’s serial code.



Parallel R

Norm Matloff
University of
California at

Davis

More on foreach()

• Simply replacing foreach() can really rob your code of
speed.

• E.g. Mutual Outlinks. The original serial code did NOT
take advantage of matrix multiplication, so a naive use of
foreach() can cause a substantial slowdown:

size # wrkrs. foreach() snow
500x500 2 17.7s 11.3s

500x500 4 13.6s 6.0s

500x500 8 7.4s 3.4s

Of course, you can parameterize your for() loop to use
chunking, but this weakens the appeal of being able to simply
change one line of one’s serial code.



Parallel R

Norm Matloff
University of
California at

Davis

Rmpi

• Provides R interfaces to most MPI functions, plus some
new ones specific to R.

• Very versatile.

• Can be a (big) pain to configure.



Parallel R

Norm Matloff
University of
California at

Davis

Rmpi

• Provides R interfaces to most MPI functions,

plus some
new ones specific to R.

• Very versatile.

• Can be a (big) pain to configure.



Parallel R

Norm Matloff
University of
California at

Davis

Rmpi

• Provides R interfaces to most MPI functions, plus some
new ones specific to R.

• Very versatile.

• Can be a (big) pain to configure.



Parallel R

Norm Matloff
University of
California at

Davis

Rmpi

• Provides R interfaces to most MPI functions, plus some
new ones specific to R.

• Very versatile.

• Can be a (big) pain to configure.



Parallel R

Norm Matloff
University of
California at

Davis

Rmpi

• Provides R interfaces to most MPI functions, plus some
new ones specific to R.

• Very versatile.

• Can be a (big) pain to configure.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm

• Shared-memory.

• Add threads to R programming!

• Builds on my old parallel Perl package, PerlDSM.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm

• Shared-memory.

• Add threads to R programming!

• Builds on my old parallel Perl package, PerlDSM.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm

• Shared-memory.

• Add threads to R programming!

• Builds on my old parallel Perl package, PerlDSM.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm

• Shared-memory.

• Add threads to R programming!

• Builds on my old parallel Perl package, PerlDSM.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm

• Shared-memory.

• Add threads to R programming!

• Builds on my old parallel Perl package, PerlDSM.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory

• R’s array-access function ”[”()3 is overloaded, with the
access being rerouted.

• In Rdsm 1.0, array access was routed to a server.

• In Rdsm 2.0, array access is built on top of the R package
bigmemory.

3Remember, R is a functional language. Even array read/write are
functions.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory

• R’s array-access function ”[”()3 is overloaded, with the
access being rerouted.

• In Rdsm 1.0, array access was routed to a server.

• In Rdsm 2.0, array access is built on top of the R package
bigmemory.

3Remember, R is a functional language. Even array read/write are
functions.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory

• R’s array-access function ”[”()3 is overloaded, with the
access being rerouted.

• In Rdsm 1.0, array access was routed to a server.

• In Rdsm 2.0, array access is built on top of the R package
bigmemory.

3Remember, R is a functional language. Even array read/write are
functions.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory

• R’s array-access function ”[”()3 is overloaded, with the
access being rerouted.

• In Rdsm 1.0, array access was routed to a server.

• In Rdsm 2.0, array access is built on top of the R package
bigmemory.

3Remember, R is a functional language. Even array read/write are
functions.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm;

it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Shared-Memory (cont’d.)

• Goals of bigmemory: larger address space and ability to
write to arrays without reallocation.

• The bigmemory package is not a parallel programming
system.

• Rdsm adds parallel programming structure on top of
bigmemory.

• R’s bigmemory is perfect for Rdsm; it creates physically
shared memory, using Unix shmget() etc.

• Still have multiple R processes, as with snow etc., but
they all read/write the same physical memory locations.

• snow is used to launch the threads.



Parallel R

Norm Matloff
University of
California at

Davis

Some Rdsm APIs

m g r i n i t ( ) : i n i t i a l i z e system
mgrmakevar ( ) : create a s h a r e d v a r i a b l e
mgrmakelock ( ) : create a l o c k
makebarr ( ) : create a b a r r i e r
e t c .



Parallel R

Norm Matloff
University of
California at

Davis

Some Rdsm APIs

m g r i n i t ( ) : i n i t i a l i z e system
mgrmakevar ( ) : create a s h a r e d v a r i a b l e
mgrmakelock ( ) : create a l o c k
makebarr ( ) : create a b a r r i e r
e t c .



