Data Science Applications of GPUs in the R Language

Norm Matloff
University of California at Davis

GTC 2016

April 7, 2016

These slides at http://heather.cs.ucdavis.edu/GTC.pdf
Why R?

• The lingua franca for the data science community.
 (R-Python-Julia battle looming?)

• Statistically Correct: Written by statisticians, for statisticians.

• 8,000 CRAN packages!

• Excellent graphics capabilities, including Shiny (easily build your own interactive tool).
Why R?

- The *lingua franca* for the data science community. (R-Python-Julia battle looming?)
- Statistically Correct: Written by statisticians, for statisticians.
- 8,000 CRAN packages!
- Excellent graphics capabilities, including Shiny (easily build your own interactive tool).
R → GPU Link Pros and Cons

On the plus side:

• Speed: R is an interpreted language. (Nick Ulle and Duncan Temple Lang working on LLVM compiler.)
• R is often used on large and/or complex data sets, thus requiring large amounts of computation.
• Much of R computation involves matrices or other operations well-suited to GPUs.

On the other hand:

• Big Data implies need for multiple kernel calls, and much host/device traffic.
• Ditto for R’s many iterative algorithms.
• Many of the matrix ops are not embarrassingly parallel.
• Unpacking and repacking into R object structure.
R → GPU Link Pros and Cons

On the plus side:

- **Speed**: R is an interpreted language. (Nick Ulle and Duncan Temple Lang working on LLVM compiler.)
- R is often used on large and/or complex data sets, thus requiring large amounts of computation.
- Much of R computation involves matrices or other operations well-suited to GPUs.

On the other hand:

- Big Data implies need for multiple kernel calls, and much host/device traffic.
- Ditto for R’s many iterative algorithms.
- Many of the matrix ops are not embarrassingly parallel.
- Unpacking and repacking into R object structure.
Disclaimers

• Talk is meant to be aimed at NVIDIA but otherwise generic, not focusing on the latest/greatest model.
• Our running example, NMF, has the goal of illustrating issues and methods concerning the R/GPU interface. It is not claimed to produce the fastest possible computation. (See talk by Wei Tan in this session.)
Disclaimers

• Talk is meant to be aimed at NVIDIA but otherwise generic, not focusing on the latest/greatest model.
Disclaimers

- Talk is meant to be aimed at NVIDIA but otherwise generic, not focusing on the latest/greatest model.
- Our running example, NMF, has the goal of illustrating issues and methods concerning the R/GPU interface. It is not claimed to produce the fastest possible computation. (See talk by Wei Tan in this session.)
Running Example: Nonnegative Matrix Factorization (NMF)

• Have matrix $A \geq 0$, rank r.
• Want to find matrices $W \geq 0$ and $H \geq 0$ of rank $s \ll r$ with $A \approx WH$.
• Columns of W form a "pseudo-basis" for columns of A;
 A_j is approximately a linear combination of the columns of W,
 with coordinates in H_j.
Running Example: Nonnegative Matrix Factorization (NMF)

- Have matrix $A \geq 0$, rank r.
- Want to find matrices $W \geq 0$ and $H \geq 0$ of rank $s \ll r$ with
 \[A \approx WH \]
- Columns of W form a “pseudo-basis” for columns of A: $A.j$ is approximately a linear combination of the columns of W, with coordinates in $H.j$.
Applications of NMF

- Image compression.
- Image classification.
 - Each column of A is one image.
 - To classify new image, find coordinates u w.r.t. W, then find nearest neighbor(s) of u in H.

- Text classification. Each column of A is one document, with counts of words of interest. Similar to image classification.
Applications of NMF

- Image compression.

