Are They the Best and the Brightest?
Analysis of Employer-Sponsored Tech Immigrants

Norm Matloff
Department of Computer Science
University of California at Davis
Davis, CA 95616 USA
matloff@cs.ucdavis.edu

Berkeley Center for Globalization and Information Technology
November 15, 2010; revised, November 18
The Setting

“[restrictive U.S. immigration policy is] driving away the world’s best and brightest”—Bill Gates, 2007

“We should not [send our] bright and talented international students...to work for our competitors abroad upon graduation”–NAFSA (Nat. Assoc. of Foreign Student Advisers)

“...we should be stapling a green card to the diploma of any foreign student who earns an advanced degree at any U.S. university... The world’s best brains are on sale. Let’s buy more!”—New York Times columnist Tom Friedman, 2009

Industry wants more H-1B work visas, and fast-track green cards for STEM foreign students.
“[restrictive U.S. immigration policy is] driving away the world’s best and brightest” — Bill Gates, 2007
The Setting

- “[restrictive U.S. immigration policy is] driving away the world’s best and brightest”—Bill Gates, 2007
- “We should not [send our] bright and talented international students...to work for our competitors abroad upon graduation”—NAFSA (Nat. Assoc. of Foreign Student Advisers)

- “...we should be stapling a green card to the diploma of any foreign student who earns an advanced degree at any U.S. university... The world's best brains are on sale. Let's buy more!”—New York Times columnist Tom Friedman, 2009
The Setting

- “[restrictive U.S. immigration policy is] driving away the world’s best and brightest”—Bill Gates, 2007
- “We should not [send our] bright and talented international students...to work for our competitors abroad upon graduation”—NAFSA (Nat. Assoc. of Foreign Student Advisers)
- “…we should be stapling a green card to the diploma of any foreign student who earns an advanced degree at any U.S. university... The world’s best brains are on sale. Let’s buy more!”—New York Times columnist Tom Friedman, 2009
The Setting

- “[restrictive U.S. immigration policy is] driving away the world’s best and brightest” — Bill Gates, 2007
- “We should not [send our] bright and talented international students...to work for our competitors abroad upon graduation” — NAFSA (Nat. Assoc. of Foreign Student Advisers)
- “…we should be stapling a green card to the diploma of any foreign student who earns an advanced degree at any U.S. university... The world’s best brains are on sale. Let’s buy more!” — New York Times columnist Tom Friedman, 2009
- Industry wants more H-1B work visas, and fast-track green cards for STEM foreign students.
We all support the immigration of outstanding talents, the innovative, the “game changers.”
Questions

- We all support the immigration of outstanding talents, the innovative, the “game changers.”
- But are most of those sponsored by the tech industry of that caliber?
Questions

- We all support the immigration of outstanding talents, the innovative, the “game changers.”
- But are most of those sponsored by the tech industry of that caliber?
- And for those who ARE of that caliber, is current policy reasonably welcoming?
Previous Work

To my knowledge, previous work on this topic has been limited.
To my knowledge, previous work on this topic has been limited. One older source is (North, 1995):
To my knowledge, previous work on this topic has been limited. One older source is (North, 1995):

<table>
<thead>
<tr>
<th>department quality</th>
<th>% foreign-born</th>
</tr>
</thead>
<tbody>
<tr>
<td>highest quarter</td>
<td>37.2%</td>
</tr>
<tr>
<td>second quarter</td>
<td>44.5%</td>
</tr>
<tr>
<td>third quarter</td>
<td>47.5%</td>
</tr>
<tr>
<td>lowest quarter</td>
<td>50.6%</td>
</tr>
</tbody>
</table>

Table: Foreign-student enrollments in Ph.D. engineering programs
Our Approaches

We will approach the question via analyses of:

- wages
- dissertation awards
- patents
Our Approaches

We will approach the question via analyses of:

- wages
- dissertation awards
- patents
Our Approaches

We will approach the question via analyses of:

- wages
Our Approaches

We will approach the question via analyses of:

- wages
- dissertation awards
Our Approaches

We will approach the question via analyses of:

- wages
- dissertation awards
- patents
Wage Issues

Underpayment found to be 15-20% in (Matloff, 2003) and 33% in (Ong, 1997).

Due to loopholes, legally required prevailing wage is typically well below real market wage (Matloff, 2003).