Parallel R

Norm Matloff
University of
California at

Davis

“Hello World” in Rdsm

• Actually, matrix multiplication, the “Hello World” of the
parallel processing community. :-)

1 #code execu ted by each th r ead :
2 mmul <− funct ion ( u , v , w) {
3 # dec i d e which rows o f u t h i s t h r ead
4 # w i l l work on
5 myidxs <− s p l i t I n d i c e s ( nrow ( u ) ,
6 myinfo $ n w r k r s ) [ [ myinfo $ i d ] ]
7 # mu l t i p l y t h i s thread ’ s p a r t o f u wi th
8 # v , p l a c i n g the p roduc t i n the c o r r e s p .
9 # pa r t o f w

10 w[ myidxs , ] <− u [ myidxs , ] \%∗\% v [ , ]
11 }



Parallel R

Norm Matloff
University of
California at

Davis

“Hello World” in Rdsm

• Actually, matrix multiplication, the “Hello World” of the
parallel processing community. :-)

1 #code execu ted by each th r ead :
2 mmul <− funct ion ( u , v , w) {
3 # dec i d e which rows o f u t h i s t h r ead
4 # w i l l work on
5 myidxs <− s p l i t I n d i c e s ( nrow ( u ) ,
6 myinfo $ n w r k r s ) [ [ myinfo $ i d ] ]
7 # mu l t i p l y t h i s thread ’ s p a r t o f u wi th
8 # v , p l a c i n g the p roduc t i n the c o r r e s p .
9 # pa r t o f w

10 w[ myidxs , ] <− u [ myidxs , ] \%∗\% v [ , ]
11 }



Parallel R

Norm Matloff
University of
California at

Davis

“Hello World” in Rdsm

• Actually, matrix multiplication, the “Hello World” of the
parallel processing community. :-)

1 #code execu ted by each th r ead :
2 mmul <− funct ion ( u , v , w) {
3 # dec i d e which rows o f u t h i s t h r ead
4 # w i l l work on
5 myidxs <− s p l i t I n d i c e s ( nrow ( u ) ,
6 myinfo $ n w r k r s ) [ [ myinfo $ i d ] ]
7 # mu l t i p l y t h i s thread ’ s p a r t o f u wi th
8 # v , p l a c i n g the p roduc t i n the c o r r e s p .
9 # pa r t o f w

10 w[ myidxs , ] <− u [ myidxs , ] \%∗\% v [ , ]
11 }



Parallel R

Norm Matloff
University of
California at

Davis

Launching the Threads

1 # the c l u s t e r ∗ ( ) f u n c t i o n s a r e from Snow
2 # send mmul ( ) to the t h r e ad s
3 c l u s t e r E x p o r t ( c2 , ”mmul” )
4 # run the t h r e ad s
5 c l u s t e r E v a l Q ( c2 , mmul( a , b , c ) )
6 c [ , ] # check r e s u l t s



Parallel R

Norm Matloff
University of
California at

Davis

Launching the Threads

1 # the c l u s t e r ∗ ( ) f u n c t i o n s a r e from Snow
2 # send mmul ( ) to the t h r e ad s
3 c l u s t e r E x p o r t ( c2 , ”mmul” )
4 # run the t h r e ad s
5 c l u s t e r E v a l Q ( c2 , mmul( a , b , c ) )
6 c [ , ] # check r e s u l t s



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Can Bring a Substantial
Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n # cores Rdsm Snow
2000 8 4.640 6.398

3000 16 10.892 18.010

3000 24 8.778 19.001

The problem with snow (and multicore):
Too much data copying!



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Can Bring a Substantial
Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n # cores Rdsm Snow
2000 8 4.640 6.398

3000 16 10.892 18.010

3000 24 8.778 19.001

The problem with snow (and multicore):
Too much data copying!



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Can Bring a Substantial
Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n # cores Rdsm Snow
2000 8 4.640 6.398

3000 16 10.892 18.010

3000 24 8.778 19.001

The problem with snow (and multicore):
Too much data copying!



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Can Bring a Substantial
Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n # cores Rdsm Snow
2000 8 4.640 6.398

3000 16 10.892 18.010

3000 24 8.778 19.001

The problem with snow (and multicore):

Too much data copying!



Parallel R

Norm Matloff
University of
California at

Davis

Rdsm Can Bring a Substantial
Performance Improvement

snow vs. Rdsm, nxn matrix multiply timings:

n # cores Rdsm Snow
2000 8 4.640 6.398

3000 16 10.892 18.010

3000 24 8.778 19.001

The problem with snow (and multicore):
Too much data copying!



Parallel R

Norm Matloff
University of
California at

Davis

Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.



Parallel R

Norm Matloff
University of
California at

Davis

Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.



Parallel R

Norm Matloff
University of
California at

Davis

Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.



Parallel R

Norm Matloff
University of
California at

Davis

Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.



Parallel R

Norm Matloff
University of
California at

Davis

Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge.

Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.



Parallel R

Norm Matloff
University of
California at

Davis

Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.



