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Why R?

The lingua franca for the data science community.
(R-Python-Julia battle looming?)

Statistically Correct: Written by statisticians, for
statisticians.
8,000 CRAN packages!

Excellent graphics capabilities, including Shiny (easily
build your own interactive tool).
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R — GPU Link Pros and Cons

On the plus side:
e Speed: R is an interpreted language. (Nick Ulle and
Duncan Temple Lang working on LLVM compiler.)

e R is often used on large and/or complex data sets, thus
requiring large amounts of computation.

e Much of R computation involves matrices or other
operations well-suited to GPUs.
On the other hand:
e Big Data implies need for multiple kernel calls, and much
host/device traffic.
e Ditto for R's many iterative algorithms.
e Many of the matrix ops are not embarrassingly parallel.

e Unpacking and repacking into R object structure.
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e Talk is meant to be aimed at NVIDIA but otherwise
generic, not focusing on the latest/greatest model.
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e Talk is meant to be aimed at NVIDIA but otherwise
generic, not focusing on the latest/greatest model.

e Our running example, NMF, has the goal of illustrating
issues and methods concerning the R/GPU interface. It is
not claimed to produce the fastest possible computation.
(See talk by Wei Tan in this session.)
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Running Example: Nonnegative
Matrix Factorization (NMF)



Data Science
Applications
of GPUs in
the R
Language

Norm Matloff

University of

California at
Davis

GTC 2016

Running Example: Nonnegative
Matrix Factorization (NMF)

e Have matrix A > 0, rank r.

e Want to find matrices W >0 and H > 0 of rank s < r
with

A~ WH

e Columns of W form a “pseudo-basis” for columns of A:
A j is approximately a linear combination of the columns
of W, with coordinates in H ;.
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e Image compression.

Applications of NMF
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e Image compression.

e Image classification.

Applications of NMF
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e Image compression.

e Image classification

Applications of NMF

. Each column of A is one image.
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e Image compression.
e Image classification. Each column of A is one image. To
classify new image, find coordinates v w.r.t. W, then find
nearest neighbor(s) of u in H.
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e Image compression.
e Image classification. Each column of A is one image. To
classify new image, find coordinates v w.r.t. W, then find

nearest neighbor(s) of u in H.

e Text classification. Each column of A is one document,
with counts of words of interest. Similar to image
classification.
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Example of R Calling C/C++

e Compare R's NMF package to E. Battenberg's
NMF-CUDA, on a 3430 x 512 A:
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Example of R Calling C/C++

Compare R's NMF package to E. Battenberg's
NMF-CUDA, on a 3430 x 512 A:

R, s = 10: 649.843 sec

GPU, s = 30: 0.986 sec

GPU solved a much bigger problem in much less time
Even though the R pkg is in C++, not R.
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Example of R Calling C/C++

Compare R's NMF package to E. Battenberg's
NMF-CUDA, on a 3430 x 512 A:

R, s = 10: 649.843 sec

GPU, s = 30: 0.986 sec

GPU solved a much bigger problem in much less time
Even though the R pkg is in C++, not R.

Solution: Call NMF-CUDA's update_div() from R.
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Example of R Calling C/C++

Compare R's NMF package to E. Battenberg's
NMF-CUDA, on a 3430 x 512 A:

R, s = 10: 649.843 sec

GPU, s = 30: 0.986 sec

GPU solved a much bigger problem in much less time
Even though the R pkg is in C++, not R.

Solution: Call NMF-CUDA's update_div() from R. BUT
HOW?

R's Rcpp package makes interfacing R to C/C++ very
convenient and efficient.
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General R/GPU Tools

What's out there now for R/GPU:

e gputools

(Buckner et al.) The oldest major package. Matrix
multiply; matrix of distances between rows; linear model
fit; QR decomposition; correlation matrix; hierarchical
clustering.

HIiPLAR

(Montana et al.) R wrapper for MAGMA and PLASMA.
Linear algebra routines, e.g. Cholesky.

rpud

(Yau.) Similar to gputools, but has SVM.

