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Why R?

• The lingua franca for the data science community.
(R-Python-Julia battle looming?)

• Statistically Correct: Written by statisticians, for
statisticians.

• 8,000 CRAN packages!

• Excellent graphics capabilities, including Shiny (easily
build your own interactive tool).
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R → GPU Link Pros and Cons

On the plus side:

• Speed: R is an interpreted language. (Nick Ulle and
Duncan Temple Lang working on LLVM compiler.)

• R is often used on large and/or complex data sets, thus
requiring large amounts of computation.

• Much of R computation involves matrices or other
operations well-suited to GPUs.

On the other hand:

• Big Data implies need for multiple kernel calls, and much
host/device traffic.

• Ditto for R’s many iterative algorithms.

• Many of the matrix ops are not embarrassingly parallel.

• Unpacking and repacking into R object structure.
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Disclaimers

• Talk is meant to be aimed at NVIDIA but otherwise
generic, not focusing on the latest/greatest model.

• Our running example, NMF, has the goal of illustrating
issues and methods concerning the R/GPU interface. It is
not claimed to produce the fastest possible computation.
(See talk by Wei Tan in this session.)
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Running Example: Nonnegative
Matrix Factorization (NMF)

• Have matrix A ≥ 0, rank r .

• Want to find matrices W ≥ 0 and H ≥ 0 of rank s � r
with

A ≈WH

• Columns of W form a “pseudo-basis” for columns of A:
A.j is approximately a linear combination of the columns
of W , with coordinates in H.j .
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Applications of NMF

• Image compression.

• Image classification. Each column of A is one image. To
classify new image, find coordinates u w.r.t. W , then find
nearest neighbor(s) of u in H.

• Text classification. Each column of A is one document,
with counts of words of interest. Similar to image
classification.
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Example of R Calling C/C++

• Compare R’s NMF package to E. Battenberg’s
NMF-CUDA, on a 3430 × 512 A:

• R, s = 10: 649.843 sec

• GPU, s = 30: 0.986 sec

• GPU solved a much bigger problem in much less time

• Even though the R pkg is in C++, not R.

• Solution: Call NMF-CUDA’s update div() from R. BUT
HOW?

• R’s Rcpp package makes interfacing R to C/C++ very
convenient and efficient.
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General R/GPU Tools

What’s out there now for R/GPU:

• gputools
(Buckner et al.) The oldest major package. Matrix
multiply; matrix of distances between rows; linear model
fit; QR decomposition; correlation matrix; hierarchical
clustering.

• HiPLAR
(Montana et al.) R wrapper for MAGMA and PLASMA.
Linear algebra routines, e.g. Cholesky.

• rpud
(Yau.) Similar to gputools, but has SVM.

• Rth
(Matloff.) R interfaces to some various algorithms coded
in Thrust. Matrix of distances between rows; histogram;
column sums; Kendall’s Tau; contingency table.
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Current Tools (cont’d.)

• gmatrix
(Morris.) Matrix multiply, matrix subsetting, Kronecker
product, row/col sums, Hamiltonian MCMC, Cholesky.

• RCUDA
(Baines and Temple Lang, currently not under active
development.) Enables calling GPU kernels directly from
R. (Kernels still written in CUDA.)

• rgpu
(Kempenaar, no longer under active development.)
“Compiles” simple expressions to GPU.

• various OpenCL interfaces
ROpenCL, gpuR. Similar to RCUDA, but via OpenCL
interface.
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Example: Linear Regression Via
gputools

> t e s t ← f unct ion (n , p ) {
x ← matr ix ( r u n i f ( n∗p ) , nrow=n)
r e g v a l s ← x %∗% rep ( 1 . 0 , p )
y ← r e g v a l s + 0 .2 ∗ r u n i f ( n )
xy ← cbind ( x , y )
p r i n t ( ” gpu t oo l s method” )
p r i n t ( system . time (gpuLm . f i t ( x , y ) ) )
p r i n t ( ” o r d i n a r y method” )
p r i n t ( system . time ( lm . f i t ( x , y ) ) )

}
> t e s t (100000 ,1500)
[ 1 ] ” gpu t oo l s method”

u s e r system e l a p s e d
6 .280 2 .878 17 .902

[ 1 ] ” o r d i n a r y method”
u s e r system e l a p s e d

142.282 0 .669 142.912
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Key Issue: Keeping Objects on the
Device

• Some packages, notably gputools, do not take arguments
on the device.

