
A Quick, Painless Introduction to the Java Programming Language

Norman Matloff
University of California, Davis

c©2001-2003, N. Matloff

March 17, 2004

Contents

1 Why All This Hype over Java? 3

2 Learning Java 3

3 A 1-Minute Introductory Example 4

4 A 30-Minute Example 5

4.1 Example Program . 5

4.2 Source Code . 5

4.3 Creating Objects . 9

4.4 Class/Instance, Public/Private . 9

4.5 “Pointers” in Java . 11

4.6 Setting Up Arrays . 12

4.7 Java’s “this” Construct . 12

5 Exception Handling in Java 13

6 I/O in Java 15

7 Strings in Java 16

8 Debugging Java Programs 17

9 Classpaths and Packages 18

1

9.1 Classpaths . 18

9.2 Packages . 18

9.3 Access Control Revisited . 20

10 Jar Files 20

11 Inheritance 20

12 Advanced Stuff 21

12.1 What Else Is There to Java? . 21

12.2 How to Learn The Advanced Stuff . 22

A How to Obtain and Install Java 22

A.1 One Approach: Download From Javasoft . 22

A.2 Another Approach: Use GCC . 22

2

1 Why All This Hype over Java?

For the past few years, the press has been full of sensational stories about Java. Like most coverage of
computer-related coverage in the press, the paeans to the wonders of Java have been greatly exaggerated.

One of the aspects of the florid coverage of Java in the press is that it is intended as a vehicle forobject-
oriented programming(OOP), said to be “an abrupt change in the paradigms of programming,” a completely
different philosophy. Don’t believe it. True, in OOP one arranges one’s code and data structures a bit
differently, and true, OOP has the potential for producing somewhat safer, clearer, and more modular code.
But programming is programming is programming. One uses the same basic thought processes in any
kind of programming. Those of us who’ve programmed for many years have seen many so-called “abrupt
paradigm shifts” come and go, each one heralded with great fanfare, but all of them turning out to be merely
“more of the same.”1

Nevertheless, Java is indeed a rather nice language, for a number of reasons, such as:

• It is arguably cleaner and more OOP-ish (if you like that kind of thing) than C++.

• It is mostly platform-independent, so that a program can usually be written to work in the same manner
not matter whether it is running under UNIX, Windows, on a Macintosh, etc.2

• It has niceexception-handling(i.e. error-handling) facilities.

• It has built-in libraries for GUI development, Web transactions, multithreaded programming, network
access and so on.

2 Learning Java

Given these nice features, and given the fact that reportedly Java has overtaken C++ as the language in
highest demand by employers, this is a language worth learning.

This is reminiscent of a joke which used to be told by the father of Dr. Dick Walters, professor emeritus at
UCD. Prof. Walters’ father worked in many European countries, and thus found it necessary to speak many
languages. When asked about that, he said, “Well, the first 3 or 4 languages are the hardest.”

For learning a programming language, that threshold comes much earlier. Learning a new programming
language is easy for anyone who already has reasonable competence in just one language.

But instead of taking a course in Java — a terribly ineffective way to learn any programming language
except one’s first — or wading aimlessly through a 700-page book on Java, it is easier to read the document
you are now holding.

The purpose of this document is to give you a quick but solid foundationin Java. After reading this docu-
ment carefully, you should be ready to write Java programs, and will have the background needed to learn
whatever advanced Java features you need from books in the future, if and when the need arises.

1OOP itself is nothing new either. Java was preceded in the OOP world by for example Smalltalk and C++ in the 1980s, and
Simula ’way back in the 1960s.

2However, contrary to the “write once, run anywhere” claim, Java is not 100% platform-independent.

3

We assume here that you have some experience with the C language. If you know C++, all the better, but it
is not necessary.

3 A 1-Minute Introductory Example

Here is the obligatory “Hello World!” program:

public class Hi { public static void main(String[] Args) {
System.out.println("hi");

}
}

The basic module unit in Java, and in OOP generally, is theclass. A class is similar to a Cstruct, except that
the latter consists only of data fields, while the former has both data fields and functions, calledmethods. In
our example here we have just one class, named Hi, consisting of one method, main(), and no data.

The method main() is of course analogous to main() in C programs. Notice that main() has the familiar
command-line arguments, which we have named Args; as in C, it is an array of arrays of characters, i.e.
basically an array of strings.3

The constructpublic makes these items visible from outside the class. (We will discussstatic later.)

