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Abstract

There is a long history of devleopment of methodology dealing with missing data in statistical
analysis. Today, the most popular methods fall into two classes, Complete Cases (CC) and Multiple
Imputation (MI). Another approach, Available Cases (AC), has occasionally been mentioned in the
research literature, in the context of linear regression analysis, but has generally been ignored. In
this paper, we revisit the AC method, showing that it can perform better than CC and MI, and we
extend its breadth of application.
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1. Introduction

For concreteness in this introduction, consider a classic linear regression analysis, based on
a data matrix D = (Dij) of n rows and p+ 1 columns, with the first p columns containing
the values of the predictor variables and the last column consisting of values of the response
variable.1. Some of the elements of the matrix may be missing, a condition that is in the R
language denoted by NA.

A wide variety of methods have been developed to deal with the missing values. The most
popular fall into one of two categories, again described in our regression analysis context
for convenience:

• Complete cases (CC):2 Here one deletes any row in the data matrix that has at least
one NA value.

• Multiple Imputation (MI): These methods involve estimating the conditional dis-
tribution of a variable from the others, and then sampling from that distribution via
simulation. Multiple alternate versions of the data matrix are generated, with the NA
values replaced by values that might have been the missing one.

Here we are interested in a third approach:

• Available Cases (AC):3 If the statistical method involves computation involving, say,
various pairs of varaibles, include in such a calculation any observation for which this
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pair is intact, regardless of whether the other variables are intact. The same holds for
triples of variables and so on.

For example, as will be detailed below, linear regression analysis only involves computation
of certain pairwise-intact values of the form

1

n

n∑
i=1

DirDis (1)

Thus we may compute (1) for all rows i for which both dir and dis are intact — even if
some other dik are missing. In (1) the factor 1/n would be changed to 1/Nrs, where Nrs

is the number of rows with intact (r, s) pairs in the matrix, as in for example (Cohen and
Cohen, 1983). In other words, (1) becomes

Krs =
1

Nrs

n∑
i=1

IrsDirDis (2)

where Irs is 1 or 0, depending on whether Dir and Dis are intact.

(As noted, there are important assumptions underlying these methods, but we defer discus-
sion on this to Section 6.)

Though AC was considered in the early literature on missing data, over the years, MI
methods became more and more sophisticated, and they enjoy high popularity today. In
R, for instance, there are packages Amelia (Honaker et al, 2011), mi (Su et al, 2011) and
mice (van Buuren, 2011) that apply MI techniques. See (Little et al, 2002) for very detailed
coverage, or http://sites.stat.psu.edu/ jls/mifaq.html for an overview.

Concurrently, interest in AC waned, not only due to its stringent assumptions but also out
of a concern that the cross products matrix whose elements are given by (1) may not be
positive definite.

We believe that AC can be a very useful tool. As Marsh notes (Marsh, 1998), AC “follows
naturally from a desire to use as much of the data as possible.” We will show here that AC
can indeed yield significant improvements in statistical accuracy over CC, while avoiding
the very slow computational speed of MI. In addition to investigating the standard AC
application of linear regression nodeling, we also investigate principal components analysis
(PCA) and analysis of contingency tables. We make software available to implement these
methods.

2. Choice of MI Method

We chose Amelia as our representative MI method, arbitrarily using the criterion that it has
the most citations on Google Scholar. Under the assumption that the population distribution
of the rows of D is multivariate normal, an outline of its approach is as follows.

• Starting the with original data Dij , m perturbations of this data Dijk are created,
k = 1, ...,m, through bootstrap sampling. Note that these new data sets do contain
NA values.



• For k = 1, ...,m, do:

– Replace the NAs by 0s.

– Use the EM algorithm and the assumption of multivariate normality to estimate
the population mean vector and covariance matrix from this data.

– Replace each NA value by an imputed one, consisting of a value drawn at
random from the estimated conditional distribution of this variable, given the
intact values of the other variables.

• Combine the m data sets, say by averaging the m values of a quantity of interest,
such as a regression coefficient.

In our initial empirical investigation, we quickly found that Amelia was not performing
well:

• Its statistical accuracy was no better than those of CC and AC.

