New Computational Approaches to Large/Complex Mixed Effects Models

Norm Matloff University of California at Davis

New Computational Approaches to Large/Complex Mixed Effects Models

Norm Matloff
University of California at Davis

JSM 2016

August 1, 2016
http://heather.cs.ucdavis.edu/JSM2016.pdf
New Compu-
tational
Approaches to
Large/Com-
plex Mixed
Effects Models
Norm Matloff
University of
California at
Davis
JSM 2016

New Computational Approaches to Large/Complex Mixed Effects Models Norm Matloff University of California at Davis

JSM 2016

A Different Kind of Talk

```
- Methodology for algebraic computation, not mainly at the computer stage.
```


A Different Kind of Talk

- Methodology for algebraic computation, not mainly at the computer stage.
- Suggestions on what (new) to model, not how.
New Compu-
tational
Approaches to
Large/Com-
plex Mixed
Effects Models
Norm Matloff
University of
California at
Davis
JSM 2016

New Compu-
tational
Approaches to Large/Complex Mixed Effects Models Norm Matloff University of alifornia at Davis

JSM 2016

```
New Compu-
    tational
Approaches to
Large/Com-
plex Mixed
Effects Models
Norm Matloff
University of
California at
    Davis
- Given, a mixed-effects model.
```


Overview

- Given, a mixed-effects model.
- Change to a fully random model, treating fixed factors as samples from populations.

Overview

- Given, a mixed-effects model.
- Change to a fully random model, treating fixed factors as samples from populations.
- Note that get (essentially) the same variances, thus the same Method of Moments estimators.

Overview

- Given, a mixed-effects model.
- Change to a fully random model, treating fixed factors as samples from populations.
- Note that get (essentially) the same variances, thus the same Method of Moments estimators.
- Consider the former n_{i} to be random, i.e. N_{i}, with their own effects worth studying.

Overview

- Given, a mixed-effects model.
- Change to a fully random model, treating fixed factors as samples from populations.
- Note that get (essentially) the same variances, thus the same Method of Moments estimators.
- Consider the former n_{i} to be random, i.e. N_{i}, with their own effects worth studying. (In 2-factor models, N_{i} are row counts, and have column counts M_{i}. Etc.)
New Computational

Simple Example

- Classic 1-random-factor model,

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, n_{i} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\begin{array}{c}
\text { New Compu- } \\
\text { tational } \\
\text { Approaches to } \\
\text { Large/ Com- } \\
\text { plex Mixed }
\end{array} \\
\text { Effects Models }
\end{gather*} \quad \text { Simple Example }
$$

- Not considered "mixed," but it really is,

Simple Example

- Classic 1-random-factor model,

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, n_{i} \tag{1}
\end{equation*}
$$

- Not considered "mixed," but it really is, since the n_{i} are considered constants.

Simple Example

- Classic 1-random-factor model,

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, i=1, \ldots, r, j=1, \ldots, n_{i} \tag{1}
\end{equation*}
$$

- Not considered "mixed," but it really is, since the n_{i} are considered constants.
- But change n_{i} to N_{i}, assume latter are i.i.d.

Simple Example

- Classic 1-random-factor model,

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, n_{i} \tag{1}
\end{equation*}
$$

- Not considered "mixed," but it really is, since the n_{i} are considered constants.
- But change n_{i} to N_{i}, assume latter are i.i.d.
- Why do this?

Simple Example

- Classic 1-random-factor model,

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, n_{i} \tag{1}
\end{equation*}
$$

- Not considered "mixed," but it really is, since the n_{i} are considered constants.
- But change n_{i} to N_{i}, assume latter are i.i.d.
- Why do this?
- Makes quantities like $Y_{i .}=\sum_{j=1}^{N_{i}} Y_{i j} / N_{i}$ i.i.d., thus easy algebra.