System.out is one of the built-in classes in Java. The ‘.’ is used to indicate a member of a class, just as is
the case for fields within Cstructs, so System.out refers to the member named “out” which is a member
of the System class. In turn, “out” consists of both data — actually, a stream of characters going to the
user’s screen — and a member method, println(). So, we access println() as System.out.println(). As you’ve
probably already guessed, this method works similarly to C’s printf(), though without the formatting (e.g.
without %d for printingints).

To execute the class Hi, we would first use a text editor to put the above source code into a file named
Hi.java. (There must be a match between the name of the class containing main() and the prefix in the file
name.) We then run the Java compiler, typing

javac Hi.java

from the command line. If there are no compilation errors, a file named Hi.class will be produced. To
execute the program, we then type

java Hi

Had there been command-line arguments for the program, to go in the variables Args above, they would
have been typed right after “Hi” on the command line.

3Though standalone Java programs have main() functions as their entry points, Javaapplets, which work with Web pages, do
not.

4

The reference to “Hi” here means the class named “Hi”. Thejava program will look for that class in the file
whose name’s prefix is the same as the class name, and whose suffix is “class”, i.e. Hi.class.

Keep in mind that Java is aninterpretedlanguage. That means that the compiler,javac, does not translate
your Java source code to the machine language of some real machine. Instead, it produces machine code,
calledJava byte code, for an imaginary machine called the Java Virtual Machine (JVM).4 The program
java which we run on the command line emulates the operation of the JVM, thus allowing us to run our
application program. So, if for instance we are doing our work on a PC, the program which is really running
on that PC isjava, not our application program.

4 A 30-Minute Example

4.1 Example Program

This program will read in some integers from the command line, storing them in a linked list which it
maintains in sorted order. The final list will be printed to the screen. For example, if we type

java Intro 12 5 8

then the output will be

final sorted list:
5
8
12

4.2 Source Code

As presented here, the following would be in files named Intro.java and NumNode.java:

// ******************* start of file Intro.java ******************

// the overall class name must match the file prefix; i.e. the name of
// this file must be Intro.java

// usage: java Intro nums

// introductory program; reads integers from the command line,
// storing them in a linear linked list, maintaining ascending order,
// and then prints out the final list to the screen

4The JVM is not always imaginary. Chips which actually implement the JVM have been built.

5

public class Intro

{ // standalone Java programs must have a main() function, which is the
// point where execution begins

public static void main(String[] Args) {

// note that locals have no public/private/... prefix; also, we
// are using the fact that array objects, in this case Args, have
// "length" variables built in
int NumElements = Args.length;

for (int I = 1; I <= NumElements; I++) {
int Num;
// need to do C’s "atoi()"; use parseInt(), a class method of
// the Integer class; inverse operation is toString()
Num = Integer.parseInt(Args[I-1]);
// create a new node
NumNode NN = new NumNode(Num);
NN.Insert();

}

System.out.println("final sorted list:");
NumNode.PrintList();

}
}

// ****************** start of file NumNode.java ******************

// we have the class NumNode in the file NumNode.java

public class NumNode

{ // by making Nodes variable static, it will be common to all
// instances of the class
private static NumNode Nodes = null;

// the rest of these variables are "local" to each instance of the
// class

// valued stored in this node
int Value;

// "pointer" to next item in list
NumNode Next;

6

// constructor
public NumNode(int V) {

Value = V;
Next = null;

}

// make the following methods visible externally, e.g. to main(), via
// public; the ones which are class methods rather than instance
// methods also are static

public static NumNode Head() {
return Nodes;

}

public void Insert() {
if (Nodes == null) {

Nodes = this;
return;

}
if (Value < Nodes.Value) {

Next = Nodes;
Nodes = this;
return;

}
else if (Nodes.Next == null) {

Nodes.Next = this;
return;

}
for (NumNode N = Nodes; N.Next != null; N = N.Next) {

if (Value < N.Next.Value) {
Next = N.Next;
N.Next = this;
return;

}
else if (N.Next.Next == null) {

N.Next.Next = this;
return;

}
}

}

public static void PrintList() {
if (Nodes == null) return;
for (NumNode N = Nodes; N != null; N = N.Next)

System.out.println(N.Value);
}

7

}

Note that our “main” class — in the sense that it contains main() — is Intro. We also have another class,
NumNode, which is used by Intro. The Intro class has one method, main(), and no variables. NumNode
has several methods and several variables. We have chosen to put the classes in different files (though in the
same directory), but we could have put them in the same file.5

Let’s have a look at main(), which by the way has as its full name Intro.main. First there is a local variable
declared, NumElements. This is the same as in C, but note the item Args.length. This is typical OOP style —
everything is anobject, i.e. a class or instance of a class. Args, recall, is an array. In Java, arrays are objects,
and one of the fields in an array object is .length, the number of elements in the array. In our example above,

java Intro 12 5 8

Args.length would be 3.