Rth

(Matloff.) R interfaces to some various algorithms coded
in Thrust. Matrix of distances between rows; histogram;
column sums; Kendall's Tau; contingency table.



Current Tools (cont'd.)

«O>r «Fr «=>»

«E)»

DA



Data Science
Applications
of GPUs in
the R
Language

Norm Matloff

University of

California at
Davis

GTC 2016

Current Tools (cont'd.)

gmatrix

(Morris.) Matrix multiply, matrix subsetting, Kronecker
product, row/col sums, Hamiltonian MCMC, Cholesky.
RCUDA

(Baines and Temple Lang, currently not under active

development.) Enables calling GPU kernels directly from
R. (Kernels still written in CUDA.)

rgpu

(Kempenaar, no longer under active development.)
“Compiles” simple expressions to GPU.

various OpenCL interfaces

ROpenCL, gpuR. Similar to RCUDA, but via OpenCL
interface.
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Example: Linear Regression Via
gputools
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Example: Linear Regression Via
gputools

> test « function(n,p) {

x < matrix(runif(nxp), nrow=n)
regvals < x %% rep(1.0,p)

y < regvals + 0.2xrunif(n)

xy < chind(x,y)

print (" gputools method”)

print (system.time(gpulm. fit(x,y)))
print(”ordinary method")

print (system.time(Im.fit(x,y)))

> test(100000,1500)
[1] "gputools method”

user system elapsed
6.280 2.878 17.902

[1] "ordinary method”

user system elapsed

142.282 0.669 142.912
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Key Issue: Keeping Objects on the
Device
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Key Issue: Keeping Objects on the
Device

e Some packages, notably gputools, do not take arguments
on the device.

e So, cannot store intermediate results on the device, thus
requiring needless copying.

e Some packages remedy this, e.g. gmatrix.
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z + matrix(runif(n"2),nrow=n)
# plain R:
system .time(z %% z %% z)
# user system elapsed

# 138.757 0.322 139.081

system . time (gpuMatMult (gpuMatMult(z,z),z))

# user system elapsed

# 6.607 1.170 10.059

zm < gmatrix (z,nrow=n,ncol=n) # zm2, zm3 not shown
system . time ({gmm(zm,zm,zm2); gmm(zm,zm2,zm3)})

# user system elapsed

# 6.258 1.031 7.285
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Rth Example — Kendall's Tau

A kind of correlation measure, defined to be the proportion of
concordant pairs:

(Xi, Yi) and (X;, Y;) are concordant if

sign(Xi — X;) - sign(Y; — Yj) >0



Kendall's Tau (cont'd.)
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Kendall's Tau (cont'd.)

R wrapper to Thrust call:

rthkendall < function(x,y) {
dyn.load (" rthkendall .so")
n < length(x)
tmp <
.C("rthkendall” ,as.single(x), as.single(y),
as.integer(n),tmpres=single (1) ,DUP=dupval)
return (tmp$tmpres)
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void rthkendall(float *x, float =y,
GTC 2016 int xnptr, float =xtauptr)
{ int n = %nptr;
thrust :: counting_iterator<int> seqa(0);
thrust:: counting_iterator<int> seqb = seqa + n—1;
// dx, dy, tmp declarations not shown
thrust :: transform (seqa,seqb ,tmp.begin (),
calcgti(dx,dy,n));
int totcount =
thrust ::reduce(tmp.begin(),tmp.end());
float npairs = n x (n=-1) / 2;
xtauptr = (totcount — (npairs—totcount)) / npairs
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Kendall's Tau (cont'd)

struct calcgti { // handle 1 i, all j > i
// more declarations not shown
calcgti(floublevec _dx,floublevec _dy,int _n)
dx(-dx),
dy(-dy),
n(-n)
{ wdx = thrust::raw_pointer _cast (&dx[0]);
wdy thrust ::raw_pointer _cast (&dy[0])

__device__ int operator()(int i)
{ flouble xi = wdx[i], yi = wdy[i]:
int j,count=0;
for (j = i+1; j < n; j+4)
count +=
( (xi — wdx[J]) * (vi — wdy[j]) > 0);
return count;
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Example: NMF Again

e The R NMF package, and NMF-CUDA use
multiplicative update methods.

e For instance, for Frobenius norm,

AH'

We wo 21
= WhHH

and similarly for H.
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Example: NMF Again

The R NMF package, and NMF-CUDA use
multiplicative update methods.