• It was slow. For instance, in a PCA simulation with n = 10000 and p = 25, CC and
AC took 0.011 and 1.967 seconds, respectively, while MI took 92.928 seconds.

For this reason, we will present empirical results here only for the CC and AC methods. It
is crucial to keep in mind, though, that CC and AC require more stringent assumptions than
MI. Thus later in this paper we will return to MI in general, and Amelia in particular.

3. AC in Linear Regression Models

As noted, in the literature, AC has mostly been considered in the context of linear regres-
sion.4 Thus we will begin there.

3.1 Motivation and Method

Consider the case of random-X regression. Define the matrix U and the vector V to be D
minus the last column, and the last column of D, respectively. Then the classic formula for
the vector of estimated regression coefficients, assuming intact data, is

(U ′U)−1(U ′V ) =

(
1

n
U ′U

)−1 ( 1

n
U ′V

)
(3)

which as n→∞ converges to

[E(XX ′)]−1E(XY ) (4)

where the random column vector X and and the random scalar variable Y have the popu-
lation distribution from which the rows of U and elements of V are sampled.

The point is that this convergence still holds if in (3), we replace the (r, s) element of U ′U
in (3) by (2), r, s = 1, ..., p and replace element r in U ′V by (2) with s = p+ 1.

4Actually, to our knownledge, in the litetature to date, AC has only been applied to covariance-related
methods, including linear regression.



3.2 Implementation

R code for use of AC as a replacement for lm() is available in two implementations (not just
two locations), a function lmmv() at https://github.com/maxguxiao/Available-Cases, and a
function lmac() in the regtools package at https://github.com/matloff/regtools.

The latter takes advantage of the fact that R’s cov() function offers an argument option
use=pairwise.complete.obs, which applies AC to finding covariance matrices, which in
turn can be used to estimate regression coefficients::

# arguments:

# x: predictor values (no 1s column)
# y: response variable values

lmac <- function(x,y) {
p <- ncol(x)
tmp <- cov(cbind(x,y),use=’pairwise.complete.obs’)
upu <- tmp[1:p,1:p]
upv <- tmp[1:p,p+1]
bhat <- solve(upu,upv)
bhat0 <-

mean(y,na.rm=TRUE) - colMeans(x,na.rm=TRUE) %*% bhat
c(bhat0,bhat)

}

This works because for centered data, (4) is equal to

Cov(X)−1Cov(X,Y ) (5)

Since the use=pairwise.complete.obs option in R’s cov() uses the AC method, this gives
us AC estimation for linear regression.

The above code, lmac(), is much faster than lmmv(), since R’s cov() function operates at
C-level, as opposed to the use of R for() loops in lmmv().

3.3 Standard Errors for the Coefficients

Our code computes standard errors for the estimated regression coefficients in two different
ways.

lmmv():

The lmmv() function uses the delta method, together with numerical calculation of deriva-
tives using the numDeriv package. Any component of (3) is a function of the Krs in (2)
for 1 ≤ r ≤ s ≤ p + 1. The function genD() in numDeriv is then used to compute the
numerical gradient G of this function.

The standard error is then

√
G′BG (6)



NA rate CC var. AC var.
0.01 0.008034006 0.002094305
0.05 0.05018815 0.01230746
0.10 0.1421812 0.02398466

Table 1: Pima Data, Linear Regression

where B is the estimated covariance matrix for the Krs (conditional on the Nrs). We have

Cov(Kab,Kcd) =
1

Nab

1

Ncd

n∑
i=1

Cov(1abDiaDib, 1cdDicDid) (7)

There are various ways to evaluate this, such as calling Cov() with the pairwise.complete.obs
option.

lmac():

In lmac(), we simply use the bootstrap to generate standard errors. Though this may seem
more time-consuming than using the delta method, this consideration is countered by the
fact that genD() is written in R rather than C, and thus involves slow loop computation.