Unlike C, in Java the first command-line argument is numbered 0, so here Args[0] = “12”.6

By the way, speaking of the fact that Java is strongly typed, note that floating-point numerical constants are
considered to be of typedouble, notfloat. For example, you may innocently try code like

float X,Y;
...
X = 1.5 * Y;

and find that the compiler complains. So, you need to convert 1.5 tofloat first, using a cast, i.e.

X = (float) 1.5 * Y;

Next we have afor loop. Local variables can be declared in the midst of code; theint variables I and Num
here exist only within this loop.7

We need to use something like C’s atoi() library function to convert the command-line arguments from
strings to integers. The parseInt() method in the Integer class (a fancier version ofint) does this.

5If so, we would have needed to delete the wordpublic in the declaration of the NumNode class, and place NumNode in the
latter portion of the file. Java only allows one public class per file, and that one must come first.

6Recall that it is “12”, not 12. Args is an array of strings, as in C.
7You may wish to use this sparingly, though. Some debugging tools will not display the values of such variables.

8

4.3 Creating Objects

Now consider the line

NumNode NN = new NumNode(Num);

If you know C++, thenewconstruct is similar in Java. If you don’t know C++, the way to understand this is
that it is similar to calling malloc() in C. For example, in C

int *z;
...
z = malloc(sizeof(int));

would create a newint in memory, and point z to it. Here in this loop in Intro, we are creating a newinstance
of the class NumNode. This new instance of NumNode will be named NN. We say that NN is anobjectof
class NumNode.

You might wonder why “NumNode” appears on both sides of this assignment statement. On the left side, we
are declaring NN to be of type NumNode. On the right side, we are recognizing that NN will be produced by
calling theconstructorfor the NumNode class, with the parameter Num. The constructor of a class has the
same name as the class. As we will see later, here the constructor will be initializing one of the fields in this
instance of NumNode to Num. For the beginner, this statement might be clearer if split into two statements:

NumNode NN; // declares NN to be a "pointer" to objects of type NumNode
NN = new NumNode(Num); // creates such an object and points NN to it

4.4 Class/Instance, Public/Private

Now compare the next line,

NN.Insert();

with the one a couple of lines later:

NumNode.PrintList();

Both of them execute methods in the NumNode class. However, Insert() is aninstance method, while
PrintList() is aclass method. An instance method acts on a specific instance of the class, in this case NN,
while a class method applies to the class in general. Class methods are designated as such by declaring them

9

to bestatic, as seen in the declaration of Insert() later in the code. When calling a class method, the name
of the class is used as a prefix, such as with NumNode.PrintList() in our example here. If on the other hand
we call an instance method, we use the name of the particular instance, in this case writing NN.Insert().

Again, an instance method is applied to the particular instance. With NN.Insert(), the Insert() method is
applied specifically to NN, i.e. NN is what will be inserted into our linked list. In effect, when calling an
instance method, the instance (NN here) becomes an implicit parameter to the call, in addition to any explicit
arguments the method might have.

A class method, on the other hand, applies to the class as a whole, not an instance of the class, and indeed
we do not even have to have any instances around to be able to call it. This was the case when we called
Integer.parseInt(), without creating any instances of Integer. By contrast, for the instance method Insert()
here, we did need an instance of NumNode to apply it to.

In fact, since we never do create an instance of class Intro, i.e. we don’t have any statement which performs
“new Intro()”, that means that any methods we might declare in Intro would have to be static.

Now, let’s discuss some related details in the NumNode class itself. Note first that the declaration of
NumNode,

public class NumNode

has anaccess modifierpublic, recognizing the fact that we are accessing it outside the class. (We are
accessing it from Intro.)

We have not specified access modifiers for our variables Value and Next. For reasons which will be ex-
plained later, these two variables are still accessible from Intro. For example, we could within Intro access
NN.Value (say, printing out NN.Value), even though Value is in NumNode. But if we do not want Value
to be accessible from within Intro — in the spirit of modularity, “data hiding” and other tenets of modern
software engineering — we would declare itprivate:

private int Value;

Beginners should not worry aboutpublic/private differences. Just make everythingpublic or unspecified.
(Switch from unspecified topublic if the compiler complains.) Later, after you become more proficient, you
can start usingprivate for the sake of the encapsulation tenets of good software engineering.

On the other hand, the qualifierstatic is something even beginners must know, because it is used to specify
whether a method/variable is to be a class method/variable or an instance method/variable. We statestatic
in the former case but omit it in the latter.