• So, cannot store intermediate results on the device, thus
requiring needless copying.

• Some packages remedy this, e.g. gmatrix.
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Example

l i b r a r y ( gpu t oo l s )
l i b r a r y ( gmat r i x )
n ← 5000
z ← matr ix ( r u n i f ( n ˆ2) , nrow=n)
# p l a i n R :

system . time ( z %∗% z %∗% z )
# u s e r sy s t em e l a p s e d

# 13 8 . 7 5 7 0 . 3 2 2 1 3 9 . 0 8 1

system . time ( gpuMatMult ( gpuMatMult ( z , z ) , z ) )
# u s e r sy s t em e l a p s e d

# 6 . 6 0 7 1 . 1 7 0 1 0 . 0 5 9

zm ← gmat r i x ( z , nrow=n , nco l=n) # zm2 , zm3 not shown

system . time ({gmm(zm , zm , zm2 ) ; gmm(zm , zm2 , zm3 )} )
# u s e r sy s t em e l a p s e d

# 6 . 2 5 8 1 . 0 3 1 7 . 2 8 5
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Rth Example — Kendall’s Tau

A kind of correlation measure, defined to be the proportion of
concordant pairs:
(Xi ,Yi ) and (Xj ,Yj) are concordant if
sign(Xi − Xj) · sign(Yi − Yj) > 0
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Kendall’s Tau (cont’d.)

R wrapper to Thrust call:

r t h k e n d a l l ← f unct ion ( x , y ) {
dyn . load ( ” r t h k e n d a l l . so ” )
n ← l ength ( x )
tmp ←

.C( ” r t h k e n d a l l ” , as . s i n g l e ( x ) , as . s i n g l e ( y ) ,
as . i n t ege r ( n ) , tmpres=s i n g l e ( 1 ) ,DUP=dupva l )

re tu rn ( tmp$ tmpres )
}
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Kendall’s Tau (cont’d)

vo i d r t h k e n d a l l ( f l o a t ∗x , f l o a t ∗y ,
i n t ∗ nptr , f l o a t ∗ t a up t r )

{ i n t n = ∗ np t r ;
t h r u s t : : c oun t i ng i t e r a t o r <i n t> seqa ( 0 ) ;
t h r u s t : : c oun t i ng i t e r a t o r <i n t> seqb = seqa + n−1;
// dx , dy , tmp d e c l a r a t i o n s not shown
t h r u s t : : transform ( seqa , seqb , tmp . beg in ( ) ,

c a l c g t i ( dx , dy , n ) ) ;
i n t t o t coun t =

t h r u s t : : r educe ( tmp . beg i n ( ) , tmp . end ( ) ) ;
f l o a t n p a i r s = n ∗ (n−1) / 2 ;
∗ t a up t r = ( to t coun t − ( npa i r s−t o t coun t ) ) / n p a i r s ;

}



Data Science
Applications
of GPUs in

the R
Language

Norm Matloff
University of
California at

Davis

GTC 2016

Kendall’s Tau (cont’d)

vo i d r t h k e n d a l l ( f l o a t ∗x , f l o a t ∗y ,
i n t ∗ nptr , f l o a t ∗ t a up t r )

{ i n t n = ∗ np t r ;
t h r u s t : : c oun t i ng i t e r a t o r <i n t> seqa ( 0 ) ;
t h r u s t : : c oun t i ng i t e r a t o r <i n t> seqb = seqa + n−1;
// dx , dy , tmp d e c l a r a t i o n s not shown
t h r u s t : : transform ( seqa , seqb , tmp . beg in ( ) ,

c a l c g t i ( dx , dy , n ) ) ;
i n t t o t coun t =

t h r u s t : : r educe ( tmp . beg i n ( ) , tmp . end ( ) ) ;
f l o a t n p a i r s = n ∗ (n−1) / 2 ;
∗ t a up t r = ( to t coun t − ( npa i r s−t o t coun t ) ) / n p a i r s ;