3.4 Empirical Evaluation

We present here simulations that run on real or simulated data. The idea is that, starting
with a given data set, in each repetition of the simulation, random NA values are inserted,
and the value of β̂1 is recorded. The variance of such values for lmac() is compared to that
for lm(); the latter represents CC, as its method of handling NAs is CC.5

We tried it for several real data sets. One is the Pima study at the UCI Machine Learn-
ing Repository, https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes. Here n =
768 and p = 8. We took blood pressure as our response variable, and all the other variables
as predictors. Results for inserting 1%, 5% and 10% NAs were as shown in Table 1.

AC was much more accurate, especially with the heavier NA rate.

We also tried the method on some Census data, concerning programmers and engineers in
Silicon Valley. (This data set is available in the regtools package.) Here, n = 20090 and
p = 11. The results are shown in Table 2.

Next, we considered the baseball player data set in CRAN’s freqparcoord package (Mat-
loff and Xie, 2014), which consists of data on height, weight, age and position for 1015
major league players.6 In predicting weight from only height and age, there appeared to
be no real difference in the accuracy of CC and AC; see Table 3. However, when playing
position was added to the prediction, with dummy variables for infielders, outfielders and
pitchers,7 AC greatly outperformed CC, as seen in Table 4.

5The means values for the two methods were virtually identical.
6Data courtesy of the UCLA Statistics Department.
7The remaining categories are catchers and, in the American League, designated hitters.



NA rate CC var. AC var.
0.01 0.4694873 0.1387395
0.05 2.998764 0.7655222
0.10 8.821311 1.530692

Table 2: Census Data, Linear Regression

NA rate CC var. AC var.
0.01 0.001587028 0.001587711
0.05 0.009455012 0.009799962
0.10 0.02019519 0.01996154

Table 3: Baseball Data I, Linear Regression

NA rate CC var. AC var.
0.01 0.00354029 0.00211546
0.05 0.02160327 0.01146491
0.10 0.05171839 0.02553519

Table 4: Baseball Data II, Linear Regression



NA rate CC var. AC var. sgm
0.01 5.381073e-06 8.068427e-05 1
0.10 0.0001015785 0.0009777008 1
0.10 0.002390376 0.001291069 5

Table 5: Simulated Data, PCA

In all cases, AC did quite well. However, we also compared CC and AC on data generated
as

n <- 2500
p <- 2
p1 <- p + 1
a <- 5
b <- 8
ones <- matrix(rep(1,p),ncol=1)
z <- matrix(nrow = n, ncol = p1)
z[,1:p] <- runif(n*p,min=a,max=b)
z[,p1] <-

z[,1:p] %*% ones + sgm * runif(n,min = -0.5,max = 0.5)

As seen in Table 5 AC does eventually dominate, but only for the larger value of sgm, and
AC does considerably worse than CC before that.

4. AC in Principal Components Analysis

Once one uses AC in the context of covariance matrices for linear regression analysis, it is
natural to do so for PCA. The regtools version, pcac(), is quite simple:

pcac <- function (indata, scale = FALSE)
{

covcor <- if (scale)
cor

else cov
cvr <- covcor(indata, use = "pairwise.complete.obs")
tmp <- eigen(cvr)
res <- list()
if (any(tmp$values < 0))

stop("at least one negative eigenvalue")
res$sdev <- sqrt(tmp$values)
res$rotation <- tmp$vectors
res

}

The quantity of interest was the square root of the maximal eigenvalue. AC was much more
effective than CC on the Pima (Table 6), Census (Table 7) and baseball (Table 8) data.



NA rate CC var. AC var.
0.01 3.860661 0.3721266
0.05 23.8738 1.976418
0.10 64.26592 4.95431

Table 6: Pima Data, PCA

NA rate CC var. AC var.
0.01 32403.34 4498.546
0.05 147780.2 20018.99
0.10 562266.5 64522.77

Table 7: Census Data, PCA

NA rate CC var. AC var.
0.01 0.01391677 0.002439572
0.05 0.07892307 0.01110466
0.10 0.2025108 0.02432591

Table 8: Baseball Data, PCA

NA rate CC var. AC var.
0.01 0.0001565521 1.412733e-05
0.05 0.001146238 7.169807e-05
0.10 0.004132952 0.0001567328

Table 9: Simulated Data, PCA



For the simulated data z, as in Section 3.4, the results were a little different, with AC still
doing very well, but with a caveat. AC performed well, as seen in Table 9. But it sometimes
failed, due to negative eigenvalues. Of 100 trials for each of the NA rates of 0.01, 0.05 and
0.10, there were 0, 7 and 13 instances of negative eigenvalues. This is related to the concern
about possible lack of positive definiteness mentioned earlier.