Each column of A is one image. To classify a new image, find coordinates u with respect to W, then find the nearest neighbors of u in H. Similar to image classification, each column of A is one document, with counts of words of interest.
Applications of NMF

- Image compression.
- Image classification.
Applications of NMF

- Image compression.
- Image classification. Each column of A is one image.
Applications of NMF

- Image compression.
- Image classification. Each column of A is one image. To classify new image, find coordinates u w.r.t. W, then find nearest neighbor(s) of u in H.
Applications of NMF

- Image compression.
- Image classification. Each column of A is one image. To classify new image, find coordinates u w.r.t. W, then find nearest neighbor(s) of u in H.
- Text classification. Each column of A is one document, with counts of words of interest. Similar to image classification.
Example of R Calling C/C++

- Compare R’s NMF package to E. Battenberg’s NMF-CUDA, on a 3430 × 512 A:
 - R, s = 10: 649.843 sec
 - GPU, s = 30: 0.986 sec
 - GPU solved a much bigger problem in much less time
 - Even though the R pkg is in C++, not R.
 - Solution: Call NMF-CUDA’s update div() from R.
 - BUT HOW?
 - R’s Rcpp package makes interfacing R to C/C++ very convenient and efficient.
Example of R Calling C/C++

- Compare R’s **NMF** package to E. Battenberg’s **NMF-CUDA**, on a 3430×512 A:
Example of R Calling C/C++

- Compare R’s **NMF** package to E. Battenberg’s **NMF-CUDA**, on a 3430×512 A:
 - R, $s = 10$: 649.843 sec
 - GPU, $s = 30$: 0.986 sec
 - GPU solved a much bigger problem in much less time
 - Even though the R pkg is in C++, not R.
Example of R Calling C/C++

- Compare R’s **NMF** package to E. Battenberg’s **NMF-CUDA**, on a 3430 × 512 A:
 - R, \(s = 10 \): 649.843 sec
 - GPU, \(s = 30 \): 0.986 sec
 - GPU solved a much bigger problem in much less time
 - Even though the R pkg is in C++, not R.
 - Solution: Call **NMF-CUDA**’s `update_div()` from R.
Example of R Calling C/C++

- Compare R’s **NMF** package to E. Battenberg’s **NMF-CUDA**, on a 3430 × 512 A:
 - R, $s = 10$: 649.843 sec
 - GPU, $s = 30$: 0.986 sec
- GPU solved a much bigger problem in much less time
- Even though the R pkg is in C++, not R.
- Solution: Call **NMF-CUDA**’s `update_div()` from R. BUT HOW?
- R’s **Rcpp** package makes interfacing R to C/C++ very convenient and efficient.
General R/GPU Tools
General R/GPU Tools

What’s out there now for R/GPU:

- **gputools**
 (Buckner *et al.*.) The oldest major package. Matrix multiply; matrix of distances between rows; linear model fit; QR decomposition; correlation matrix; hierarchical clustering.

- **HiPLAR**
 (Montana *et al.*) R wrapper for **MAGMA** and **PLASMA**. Linear algebra routines, e.g. Cholesky.

- **rpud**
 (Yau.) Similar to **gputools**, but has SVM.

- **Rth**
 (Matloff.) R interfaces to some various algorithms coded in Thrust. Matrix of distances between rows; histogram; column sums; Kendall’s Tau; contingency table.
Current Tools (cont’d.)

• **gmatrix** (Morris.) Matrix multiply, matrix subsetting, Kronecker product, row/col sums, Hamiltonian MCMC, Cholesky.

• **RCUDA** (Baines and Temple Lang, currently not under active development.) Enables calling GPU kernels directly from R. (Kernels still written in CUDA.)

• **rgpu** (Kempenaar, no longer under active development.) “Compiles” simple expressions to GPU.

• various OpenCL interfaces **ROpenCL**, **gpuR**. Similar to **RCUDA**, but via OpenCL interface.
Current Tools (cont’d.)

- **gmatrix**
 (Morris.) Matrix multiply, matrix subsetting, Kronecker product, row/col sums, Hamiltonian MCMC, Cholesky.