Simple Example

- Classic 1-random-factor model,

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, i=1, \ldots, r, j=1, \ldots, n_{i} \tag{1}
\end{equation*}
$$

- Not considered "mixed," but it really is, since the n_{i} are considered constants.
- But change n_{i} to N_{i}, assume latter are i.i.d.
- Why do this?
- Makes quantities like $Y_{i .}=\sum_{j=1}^{N_{i}} Y_{i j} / N_{i}$ i.i.d., thus easy algebra.
- Enables statistical analysis of N !

```
New Compu-
    tational
Approaches to
    Large/Com-
    plex Mixed
Effects Models
Norm Matloff
University of
California at
            Davis

\section*{Investigating Effects of N}

\section*{Investigating Effects of N}

\section*{Maybe model as}
JSM 2016
\[
\begin{equation*}
Y_{i j}=c_{1}+c_{2} N_{i}+\alpha_{i}+\epsilon_{i j}, \quad i=1, r, j=1, \ldots, N_{i} \tag{2}
\end{equation*}
\]
\[
\begin{gather*}
\begin{array}{c}
\text { New Compu- } \\
\text { tational } \\
\text { Approaches to } \\
\text { Large/Com- } \\
\text { plex Mixed } \\
\text { Effects Models }
\end{array} \\
\begin{array}{c}
\text { Norm Matloff } \\
\begin{array}{c}
\text { University of } \\
\text { California at } \\
\text { Davis }
\end{array} \\
\text { JSM 2016 }
\end{array} \quad \text { Maybe model as } \\
\\
\quad Y_{i j}=c_{1}+c_{2} N_{i}+\alpha_{i}+\epsilon_{i j}, i=1, r, j=1, \ldots, N_{i}
\end{gather*}
\]
- E.g. recommender systems.

\section*{Investigating Effects of N}

Maybe model as
- E.g. recommender systems. Maybe frequent users ( \(N_{i}\) large) become jaded, thus give lower ratings?

\section*{Investigating Effects of N}

Maybe model as
- E.g. recommender systems. Maybe frequent users ( \(N_{i}\) large) become jaded, thus give lower ratings? (Yes.)

\section*{Investigating Effects of N}

Maybe model as
\[
\begin{equation*}
Y_{i j}=c_{1}+c_{2} N_{i}+\alpha_{i}+\epsilon_{i j}, \quad i=1, r, j=1, \ldots, N_{i} \tag{2}
\end{equation*}
\]
- E.g. recommender systems. Maybe frequent users ( \(N_{i}\) large) become jaded, thus give lower ratings? (Yes.)
- Research on family size \(\left(N_{i}\right)\), found to be positively related to child longevity (Ahmed et al, 2016).

\section*{Investigating Effects of N}

Maybe model as
\[
\begin{equation*}
Y_{i j}=c_{1}+c_{2} N_{i}+\alpha_{i}+\epsilon_{i j}, i=1, r, j=1, \ldots, N_{i} \tag{2}
\end{equation*}
\]
- E.g. recommender systems. Maybe frequent users ( \(N_{i}\) large) become jaded, thus give lower ratings? (Yes.)
- Research on family size \(\left(N_{i}\right)\), found to be positively related to child longevity (Ahmed et al, 2016).
- Research on negative correlation of family size to household income (Berger, 2011).
```

New Compu-
tational
Approaches to
Large/Com-
plex Mixed
Effects Models
Norm Matloff
University of
California at
Davis

Streamlining the Algebra

Consider again the simple model
JSM 2016

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, N_{i} \tag{3}
\end{equation*}
$$

New Computational Approaches to Large/Complex Mixed Effects Models Norm Matloff University of California at Davis

JSM 2016

Streamlining the Algebra

Consider again the simple model

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, N_{i} \tag{3}
\end{equation*}
$$

- We want to estimate σ_{α}^{2}, and possibly σ_{ϵ}^{2}.

Streamlining the Algebra

Consider again the simple model

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, N_{i} \tag{3}
\end{equation*}
$$

- We want to estimate σ_{α}^{2}, and possibly σ_{ϵ}^{2}.
- The Method of Moments approach is safer (no normality assumptions).