We have already explained the difference between class and instance methods. The distinction between
class and instance variables, while similar, has important differences. To learn about them, let’s look at the
three data members in the class NumNode: Nodes, Value and Next. Again, all three of them act like fields
in a C struct, but there is an enormous difference between Nodes on the one hand, and Value and Next on
the other.

The best way to understand this difference is to first get a feel for what roles these three variables play in our
program. Remember, the program builds up a linked list. Each node in that list will contain some number

10

(which had originally been obtained from the command line array Args), stored in the variable Value. Each
node in the list (except the last node) will be linked to the next node, and the variable Next serves in this
role. The variable Nodes will in essence serve as a pointer to the head of the linked list.

The key is to note from this that we will have many (Value, Next) pairs — one for each node in the list
— but only one Nodes variable. This is exactly where the idea of class variables versus instance variables
comes in. Each instance of the class will have different data in its instance variables, but there is only one
copy of each class variable, no matter how many instances of the class exist. You can see from this that in
our application here, the appropriate setup is to make Value and Next instance variables but make Nodes a
class variable. Again, this is accomplished by using the qualifierstatic in the declaration of Nodes but not
doing so for Value and Next.

Also, look at the initialization of Nodes:

private static NumNode Nodes = null;

The initialization of Nodes will occur the first time the class is loaded. It is NOT the case that Nodes will be
re-initialized to null each time a new instance of NumNodes is created, which would be a disaster, making
the program operation completely incorrect — the list would alternate, first empty then having one node,
then empty again, then having one node, then empty, etc. Making Nodes a class variable here ensures correct
operation of the program.

Among other things, this means that main() needs to be declaredstatic, as we did. The reason for this is that
when we execute Intro, we are not creating any instances of it, so that main() must be a class method. If we
had any other methods in Intro, we would have to make themstatic too.

4.5 “Pointers” in Java

By the way, there are no explicit pointers in Java, as can be seen for example in the declaration of Next:

NumNode Next;

In C or C++, this probably would have been

NumNode *Next;

The creators of Java designed it this way, out of a concern that many program bugs in C/C++ are due to
pointer errors. They feel that the Java way is clearer and less error-prone.

Nevertheless, it’s important to understand that a variable declared to be of class type does indeed serve as a
pointer. Suppose we have a class, A, and a declaration

A X;

11

X is basically declared as a pointer to A. As of yet, it points to nothing. That will change when we execute
something like

X = new A();

which allocates space for an instance of the A class and points X to it (similar to calling malloc() in C), or
when we execute something like

X = Y;

assuming Y already points to an instance of the class A.

4.6 Setting Up Arrays

Be careful when setting up arrays of objects. For example, suppose we have a class DEF. Then:

DEF ABC[]; // declare ABC to be an array of DEFs
...
ABC = new DEF[10]; // now the JVM knows the array length will be 10
for (int J = 0; J < 10; J++) // create the objects

ABC[J] = new DEF();

If we did not have that last loop, our first reference to an element of ABC, say

ABC[0].X = 12;

(assuming DEF has a integer member X), would result in a null pointer runtime error, since ABC[0] would
be pointing to nothing.

Arrays of scalars are simpler to declare and use, e.g.

int[] UVW = new int[10];
...
UVW[5] = 88;

4.7 Java’s “this” Construct

If you have not used C++ before, Java’sthis construct, seen here for example in the statement

12

Nodes = this;

needs explanation. The keywordthis refers to the instance on which the given method was called. The
above line, which was part of the Insert() operation in our application here, handling the case in which the
list currently happens to be empty. We want Nodes, the head of the list, which had been null, to now consist
of (or “point to”) the instance of NumNode which we are now working on (NN in Intro).

Sincethis means the current instance of the class, we could write lines like

if (Value < Nodes.Value) {

as

if (this.Value < Nodes.Value) {

if we wanted to. Of course, it is less typing for us to not do it this way, but it will help cement your
understanding of thethis construct if you take a minute now to make sure you see why the alternative
writing is equivalent.

5 Exception Handling in Java

Suppose I type a mistake in my input to Intro, say as

java Intro 1w 5 8

I accidentally typed “1w” instead of “12”. When Integer.parseInt() is called on this string from Intro, that
method will object that it is not a number, and will give me an error message something like this:

java.lang.NumberFormatException: 1w
at java.lang.Integer.parseInt(Integer.java, Compiled Code)
at java.lang.Integer.parseInt(Integer.java, Compiled Code)
at Intro.main(Intro.java, Compiled Code)

Java methods allow athrows construct, which tells the JVM what to do if something goes wrong in this
function. The methods in the Java class libraries make use of this construct, and you can do so with the
methods you write too. Each use ofthrows is associated with one or moreexceptiontypes, i.e. error codes,
which once again are class objects.