It must be noted that this distribution is highly artificial. The square root of the population
maximal eigenvalue is about 2.88, quite small in comparison to the population mean of
about 65 for the last variable in the data. Nevertheless, the above results should be kept in
mind.

5. AC in the Log-Linear Model

To our knowledge, this is the first attempt to use AC outside of the realm of estimation of
covariance matrices.8

5.1 Motivation and Method

We will illustrate the method here in the 3-factor setting, using the formulations of (Chris-
tensen, 1998, Chapter 3). Call the factorx X , Y and Z.

As our example computation, take the model in which X and Y are conditionally indepen-
dent, given Z. Then the probability of an individual falling into cell ijk is

pijk = P (X = i, Y = j, Z = k) (8)

= P (Z = k) P (X = i, Y = j | Z = k) (9)

= P (Z = k) P (X = i | Z = k) P (Y = j | Z = k) (10)

=
pi.k p.jk
p..k

(11)

This is a perfect opportunity for AC. For instance, we estimate pi.k as

p̂i.k =
1

Ni.k

n∑
m=1

1Xm=i,Zm=k (12)

where Ni.k is the number of data points in which X and Z are intact.

5.2 Implementation

This is all implemented in the function loglinac() in regtools.9 It works as follows.

First, AC is used to estimate all the model quantities, e.g. pi.k above. These are all multipled
by the total number of observations, yielding estimated expected cell frequencies. The latter

8By contrast, there is an extenisve litetature on MI methods for generalized linear models, including the
log-linear model. See (Ibrahim et al, 2005). Note by the way that Amelia is not appropriate for this setting,
due to its assumptuon of multivariate normality for the data.

9The log-linear model portion of regtools is just a prototype. At present, it handles only the 3-factor case,
and does only point estimation.



NA rate CC var. AC var.
0.01 4.395758e-05 2.781903e-05
0.05 0.0002362016 0.0001513719
0.10 0.0005367046 0.000360953

Table 10: UCB Admissions Data, Log-Linear Model

are then treated as “observed cell counts,” and fed into R’s loglin() function. These produce
the correct log-linear model coefficients.10

Though loglin() takes its input data in the form of an R table, in order to use AC we need a
data frame. The function tbltofakedf() creates a dataframe from a table for this purpose.

5.3 Empirical Evaluation

Here we used the UCBAdmissions table built-in to R. Continuing with the above example,
the model used was that in which the factors Admitted and Gender were conditionally
independent, given Department. The call is

uca <- tbltofakedf(UCBAdmissions)
loglinac(uca,list(c(1,3),c(2,3)))

As seen in Table 10, once again AC can yield substantial improvements.

6. Back to the MI Issue

As mentioned, there has been concern about AC in two senses: positive definiteness of
covariance matrices, and stringency of assumptions. Here we revisit both of these issues.

6.1 Positive Definite Covariance Matrices

One of the concerns that have arisen for the AC method in the past was possible lack of
positive definiteness of U ′U in (3). Yet Marsh found that this is rarely a problem (Marsh,
1998).11

Furthermore, the problem can occur in Amelia as well. This is because the procedure re-
places NA values in the bootstrapped versions of the original data by 0s. Indeed, the Amelia
code does include checks for this, halting the procedure upon detection of a problem.

10Of course, numbers such as the Pearson’s test that come out of this are not valid.
11As noted earlier, though, we did occasionally encounter negative eigenvalues in the simulated data in our

PCA studdy.



6.2 Assumptions

The issue of assumptions is more delicate, especially since, as is well recognized, the as-
sumptions involved with CC, AC and MI are difficult to check using the data.

Let Y denote a variable of interest, and letM be 1 or 0, depending on whether Y is missing.
Also, let D denote the vector of the other varialbes, which for simplicity we assume are
never missing. For the same reason, we also assume the variables are discrete-valued rather
than continuous.