}



Data Science
Applications
of GPUs in

the R
Language

Norm Matloff
University of
California at

Davis

GTC 2016

Kendall’s Tau (cont’d)

s t r u c t c a l c g t i { // hand l e 1 i , a l l j > i
// more d e c l a r a t i o n s not shown
c a l c g t i ( f l o u b l e v e c dx , f l o u b l e v e c dy , i n t n ) :

dx ( dx ) ,
dy ( dy ) ,
n ( n )
{ wdx = t h r u s t : : raw p o i n t e r c a s t (&dx [ 0 ] ) ;

wdy = t h r u s t : : raw p o i n t e r c a s t (&dy [ 0 ] ) ;
}

d e v i c e i n t o p e r a t o r ( ) ( i n t i )
{ f l o u b l e x i = wdx [ i ] , y i = wdy [ i ] ;

i n t j , count=0;
f o r ( j = i +1; j < n ; j++)

count +=
( ( x i − wdx [ j ] ) ∗ ( y i − wdy [ j ] ) > 0 ) ;

re tu rn count ;
}

} ;
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Example: NMF Again

• The R NMF package, and NMF-CUDA use
multiplicative update methods.

• For instance, for Frobenius norm,

W ←W ◦ AH ′

WHH ′

and similarly for H.

• Another possibility is to use the alternating least squares
method:

• In odd-numbered iterations, regress each col. of A against
cols. of W , yielding the columns of H. Mult. update even
better suited to GPUs.

• In even-numbered iterations, reverse the roles of W and H
(and now with rows).

• As seen earlier, least-squares estimation can be done fairly
well on GPUs.
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RCUDA Example: Normal Density

Basic goal: Call CUDA kernels from R without burdening the R
programmer with details of configuring grids, allocating device
memory, copying between host and device, etc.
Kernel:

e x t e r n ”C”
g l o b a l vo i d
dnorm k e r n e l ( f l o a t ∗ va l s , i n t n , f l o a t mu, f l o a t s i g )

{
i n t myblock = b l o c k I d x . x + b l o c k I d x . y ∗ gr idDim . x ;
i n t b l o c k s i z e =

blockDim . x ∗ blockDim . y ∗ blockDim . z ;
i n t sub th r ead =

th r e a d I d x . z∗ ( blockDim . x ∗ blockDim . y ) +
th r e a d I d x . y∗blockDim . x + th r e a d I d x . x ;

i n t i d x = myblock ∗ b l o c k s i z e + sub th r ead
f l o a t s t d = ( v a l s [ i d x ] − mu)/ s i g ;
f l o a t e = exp ( − 0 .5 ∗ s t d ∗ s t d ) ;
v a l s [ i d x ] = e / ( s i g ∗ sq r t (2 ∗ 3 . 1 4 1 5 9 ) ) ;

}
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RCUDA (cont’d.)

n = 1e6
mean = 2.3
sd = 2.1
x = rnorm (n , mean , sd )
# ev a l d e n s i t y a t a l l p t s i n x

m = loadModule ( ”dnorm . ptx ” )
k = m$dnorm k e r n e l
ans = . cuda ( k , x , n ,mean , sd ,

gr idDim = c (62 , 32) , blockDim = 512)
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Helpful Utilities

• Rcpp

• Greatly facilitates calling C/C++ from R.
• Base R offers functions .C() and .Call(). The former is

inefficient and the latter requires knowledge of R internals.
• Rcpp makes it easy.

• bigmemory

• R currently not completely 64-bit.
• Can have 52-bit integers, but only 32-bit matrix row/col

dimensions.
• The bigmemory package allows storing R matrices in “C

land,” circumventing R storage limits.
• Storage is in shmem, thus allowing for multicore use

Rdsm).
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Software Alchemy

• For “statistical” problems, in “iid” form. Image, text
classification work.

• Simple idea:

• Break data into “independent” chunks.
• Apply the procedure, e.g. logistic regression, to each

chunk.
• Use combining op, e.g. averaging, for final answer.
• Provably correct and efficient.

• A variant: Apply procedure to chunks but take combining
op to be concatenation them rather than averaging.
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Serial Benefits of Software
Alchemy

• SA gives speedup even in serial case of task is O(nc) for
c > 1

• Use SA to address a common problem: Big data, small
GPU memory. Apply GPU to each chunk, serially, then
run combining op.
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Example: NMF

• E.g. break rows or columsn into m chunks.

• Get approximation WH for each one.

• To predict new case:

• Get the m predictions.
• Combine via voting.



Data Science
Applications
of GPUs in

the R
Language

Norm Matloff
University of
California at

Davis

GTC 2016

Example: NMF

• E.g. break rows or columsn into m chunks.

• Get approximation WH for each one.

• To predict new case:

• Get the m predictions.
• Combine via voting.