13

The error message above tells us that the Integer method parseInt(), called from within Intro.main, is the one
which encountered the error, and that the error was caused by the string “1w”. The exception was of type
NumberFormatException. What is that, really?

Documentation similar to UNIX “man pages” for the Java class libraries is available on the Web athttp:
//java.sun.com/j2se/1.3/docs/api/index.html . If we check the Integer class there, we
will see documentation on parseInt(). It tells us that parseInt() indeed “throws NumberFormatException.”
Moreover, the documentation includes a Web link to the details on that exception type. If we hadn’t already
realized that our problem was the w in “1w”, we would see it now.

The response of the Java interpreter to the discovery of this error is to kill the program. However, Java gives
us the chance to avoid this drastic remedy. We define a new method called ConvertArg:

We replace our old call to Integer.parseInt() in Intro to

Num = ConvertArg(Args[I-1]);

and define the method (in Intro.java) as follows:

static int ConvertArg(String Arg)

{ DataInputStream In = new DataInputStream(System.in);
InputStreamReader Ins = new InputStreamReader(In);
BufferedReader Inb = new BufferedReader(Ins);
while (true) {

try {
int N = Integer.parseInt(Arg);
return N;

}
catch (NumberFormatException NFE) {

System.out.println("bad command-line argument--" + NFE);
System.out.println("enter number again, or type q for quit");
try {

Arg = Inb.readLine();
}
catch (IOException IOE) {

System.out.println("failed to read correction--" + IOE);
System.exit(1);

}
if (Arg.equals("q"))

System.exit(1);
}

}
}

Let’s ignore the first three lines for the moment, and go straight to thewhile loop. The key point is that
we surround our call to Integer.parseInt() in atry block, which is paired with acatch block. What we are

14

specifying is that the JVM try to execute Integer.parseInt(), but if an NumberFormatException occurs, the
catchblock will be executed. As you can see, our code there will give the user a chance to rectify the error,
inputting the integer again (or quitting) via the keyboard.

Note that if there is a NumberFormatException, we have assigned it to the variable we’ve named NFE. NFE
will then contain the error message the system itself would have given us, and we are printing out both that
message and our own elaboration. By the way, in Java string concatenation is done with the ‘+’ operator.

We are using BufferedReader.readLine() to read in the user’s response. Yet our keyboard input stream class
is System.in, not BufferedReader. Thus we needed to convert from one to the other, which we accomplished
via the intermediate conversion to InputStreamReader; see the first three lines before thewhile loop which
we skipped over earlier. This seems a bit cumbersome, but unfortunately Java has no direct analog to C’s
very flexible scanf().

Note too that BufferedReader.readLine() throws an IOException, so we need to catch it too.

If we are too lazy to catch an exception (not advisable), we can do something like in this example:

public static void main (String Arg[]) throws NumberFormatException,
IOException

Here we are saying to the Java compiler, “Yes, yes, I know that there are points in my code within this method
main() at which I should provide for exceptions of the type NumberFormatException and IOException, but
I am too lazy to do so.” If we don’t even do this much, the compiler will complain.

If we set up this ConvertArg function, we will need a line

import java.io.*;

at the beginning of the file, in order to access the various I/O classes used here. In many programs you will
need to useimport statements. These are like C’s#include statements, but a little more convenient, thanks
to a combination of Java’s OOP and interpreted natures, which allow both code and data in onepackage.
Compare this to the C/C++ setting, in which the#includes are used to get the data, while the corresponding
functions are linked in separately.

6 I/O in Java

Java has a rather intimidatingly rich set of I/O mechanisms. However, it is much more manageable if you
keep in mind that there are two main categories:

• Subclasses of InputStream and OutputStream. These deal with I/O on a byte-by-byte basis, and are
useable in all file and networks contexts, whether text or "binary" data.

• Subclasses of Readers and Writers. These are only for the case of text files. They provide more
convenience, e.g. methods which will read an entire line of text, rather than byte-by-byte.

15

You may wish to avoid Readers and Writers during your early stages of learning Java, though really they are
not that complex.

The basic entities in Java I/O are known asstreams. If you read from a file, for example, the sequence of
bytes from the file is a stream.

One stream may bechainedto another. This means that some operation has been performed on the first
stream, with the result being the second stream. You may find for example that you wish to take advantage
of methods in a stream class C but the stream you have, say MyStream, is of class A. You may need to chain
A to some class B and then chain B to C. The chaining is done via constructors of the classes involved, e.g.