CC and AC assume a Missing Completely at Random (MCAR) setting, which is usually
defined as something like12

P (M = 1|Y = s,D = t) = P (M = 1) (13)

where t is in general vector-valued. ThusM is independent of (Y,D). Turning this around,
we have

P (Y = s,D = t|M = i) = P (Y = s,D = t) (14)

for i = 0, 1. In other words, the distribution of (Y,D) is the same, whether Y is missing or
not, and thus inference made from the cases in which Y is observed generalize properly to
the full distribution of (Y,D).

MI assumes somewhat less, a condition known as Missing at Random (MAR). In our con-
text here, this is defined as

P (M = 1|Y = s,D = t) = P (M = 1|D = t) (15)

A typical example of the idea behind MAR is given in (Cohen and Cohen, 1983), concern-
ing a study of student motivation in a classroom survey. We might surmise that students
who have low levels of motivation are less likely to answer the survey question, Y , con-
cerning their level of motivation. But other factors D, such as socioeconomic status may
explain Y so well that (15) holds. The problem of course is that the predictive ability of D
may not be strong enough to justify (15). Moreover, in practice some of the values in the
vector D will also be missing, further weakening the MAR assumption.

Also, in the case of Amelia in particular, recall that in its EM computations, it replaces NA
values by 0s, possibly producing further bias.

The literature on missing data often includes casual comments to the effect that use of CC
in settings in which MCAR fails, but in which MAR holds, results in bias. Actually, this is
not necessarily the case, as will be discussed in the next two sections. Though some careful
treatments exist for the regression case, such as (Glynn and Laird, 1986), the analysis here
will go into greater generality, i.e. will not be limited to expected values, and in any case is
simple enough to include here.

12There is some variation in the literature on the details of the assumptions discussed here.



6.2.1 Estimation of Conditional Quantities Under MAR

Let’s see what happens under MAR in the case of regression analyses and other types of
association analysis.

Rewrite (15) as

P (Y = s|D = t,M = i)) =
P (Y = s,D = t,M = i)

P (D = t,M = i)

=
P (M = i|Y = s,D = t) P (Y = s,D = t)

P (D = t,M = i)

=
P (M = i|Y = s,D = t) P (Y = s|D = t) P (D = t)

P (D = t,M = i)

=
P (M = i|D = t) P (Y = s|D = t) P (D = t)

P (D = t,M = i)
(16)

= P (Y = s|D = t) (17)

where the next-to-last equality comes from (15).

In other words, if we are interested in the relation between Y and D, say by performing
regression analysis of Y on D — i.e. modeling the conditional distribution of Y given D
— our being deprived of the missing values of Y will not bias our regression analysis.

In fact, (17) has the rather ironic implication:

The MAR assumption is meant to apply to situations in which CC and AC
ostensibly cannot be used. Yet, if our goal is regression analysis or other types
of measures of association, CC and AC can indeed be used in MAR settings
after all.

6.2.2 Estimation of Unconditional Quantities Under MAR

On the other hand,

P (Y = s|M = 0) =
P (Y = s,M = 0)

P (M = 0)
(18)

=
P (M = 0|Y = s)

P (M = 0)
· P (Y = s) (19)

In other words, our estimate of P (Y = s), an unconditional quantity, may be biased upward
or downward. Take the student motivation example, for instance. For values of s coding
high motivation, we surmise in (19),

P (M = 0|Y = s)

P (M = 0)
> 1 (20)

thus causing an upward bias in the intact data.



7. Conclusions and Future Work

This work has found the following:

• Studies on various real data sets were presented here that showed that (under the
MCAR assumption), AC can greatly outperform CC.

• Although MI is thought of as a method to use when AC’s MCAR assumption does
not hold, under MI’s MAR assumption, AC still produces statistically correct results
for regression analyses and other models of association.

• Situations in which MAR holds but MCAR does not may be rather rare.

• MI computation is extremely slow, and does not seem to be any better statistically
than AC.

• Thus, for regression/association analysis, AC may actually be a competitive alterna-
tive to MI.

Clearly, though, these conclusions are tentative. Much more investigation needs to be done
on MI, including its statistical efficiency relative to AC.
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