- **RCUDA**
 (Baines and Temple Lang, currently not under active development.) Enables calling GPU kernels directly from R. (Kernels still written in CUDA.)

- **rgpu**
 (Kempenaar, no longer under active development.) “Compiles” simple expressions to GPU.

- various OpenCL interfaces
 ROpenCL, **gpuR**. Similar to **RCUDA**, but via OpenCL interface.
Example: Linear Regression Via gputools

doctest:

```r
test <- function(n, p) {
  x <- matrix(runif(n * p), nrow=n)
  regvals <- x %*% rep(1.0, p)
  y <- regvals + 0.2 * runif(n)
  xy <- cbind(x, y)
  print("gputools method")
  print(system.time(gpuLm.fit(x, y)))
  print("ordinary method")
  print(system.time(lm.fit(x, y)))
}

test(100000, 1500)

[1] "gputools method"
user system elapsed
6.280 2.878 17.902

[1] "ordinary method"
user system elapsed
142.282 0.669 142.912
```
Example: Linear Regression Via gputools

```r
> test <- function(n, p) {
  x <- matrix(runif(n*p), nrow=n)
  regvals <- x *%*% rep(1.0, p)
  y <- regvals + 0.2*runif(n)
  xy <- cbind(x, y)
  print("gputools method")
  print(system.time(gpuLm.fit(x, y)))
  print("ordinary method")
  print(system.time(lm.fit(x, y)))
}
> test(100000,1500)
[1] "gputools method"
   user  system elapsed
   6.280   2.878  17.902
[1] "ordinary method"
   user  system elapsed
 142.282   0.669 142.912
```
Key Issue: Keeping Objects on the Device
Key Issue: Keeping Objects on the Device

- Some packages, notably `gputools`, do not take arguments on the device.
- So, cannot store intermediate results on the device, thus requiring needless copying.
- Some packages remedy this, e.g. `gmatrix`.
Example

```r
# Plain R:
system.time (z %*% z %*% z)

# users system elapsed
# 138.75  70.32  139.08

system.time (gpuMatMult (gpuMatMult (z, z), z))

# users system elapsed
# 6.6  1.17 10.05

zm <- matrix (runif (n^2), nrow=n)

# zm2, zm3 not shown

system.time (gmm(zm, zm, zm2, zm3))

# users system elapsed
# 6.25  1.03  7.28
```
library(gputools)
library(gmatrix)
n ← 5000
z ← matrix(runif(n^2), nrow=n)
plain R:
system.time(z %*% z %*% z)
user system elapsed
138.757 0.322 139.081
system.time(gpuMatMult(gpuMatMult(z, z), z))
user system elapsed
6.607 1.170 10.059
zm ← gmatrix(z, nrow=n, ncol=n) # zm2, zm3 not shown
system.time({gmm(zm, zm, zm2); gmm(zm, zm2, zm3)})
user system elapsed
6.258 1.031 7.285
Rth Example — Kendall’s Tau

A kind of correlation measure, defined to be the proportion of concordant pairs:

\[(X_i, Y_i) \text{ and } (X_j, Y_j) \text{ are concordant if } \text{sign}(X_i - X_j) \cdot \text{sign}(Y_i - Y_j) > 0\]
A kind of correlation measure, defined to be the proportion of *concordant pairs*:

\((X_i, Y_i)\) and \((X_j, Y_j)\) are concordant if

\[\text{sign}(X_i - X_j) \cdot \text{sign}(Y_i - Y_j) > 0 \]
Kendall’s Tau (cont’d.)
Kendall’s Tau (cont’d.)