B My2ndStream = new B(MyStream);
C My3rdStream = new C(My2ndStream);

You would then be able to apply the mdthods of C to My3rdStream, a converted version of your original
stream MyStream.

Both the InputStream/OutputStream and Readers/Writers categories of I/O classes include classes forbuffered
I/O. Say you are sending data from your machine to another machine on the Internet. The application pro-
gram you’ve written may produce data byte-by-byte, but you would not want it to go through the network
that way, as there is heavy overhead each time data is sent. Buffered I/O saves up data so that it would be
sent in groups of bytes, even though it appears that your program is sending the data a single byte at a time.

As a beginner you may wish to avoid buffering, especially since your operating system will probably do
some buffering for you anyway. But as you gain expertise, truely efficient I/O will require that you use
buffering.

7 Strings in Java

In C or C++, astringsimply means an array ofchar, but in Java we have the String class. Not only does this
mean that functions corresponding to C’s strlen(), strcat() etc. are now methods built in to the String class,
but also the storage of the string itself is different: Each character now takes up two bytes, instead of one, in
order to accommodate non-ASCII characters, i.e. foreign languages. Another variable stored in this class is
the length of the string.

So if for example we have:

String ABC;

ABC = "xyz";

then the storage is 10 bytes rather than just three: Six bytes for the three characters and four bytes for the
length.

One often must convert between an instance of String and byte[]. For example, file operations cannot use
the former (since any file is just a sequence of bytes), while methods such as System.out.println() cannot

16

really use the latter. To convert from String to byte[], use String’s getBytes() method, while the opposite
conversion can be done by simply using String’s constructor.

For example:

String ABC;
byte[] B;

ABC = "xyz";
B = ABC.getBytes();

B[0] = ’q’;
S = new String(B); // S is now "qyz"

8 Debugging Java Programs

Hopefully you are already a pro at debugging C or C++ programs. Note that being a pro means that you
do not use printf() calls as your debugging tool! Use a good debugging tool; it will save you lots of time!
If you are a student, you may find my debugging tutorial athttp://heather.cs.ucdavis.edu/
~matloff/debug.html to be useful. It gives tips on debugging, and cites some good debugging tools
(mainly UNIX/C/C++ oriented).

Now, what is the situation for Java debuggers, or if you prefer, Integrated Development Environments (IDEs,
consisting of debuggers, editors, etc. packaged in an integrated manner) for Java? There are many IDEs
available for Java, but most are commercial, moderately to highly expensive, and take up huge amounts of
disk space.

Listed below are a few debuggers and IDEs. The criteria used for choosing them are that they are

• free

• small

• easy to use for small- to moderate-sized projects

Here is the list, ordered from best to worst in my view:

• JSwat:

This is a very nice debugging tool, which you can use either with your favorite editor or with the JIPE
Java IDE. See my introduction athttp://heather.cs.ucdavis.edu/~matloff/jswat.
html .

• BlueJ:

BlueJ, available athttp://www.bluej.org , is nice and small. It’s minimalist in terms of its
editor (e.g. no autoindent). The variables and their values are automatically displayed (though, unfor-
tunately,static variables are not fully given), which is nice, and the system is very small and easy to

17

use. It also allows debugging individual classes on a standalone basis. You may wish to read my quick
introduction to BlueJ before you use it, athttp://heather.cs.ucdavis.edu/~matloff/
bluej.html .

• JDB:

This is the basic debugger which comes with Java distributions. It is quite primitive, but if you use it
through the DDD interface (Version 3.3 or newer) it is quite usable.

My introduction to JDB is athttp://heather.cs.ucdavis.edu/~matloff/jdb.html ,
and my introduction to DDD is athttp://heather.cs.ucdavis.edu/~matloff/ddd.
html .

• GDB:

Yes, you can use GDB! See Section A.2 below.

9 Classpaths and Packages

In this section, we discuss a bit more on usage of the Java compiler, interpreter and other aspects you need
to know about to get started with Java. However, we will not go into details here.

9.1 Classpaths

If you have written C/C++ programs on UNIX, you are probably aware of the -I and -L command-line
options to compilers, and non-UNIX systems have similar provisions. The -I option tells the compiler
directories in which to look for#includefiles, in addition to the standard directories it searches; -L does the
same kind of thing for linking in libraries.

In Java, the corresponding idea is that of a classpath. The default classpath consists of the Java system
directory (as defined by the location of the programsjavac andjava), and the current working directory, i.e.
the one from which the programjavac or java is run. The -classpath option for the Java compiler,javac, will
tell the compiler where else to look, and the same option for the Java interpreter,java, works at runtime.
(The latter also allows you to abbreviate the option as -cp.) There is also a CLASSPATH environment
variable which can be used.