Parallel R

Norm Matloff
University of
California at

Davis

Debugging

• R includes some terminal-based primitive debugging tools
(and IDEs include some nicer ones).

• However, snow, multicore etc. don’t have a terminal!.
:-(

• In snow, there at least is a “manual” mode, in which one
can set up terminals in a very kludgy manner.

• I have developed my own debugging tool for snow,
automating and hiding the kludge. Since Rdsm is
launched by snow, my debugger works for Rdsm too.

• As to multicore, the situation looks grim.



Parallel R

Norm Matloff
University of
California at

Davis

What About GPU?

• R’s gputools package offers some functions, mainly for
linear algebra operations.

• NVIDIA’s Thrust package offers a number of C++
routines for various parallel ops.

• Use chooses “back end,” either GPU, OpenMP or TBB.
• So, your same code can work either on GPU or multicore

systems!
• I have developed an R interface to some Thrust-based

functions, named Rth.



Parallel R

Norm Matloff
University of
California at

Davis

What About GPU?

• R’s gputools package offers some functions, mainly for
linear algebra operations.

• NVIDIA’s Thrust package offers a number of C++
routines for various parallel ops.

• Use chooses “back end,” either GPU, OpenMP or TBB.
• So, your same code can work either on GPU or multicore

systems!
• I have developed an R interface to some Thrust-based

functions, named Rth.



Parallel R

Norm Matloff
University of
California at

Davis

What About GPU?

• R’s gputools package offers some functions, mainly for
linear algebra operations.

• NVIDIA’s Thrust package offers a number of C++
routines for various parallel ops.

• Use chooses “back end,” either GPU, OpenMP or TBB.
• So, your same code can work either on GPU or multicore

systems!
• I have developed an R interface to some Thrust-based

functions, named Rth.



Parallel R

Norm Matloff
University of
California at

Davis

What About GPU?

• R’s gputools package offers some functions, mainly for
linear algebra operations.

• NVIDIA’s Thrust package offers a number of C++
routines for various parallel ops.

• Use chooses “back end,” either GPU, OpenMP or TBB.

• So, your same code can work either on GPU or multicore
systems!

• I have developed an R interface to some Thrust-based
functions, named Rth.



Parallel R

Norm Matloff
University of
California at

Davis

What About GPU?

• R’s gputools package offers some functions, mainly for
linear algebra operations.

• NVIDIA’s Thrust package offers a number of C++
routines for various parallel ops.

• Use chooses “back end,” either GPU, OpenMP or TBB.
• So, your same code can work either on GPU or multicore

systems!

• I have developed an R interface to some Thrust-based
functions, named Rth.



Parallel R

Norm Matloff
University of
California at

Davis

What About GPU?

• R’s gputools package offers some functions, mainly for
linear algebra operations.

• NVIDIA’s Thrust package offers a number of C++
routines for various parallel ops.

• Use chooses “back end,” either GPU, OpenMP or TBB.
• So, your same code can work either on GPU or multicore

systems!
• I have developed an R interface to some Thrust-based

functions, named Rth.



Parallel R

Norm Matloff
University of
California at

Davis

URLs

• CRAN, for Rdsm 2.0, foreach():
cran.us.r-project.org

• Rdsm 2.1:
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz

• my snow/Rdsm debugging tool:
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz

• Rth:
heather.cs.ucdavis.edu/~matloff/rth.html

• rough draft of the first 1/2 of my forthcoming book,
Parallel Computation for Data Science:
heather.cs.ucdavis.edu/paralleldatasci.pdf

• these slides:
heather.cs.ucdavis.edu/ParallelR.pdf

cran.us.r-project.org
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz
heather.cs.ucdavis.edu/~matloff/rth.html
heather.cs.ucdavis.edu/paralleldatasci.pdf
heather.cs.ucdavis.edu/ParallelR.pdf


Parallel R

Norm Matloff
University of
California at

Davis

URLs

• CRAN, for Rdsm 2.0, foreach():
cran.us.r-project.org

• Rdsm 2.1:
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz

• my snow/Rdsm debugging tool:
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz

• Rth:
heather.cs.ucdavis.edu/~matloff/rth.html

• rough draft of the first 1/2 of my forthcoming book,
Parallel Computation for Data Science:
heather.cs.ucdavis.edu/paralleldatasci.pdf

• these slides:
heather.cs.ucdavis.edu/ParallelR.pdf

cran.us.r-project.org
heather.cs.ucdavis.edu/Rdsm_2.1.1.tar.gz
heather.cs.ucdavis.edu/DebugSnow_1.0.0.tar.gz
heather.cs.ucdavis.edu/~matloff/rth.html
heather.cs.ucdavis.edu/paralleldatasci.pdf
heather.cs.ucdavis.edu/ParallelR.pdf