Streamlining the Algebra

Consider again the simple model

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, \quad i=1, \ldots, r, j=1, \ldots, N_{i} \tag{3}
\end{equation*}
$$

- We want to estimate σ_{α}^{2}, and possibly σ_{ϵ}^{2}.
- The Method of Moments approach is safer (no normality assumptions). But deriving the equations is messy.

Streamlining the Algebra

Consider again the simple model

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, i=1, \ldots, r, j=1, \ldots, N_{i} \tag{3}
\end{equation*}
$$

- We want to estimate σ_{α}^{2}, and possibly σ_{ϵ}^{2}.
- The Method of Moments approach is safer (no normality assumptions). But deriving the equations is messy.
- Once we go to two-factor models, add regressors etc., things get even messier, FAST.
New Computational Approaches to Large/Complex Mixed Effects Models Norm Matloff University of California at Davis
JSM 2016

General Strategy

```
- Assume everything - including fixed effects, covariates and even the \(N_{i}\) - is random, i.i.d.
```


General Strategy

- Assume everything - including fixed effects, covariates and even the N_{i} - is random, i.i.d.
- Where possible, use the "Pythagorean Theorem" for variance,

General Strategy

- Assume everything - including fixed effects, covariates and even the N_{i} - is random, i.i.d.
- Where possible, use the "Pythagorean Theorem" for variance,

$$
\begin{equation*}
\operatorname{Var}(W)=E[\operatorname{Var}(W \mid U)]+\operatorname{Var}[E(W \mid U)] \tag{4}
\end{equation*}
$$

```
New Compu-
    tational
Approaches to
    Large/Com-
    plex Mixed
Effects Models
Norm Matloff
University of
California at
            Davis

\section*{Back to the Simple Example}

Write \(Y=\mu+\alpha+\epsilon\) and, motivated by defining
\[
\begin{equation*}
S_{i}=\sum_{j=1}^{N_{i}} Y_{i j} \approx N \mu+N \alpha \tag{5}
\end{equation*}
\]
also write \(S=N \mu+N \alpha+\epsilon_{1}+\ldots+\epsilon_{N}\)

\section*{Back to the Simple Example}

Write \(Y=\mu+\alpha+\epsilon\) and, motivated by defining
\[
\begin{equation*}
S_{i}=\sum_{j=1}^{N_{i}} Y_{i j} \approx N \mu+N \alpha \tag{5}
\end{equation*}
\]
also write \(S=N \mu+N \alpha+\epsilon_{1}+\ldots+\epsilon_{N}\)

Then apply the "Pythagorean Theorem" with \(W=S, U=N\),

\section*{Back to the Simple Example}

Write \(Y=\mu+\alpha+\epsilon\) and, motivated by defining
\[
\begin{equation*}
S_{i}=\sum_{j=1}^{N_{i}} Y_{i j} \approx N \mu+N \alpha \tag{5}
\end{equation*}
\]
also write \(S=N \mu+N \alpha+\epsilon_{1}+\ldots+\epsilon_{N}\)

Then apply the "Pythagorean Theorem" with \(W=S, U=N\), using facts like
\[
\begin{equation*}
\operatorname{Var}(S \mid N)=N^{2} \operatorname{Var}(\alpha)+N \sigma_{\epsilon}^{2} \tag{6}
\end{equation*}
\]

\section*{Back to the Simple Example}

Write \(Y=\mu+\alpha+\epsilon\) and, motivated by defining
\[
\begin{equation*}
S_{i}=\sum_{j=1}^{N_{i}} Y_{i j} \approx N \mu+N \alpha \tag{5}
\end{equation*}
\]
also write \(S=N \mu+N \alpha+\epsilon_{1}+\ldots+\epsilon_{N}\)

Then apply the "Pythagorean Theorem" with \(W=S, U=N\), using facts like
\[
\begin{equation*}
\operatorname{Var}(S \mid N)=N^{2} \operatorname{Var}(\alpha)+N \sigma_{\epsilon}^{2} \tag{6}
\end{equation*}
\]

Finally, replace pop. quantities by sample analogs, and solve.
New Computational

\section*{Almost-Simple Example}

\section*{Almost-Simple Example}

\section*{Let's add a covariate:}
\[
\begin{gather*}
Y=\beta_{0}+X \beta_{1}+\alpha+\epsilon  \tag{8}\\
S=N\left(\beta_{0}+X \beta_{1}+\alpha\right)+\epsilon_{1}+\ldots+\epsilon_{N} \tag{9}
\end{gather*}
\]
and the matrix equation
\[
\begin{equation*}
\mathbb{Y}=\mathbb{B}_{0}+\mathbb{X} \beta_{1}+\mathbb{A}+\mathbb{G} \tag{10}
\end{equation*}
\]

This is already getting messy even in this form, but much better than the standard way, with all the messy sums.
New Compu-
tational
Approaches to
Large/Com-
plex Mixed
Effects Models
Norm Matloff
University of
California at
Davis
JSM 2016

New Computational Approaches to Large/Complex Mixed Effects Models alifornia at

\title{
What If the Fixed Effects Really Are Fixed?
}
- E.g. 5 different drugs for hypertension.
```