If you need to add more than one directory to the classpath, concatenate the names, separated by colons. As
in Unix, a dot, ‘.’, means the current directory.

9.2 Packages

Java’spackageconcept can be used to group files together.8 It interacts with the classpath in the following
way, illustrated with our Intro/NumNode example above. Suppose Intro.java is in the directory /a/b/c/ti and
NumNode.java is in /x/y/tn. We would think of ti as a package within /a/b/c and tn as a package within /x/y.
At the top of Intro.java we would include a line

8In our example here, we will have only one source file per package, but typically a package will contain multiple files.

18

package ti;

and put a similar statement,

package tn;

in NumNode.java.

Also, in Intro.java, we would have a statement

import tn.NumNode;

To compile Intro.java, we would go to the ti directory and type

javac -classpath .:/x/y Intro.java

This tellsjavac that during its compilation of Intro.java, if it sees a reference to a class not defined in that file,
it should look in /x/y (and the current working directory). In this case, such a class is NumNode. Ourimport
statement toldjavac to find NumNode in the package tn, and the -classpath option in ourjavac command
line above tellsjavac to look for that package in /x/y. In other words,javac will look for NumNode in
/x/y/tn.

It may surprise you that we cannot now run Intro by typing

java Intro 12 5 8

from within the /a/b/c/ti directory. Thejava interpreter will respond with a “wrong name” error, admonish-
ing us that the program’s name is ti.Intro, not Intro!

Instead, to run Intro we would type (from any directory)

java -cp /a/b/c:/x/y ti.Intro 12 5 8

Or, since the default classpath includes the current directory, we could go to the directory /a/b/c and type

java ti.Intro 12 5 8

Packages can have hierarchical directory structures. In the example above, the directory /x/y/tn could have
a subdirectory uv and a class Z, in which case Z would be referred to as tn.uv.Z.

19

9.3 Access Control Revisited

Recall that in our Intro/NumNode example, we did not specify access modifiers for the variables Value and
Next. We will now return to this issue. There are two main points to consider:

• All methods and variables of unspecified access status in a class in a package are accessible from all
other classes within that package.

• All classes in a program which are not explicitly part of a package are treated by Java as belonging to
theunnamed package.

There are two implications of this:

• In the original version of Intro/NumNode, which does not have explicit packages, the classes Intro
and NumNode belong to the unnamed package. Thus Value and Next are accessible from Intro.

• In the newer version, with packages ti and tn, Value and Next are not accessible from Intro.

10 Jar Files

Often a number of Java files will be packed together in a manner similar to the UNIX .tar files. The Java
analog is .jar files, which are created and unpacked using the jar command and the xf option, similar to the
UNIX tar.

The programjava also has a -jar option, allowing you to execute a program without unpacking the .jar file.

In referencing a .jar file via a classpath, the .jar file name must be included in the path, not just the directory
containing it.

11 Inheritance

Since inheritance is one of the fundamental ideas in OOP, and since usage of Java’s specialized classes and
advanced features depends on understanding inheritance, we will at least introduce it here.

Consider again our linked-list example above. Actually, Java has a built-in library class named LinkedList.
This would have saved us the trouble of writing the code in our NumNode class, and would have given us
better protection, in the sense of encapsulation, data-hiding and so on.9

However, the LinkedList classs doesn’t have any method comparable to our NumNode.Insert(). This is not
surprising, since we assumed an ordered list, while LinkedList doesn’t. So, we could create a new class,
calling it for example OrderedLinkedList, which would be an extension of LinkedList. The beginning of the
declaration would look something like this:

public class OrderedLinkedList extends LinkedList {

9Programs using this class need toimport java.util.*.

20

The effect of theextendskeyword is that OrderedLinkedList would consist of all variables and methods in
LinkedList, plus whatever new variables and/or methods we declare here in OrderedLinkedList, in our case
for example an Insert() method. So, if we have an instance of OrderedLinkedList called, say, OLL, then we
could not only call Insert() via OLL.Insert(), but also access the LinkedList method addLast(), which adds a
node to the end of the list, via OLL.addLast().

By the way, the code for Insert() would be a little simpler than what we have above, because here we could
make use of the methods in LinkedList.

Methods in a class can be extended — we use the wordoverridden— too. Suppose that class B extends
class A, and that A includes a method Print(), which prints out all the variables in A. Suppose we wish
Print() to also print out a variable X which was added in B too. Then we could redeclare Print() in B, with
it looking something like this:

void Print()

{ super.Print();
System.out.println("B = "+X);

}

The construct “super” refers to the parent class, so super.Print() refers to the original version of Print() in A.
Thus the above code calls that original Print() to print out the original variables (which, remember, are in B)
and then we print out X too.