R wrapper to Thrust call:

```r
rthkendall ← function(x, y) {
  dyn.load("rthkendall.so")
  n ← length(x)
  tmp ←
    .C("rthkendall", as.single(x), as.single(y),
        as.integer(n), tmpres=single(1), DUP=dupval)
  return(tmp\$tmpres)
}
```
Kendall’s Tau (cont’d)
Kendall’s Tau (cont’d)

```c
void rthkendall(float *x, float *y, int *nptr, float *tauptr)
{
    int n = *nptr;
    thrust::counting_iterator<int> seqa(0);
    thrust::counting_iterator<int> seqb = seqa + n - 1;
    // dx, dy, tmp declarations not shown
    thrust::transform(seqa, seqb, tmp.begin(),
        calcgti(dx, dy, n));
    int totcount =
        thrust::reduce(tmp.begin(), tmp.end());
    float npairs = n * (n - 1) / 2;
    *tauptr = (totcount - (npairs - totcount)) / npairs
}
```
Kendall’s Tau (cont’d)
Kendall’s Tau (cont’d)

```c
struct calcgti {  // handle 1 i, all j > i
    // more declarations not shown
    calcgti(floublevec _dx, floublevec _dy, int _n):
        dx(_dx),
        dy(_dy),
        n(_n)
    {
        wdx = thrust::raw_pointer_cast(&dx[0]);
        wdy = thrust::raw_pointer_cast(&dy[0]);
    }

    __device__ int operator()(int i)
    {
        flouble xi = wdx[i], yi = wdy[i];
        int j, count = 0;
        for (j = i + 1; j < n; j++)
            count +=
                ( (xi - wdx[j]) * (yi - wdy[j]) > 0 );
        return count;
    }
};
```
Example: NMF Again

• The R NMF package, and NMF-CUDA use multiplicative update methods.
 For instance, for Frobenius norm,
 \[W \leftarrow W \odot A H^T W H^T \]
 and similarly for \(H \).

• Another possibility is to use the alternating least squares method:
 • In odd-numbered iterations, regress each col. of \(A \) against cols. of \(W \), yielding the columns of \(H \). Mult. update even better suited to GPUs.
 • In even-numbered iterations, reverse the roles of \(W \) and \(H \) (and now with rows).

• As seen earlier, least-squares estimation can be done fairly well on GPUs.
Example: NMF Again

- The R **NMF** package, and **NMF-CUDA** use *multiplicative update* methods.
- For instance, for Frobenius norm,

\[W \leftarrow W \odot \frac{AH'}{WHH'} \]

and similarly for \(H \).
Example: NMF Again

- The R **NMF** package, and **NMF-CUDA** use *multiplicative update* methods.
- For instance, for Frobenius norm,

\[W \leftarrow W \circ \frac{AH'}{WHH'} \]

and similarly for \(H \).
- Another possibility is to use the *alternating least squares* method:
 - In odd-numbered iterations, regress each col. of \(A \) against cols. of \(W \), yielding the columns of \(H \). Mult. update even better suited to GPUs.
 - In even-numbered iterations, reverse the roles of \(W \) and \(H \) (and now with rows).
- As seen earlier, least-squares estimation can be done fairly well on GPUs.
RCUDA Example: Normal Density
RCUDA Example: Normal Density

Basic goal: Call CUDA kernels from R without burdening the R programmer with details of configuring grids, allocating device memory, copying between host and device, etc.

Kernel:

```c
extern "C"
__global__ void
dnorm_kernel(float *vals, int n, float mu, float sig)
{
  int myblock = blockIdx.x + blockIdx.y * blockDim.x;
  int blocksize =
      blockDim.x * blockDim.y * blockDim.z;
  int subthread =
      threadIdx.z*(blockDim.x * blockDim.y) +
      threadIdx.y*blockDim.x + threadIdx.x;
  int idx = myblock * blocksize + subthread
  float std = (vals[idx] - mu)/sig;
  float e = exp( - 0.5 * std * std);
  vals[idx] = e / ( sig * sqrt(2 * 3.14159));
}
```
RCUDA (cont’d.)