For instance, for Frobenius norm,

AH'
We wo 21
= WhHH

and similarly for H.

Another possibility is to use the alternating least squares
method:

e In odd-numbered iterations, regress each col. of A against
cols. of W, yielding the columns of H. Mult. update even
better suited to GPUs.

e In even-numbered iterations, reverse the roles of W and H
(and now with rows).

As seen earlier, least-squares estimation can be done fairly
well on GPUs.
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RCUDA Example: Normal Density

Basic goal: Call CUDA kernels from R without burdening the R
programmer with details of configuring grids, allocating device
memory, copying between host and device, etc.

Kernel:

extern "C"

{

global __ void
dnorm_kernel (float xvals,int n,float mu, float sig)

int myblock = blockldx.x + blockldx.y * gridDim.x;
int blocksize =
blockDim.x % blockDim.y % blockDim.z;
int subthread =
threadldx.z*(blockDim.x * blockDim.y) +
threadldx.yxblockDim.x + threadldx.x;
int idx = myblock * blocksize + subthread
float std = (vals[idx] — mu)/sig;
float e = exp( — 0.5 % std x std);
vals[idx] = e / ( sig % sqrt(2 = 3.14159));



RCUDA (cont'd.)
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RCUDA (cont'd.)

n = 1leb6

mean = 2.3

sd = 2.1

x = rnorm(n, mean, sd)

# eval density at all pts in x
m = loadModule (" dnorm. ptx")

k = m$dnorm_kernel

ans = .cuda(k,x,n,mean,sd,

gridDim = ¢(62, 32), blockDim = 512)
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Helpful Utilities

* Rcpp

o Greatly facilitates calling C/C++ from R.

e Base R offers functions .C() and .Call(). The former is
inefficient and the latter requires knowledge of R internals.

e Rcpp makes it easy.

e bigmemory

e R currently not completely 64-bit.

e Can have 52-bit integers, but only 32-bit matrix row/col
dimensions.

e The bigmemory package allows storing R matrices in “C
land,” circumventing R storage limits.

e Storage is in shmem, thus allowing for multicore use
Rdsm).
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Software Alchemy

e For “statistical” problems, in “iid" form.
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Software Alchemy

e For “statistical” problems, in “iid” form. Image, text
classification work.
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e Simple idea:

Break data into “independent” chunks.

Apply the procedure, e.g. logistic regression, to each
chunk.

Use combining op, e.g. averaging, for final answer.
Provably correct and efficient.
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Software Alchemy

e For “statistical” problems, in “iid” form. Image, text
classification work.

e Simple idea:

Break data into “independent” chunks.

Apply the procedure, e.g. logistic regression, to each
chunk.

Use combining op, e.g. averaging, for final answer.
Provably correct and efficient.

e A variant: Apply procedure to chunks but take combining
op to be concatenation them rather than averaging.
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Serial Benefits of Software
Alchemy
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Serial Benefits of Software
Alchemy

e SA gives speedup even in serial case of task is O(n°) for
c>1

e Use SA to address a common problem: Big data, small
GPU memory.
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Serial Benefits of Software
Alchemy

e SA gives speedup even in serial case of task is O(n°) for
c>1

e Use SA to address a common problem: Big data, small
GPU memory. Apply GPU to each chunk, serially, then
run combining op.
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Serial Benefits of Software
Alchemy

e SA gives speedup even in serial case of task is O(n°) for
c>1

e Use SA to address a common problem: Big data, small
GPU memory. Apply GPU to each chunk, serially, then
run combining op.
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e E.g. break rows or columsn into m chunks.
e Get approximation WH for each one.
e To predict new case:

o Get the m predictions.
e Combine via voting.