Note that only instance methods, not class methods, can be overridden.

12 Advanced Stuff

12.1 What Else Is There to Java?

In a word, “Plenty!” Here are just a few of the things we haven’t covered in this introduction:

• Advanced class types, such asabstract andinterface.

• The Java libraries for GUI programming, notably AWT and Swing, and their usage for Web appli-
cations. To many people, Javais a Web applications language, so our omission of these here is an
outrage. But again, we have tried to keep this short and simple.

• The Java libraries for multithreaded programming, networking, etc.

Even character strings are different in Java, with powerful capabilities. The char type uses 2-byte Unicode,
and is thus usable on non-English alphabets.

21

12.2 How to Learn The Advanced Stuff

First of all, there are of course books. As a rule, I suggest getting at least three or four books on any new
subject one is learning, in this case Java, if you can afford it.

Second, there are online “man pages” for built-in Java classes, athttp://java.sun.com/j2se/1.
3/docs/api/index.html .

Finally, there is the Web! For example, just plugging “Java UDP" into a Web search engine will give you
tutorials, examples and documentation on the use of the UDP network protocol in Java.

A How to Obtain and Install Java

A.1 One Approach: Download From Javasoft

For example, you may download Java from Javasoft, atwww.javasoft.com . You’ll want the Java De-
velopment Kit (JDK, also known as SDK), standard edition. The latest version is JDK 1.4, but I suggest 1.3
for now.

The download file will be an executable, with a file name suffix .bin (for Unix) or .exe (for Windows). Run
the file. In the Linux case, after running the file, an .rpm file will be produced; then run therpm command
with the -i option. You may need to add the location of Java executable files, say /usr/local/java/jdk1.3/, to
your path.

A.2 Another Approach: Use GCC

Another alternative, convenient if you have Linux on your machine, is to use GCC. Yes, the GCC compiler,
traditionally used for C and C++, can now compile Java. This has the additional advantage of producing
real native machine code for your machine! Normally one must sacrifice execution speed when writing in
Java, as it is usually interpreted. But with GCC, you compile to real machine code. Another advantage is
that this means you can use the GDB debugging tool, which is better than JDB.

To compile our example program in Section 4.2, do the following:

% gcj -c -g NumNode.java
% gcj -g --main=Intro Intro.java NumNode.o -o intro

There are like the usual GCC commands, except for-main=Intro , which states in which class a function
main() is to be the entry point for execution of the program.10 I ran this on my PC, so the executable file
intro really is Intel machine code. I run it the same way as I would for compiled code from C aor C++:

% intro 5 12 8
final sorted list:
5 8 12

10We did choose to compile the two source files one at a time. We found this necessary in order to ensure that GDB kept track of
the source files correctly.

22

To debug with GDB, I’d type:

% gdb intro

Then I’d give GDB a couple of commands before getting to the debugging task:

(gdb) handle SIGPWR nostop noprint
(gdb) handle SIGXCPU nostop noprint

These tell GDB not to stop or print announcements to the screen when UNIXsignalsare generated by
Java’s garbage collection operations. Such actions would be a nuisance, and may interfere with our ability
to single-step using GDB.

Now, I could, for instance, set a breakpoint at the beginning of theInsert() method, and then run:

(gdb) handle SIGPWR nostop noprint
(gdb) handle SIGXCPU nostop noprint

These tell GDB not to stop or print announcements to the screen when UNIXsignalsare generated by
Java’s garbage collection operations. Such actions would be a nuisance, and may interfere with our ability
to single-step using GDB.

Now, since the first apparent casualty of the bug was for the number 12 to disappear, let’s set a breakpoint
at the beginning of theInsert() method, and then run:

(gdb) b NumNode.java:17
Breakpoint 1 at 0x8048b3e: file NumNode.java, line 17.
(gdb) cond 1 this.Value==12
(gdb) r 5 12 8
Starting program: /debug/intro 5 12 8
[New Thread 16384 (LWP 11965)]
[New Thread 32769 (LWP 11988)]
[New Thread 16386 (LWP 11989)]
[Switching to Thread 16384 (LWP 11965)]
Breakpoint 1, NumNode.Insert() (this=@80b0c00) at NumNode.java:17
17 if (Nodes == null) {
Current language: auto; currently java

As can be seen here, threads are set up even for programs which are not explicitly threaded.

We might want to make sure we had set the condition properly:

(gdb) p Value
$1 = 12

We would then use GDB as usual, stepping through our code, printing out values of variables, and so on.

23