n = 1 e6
mean = 2.3
sd = 2.1
x = rnorm(n, mean, sd)

eval density at all pts in x
m = loadModule("dnorm.ptx")
k = m$dnorm
ans = .cuda(k, x, n, mean, sd, gridDim = c(62, 32), blockDim = 512)
n = 1e6
mean = 2.3
sd = 2.1
x = rnorm(n, mean, sd)
eval density at all pts in x
m = loadModule("dnorm.ptx")
k = m$dnorm_kernel
ans = .cuda(k, x, n, mean, sd,
 blockDim = 512)
gridDim = c(62, 32), blockDim = 512)
Helpful Utilities

• **Rcpp**
 - Greatly facilitates calling C/C++ from R.
 - Base R offers functions `.C()` and `.Call()`. The former is inefficient and the latter requires knowledge of R internals.
 - **Rcpp** makes it easy.

• **bigmemory**
 - R currently not completely 64-bit.
 - Can have 52-bit integers, but only 32-bit matrix row/col dimensions.
 - The **bigmemory** package allows storing R matrices in "C-land," circumventing R storage limits.
 - Storage is in `shmem`-land, thus allowing for multicore use with Rdsm.
Helpful Utilities

• **Rcpp**
 - Greatly facilitates calling C/C++ from R.
 - Base R offers functions `.C()` and `.Call()`. The former is inefficient and the latter requires knowledge of R internals.
 - **Rcpp** makes it easy.

• **bigmemory**
 - R currently not completely 64-bit.
 - Can have 52-bit integers, but only 32-bit matrix row/col dimensions.
 - The **bigmemory** package allows storing R matrices in “C land,” circumventing R storage limits.
 - Storage is in **shmemp**, thus allowing for multicore use **Rdsm**).
Software Alchemy

• For "statistical" problems, in "iid" form.
• Image, text classification work.
• Simple idea:
 • Break data into "independent" chunks.
 • Apply the procedure, e.g. logistic regression, to each chunk.
 • Use combining op, e.g. averaging, for final answer.
• Provably correct and efficient.
• A variant: Apply procedure to chunks but take combining op to be concatenation them rather than averaging.
Software Alchemy

- For “statistical” problems, in “iid” form.
Software Alchemy

• For “statistical” problems, in “iid” form. Image, text classification work.
Software Alchemy

- For “statistical” problems, in “iid” form. Image, text classification work.
- Simple idea:
 - Break data into “independent” chunks.
 - Apply the procedure, e.g. logistic regression, to each chunk.
 - Use combining op, e.g. averaging, for final answer.
 - Provably correct and efficient.
Software Alchemy

- For “statistical” problems, in “iid” form. Image, text classification work.

- Simple idea:
 - Break data into “independent” chunks.
 - Apply the procedure, e.g. logistic regression, to each chunk.
 - Use combining op, e.g. averaging, for final answer.
 - Provably correct and efficient.

- A variant: Apply procedure to chunks but take combining op to be concatenation them rather than averaging.
Serial Benefits of Software Alchemy

• SA gives speedup even in serial case of task is $O(n^c)$ for $c > 1$

• Use SA to address a common problem: Big data, small GPU memory.

Apply GPU to each chunk, serially, then run combining op.
Serial Benefits of Software Alchemy

- SA gives speedup even in serial case of task is $O(n^c)$ for $c > 1$
- Use SA to address a common problem: Big data, small GPU memory.
Serial Benefits of Software Alchemy

- SA gives speedup even in serial case of task is $O(n^c)$ for $c > 1$
- Use SA to address a common problem: Big data, small GPU memory. Apply GPU to each chunk, serially, then run combining op.
Serial Benefits of Software Alchemy

- SA gives speedup even in serial case of task is $O(n^c)$ for $c > 1$
- Use SA to address a common problem: Big data, small GPU memory. Apply GPU to each chunk, serially, then run combining op.
Example: NMF
Example: NMF

- E.g. break rows or columns into m chunks.
- Get approximation WH for each one.
- To predict new case:
 - Get the m predictions.
 - Combine via voting.