What If the Fixed Effects Really

 Are Fixed?Norm Matloff University of California at Davis

- E.g. 5 different drugs for hypertension.
- May not feel comfortable with these being sample from a "population" of drugs.

What If the Fixed Effects Really

Are Fixed?

Norm Matloff University of California at Davis

- E.g. 5 different drugs for hypertension.
- May not feel comfortable with these being sample from a "population" of drugs.
- But can treat each observation's drug as a sample from the 5 , making the N_{i} random.

What If the Fixed Effects Really

Are Fixed?

Norm Matloff

- E.g. 5 different drugs for hypertension.
- May not feel comfortable with these being sample from a "population" of drugs.
- But can treat each observation's drug as a sample from the 5 , making the N_{i} random.
- Can show that we still get the same answer!
- E.g. 5 different drugs for hypertension.
- May not feel comfortable with these being sample from a "population" of drugs.
- But can treat each observation's drug as a sample from the 5 , making the N_{i} random.
- Can show that we still get the same answer!
- Hence my charactizeration of the method as an algebraic computational device.
New Compu-
tational
Approaches to
Large/Com-
plex Mixed
Effects Models
Norm Matloff
University of
California at
Davis
JSM 2016

New Computational Approaches to Large/Complex Mixed Effects Models

University of alifornia at Davis

JSM 2016

(Computer) Computational

 BenefitsNorm Matloff University of California at

Davis

- Due to i.i.d. nature, lends to easy parallelization through "software alchemy" (Matloff, 2016 JSS and references therein).

New Computational Approaches to Large/Complex Mixed Effects Models
Norm Matloff University of California at Davis

(Computer) Computational

 Benefits- Due to i.i.d. nature, lends to easy parallelization through "software alchemy" (Matloff, 2016 JSS and references therein).
- MM is much faster and uses far less memory than MLE.

```
New Compu-
    tational
Approaches to
    Large/Com-
    plex Mixed
Effects Models
Norm Matloff
University of
California at
            Davis
```

New Compu-
tational
Approaches to
Large/Com-
plex Mixed
Effects Models
Norm Matloff
University of
California at
Davis
JSM 2016

```

\section*{Summary}
```

In mixed-effects models, treat the fixed effects, and even the N_{i}, as random.

```

\section*{Summary}
In mixed-effects models, treat the fixed effects, and even the \(N_{i}\), as random.
- Streamlines algebraic derivations.

\section*{Summary}

In mixed-effects models, treat the fixed effects, and even the \(N_{i}\), as random.
- Streamlines algebraic derivations.
- Allows investigation of the effects of the \(N_{i}\) themselves.

In mixed-effects models, treat the fixed effects, and even the
- Streamlines algebraic derivations.
- Allows investigation of the effects of the \(N_{i}\) themselves.
- Enables parallelization.

\section*{Summary}
\[
N_{i} \text {, as random. }
\]```