Congressionally-commissioned employer surveys, (NRC, 2001) and (GAO, 2003), found many employers admitting to paying H-1B workers less than comparable Americans. GAO even noted role of loopholes:

...[employers] hired H-1B workers in part because these workers would often accept lower salaries...however, these employers said they never paid H-1B workers less than the required wage.

\[1\] Similar loopholes for legal definition of “actual wage.”
Wage Issues

- Foreign workers exploitable during sponsorship period.

\[1\] Similar loopholes for legal definition of “actual wage.”
Wage Issues

- Foreign workers exploitable during sponsorship period.
- Underpayment found to be 15-20% in (Matloff, 2003) and 33% in (Ong, 1997).

\[\text{1 Similar loopholes for legal definition of “actual wage.”}\]
Wage Issues

- Foreign workers exploitable during sponsorship period.
- Underpayment found to be 15-20% in (Matloff, 2003) and 33% in (Ong, 1997).
- Due to loopholes, legally required *prevailing wage* is typically well below real *market wage* (Matloff, 2003).\(^1\)

\(^1\)Similar loopholes for legal definition of “actual wage.”
Foreign workers exploitable during sponsorship period.

Underpayment found to be 15-20% in (Matloff, 2003) and 33% in (Ong, 1997).

Due to loopholes, legally required *prevailing wage* is typically well below real *market wage* (Matloff, 2003).\(^1\)

Congressionally-commissioned employer surveys, (NRC, 2001) and (GAO, 2003), found many employers admitting to paying H-1B workers less than comparable Americans.

\(^1\) Similar loopholes for legal definition of “actual wage.”
Wage Issues

- Foreign workers exploitable during sponsorship period.
- Underpayment found to be 15-20% in (Matloff, 2003) and 33% in (Ong, 1997).
- Due to loopholes, legally required *prevailing wage* is typically well below real *market wage* (Matloff, 2003).¹
- Congressionally-commissioned employer surveys, (NRC, 2001) and (GAO, 2003), found many employers admitting to paying H-1B workers less than comparable Americans.
- GAO even noted role of loopholes:
 ... [employers] hired H-1B workers in part because these workers would often accept lower salaries...however, these employers said they never paid H-1B workers less than the required wage.

¹Similar loopholes for legal definition of “actual wage.”
Solutions to Wage Issues

How does one use wages to assess talent, given underpayment of the foreign workers? One can:

- Use as baseline wage 20% above legal prevailing wage.
- Consider only workers who were originally sponsored by employers but now have green cards or citizenship.
- Consider nonmonetary evidence of outstanding talent, such as awards and patents.
Solutions to Wage Issues

How does one use wages to assess talent, given underpayment of the foreign workers? One can:

- Use as baseline wage 20% above legal prevailing wage.
- Consider only workers who were originally sponsored by employers but now have green cards or citizenship.
- Consider nonmonetary evidence of outstanding talent, such as awards and patents.
Solutions to Wage Issues

How does one use wages to assess talent, given underpayment of the foreign workers? One can:

- Use as baseline wage 20% above legal prevailing wage.
Solutions to Wage Issues

How does one use wages to assess talent, given underpayment of the foreign workers? One can:

- Use as baseline wage 20% above legal prevailing wage.
- Consider only workers who were originally sponsored by employers but now have green cards or citizenship.
How does one use wages to assess talent, given underpayment of the foreign workers? One can:

- Use as baseline wage 20% above legal prevailing wage.
- Consider only workers who were originally sponsored by employers but now have green cards or citizenship.
- Consider nonmonetary evidence of outstanding talent, such as awards and patents.
First Wage Analysis: PERM Data

DOL files of employer applications for green card sponsorship.
Enables analysis by employer and nationality.
Accounts for region via prevailing wage.
Lacks data on education, age.
First Wage Analysis: PERM Data

- DOL files of employer applications for green card sponsorship.
First Wage Analysis: PERM Data

- DOL files of employer applications for green card sponsorship.
- Enables analysis by employer and nationality.
First Wage Analysis: PERM Data

- DOL files of employer applications for green card sponsorship.
- Enables analysis by employer and nationality.
- Accounts for region via prevailing wage.
First Wage Analysis: PERM Data

- DOL files of employer applications for green card sponsorship.
- Enables analysis by employer and nationality.
- Accounts for region via prevailing wage.
- Lacks data on education, age.
PERM Analysis

I calculated the median wage ratio:

$$WR = \text{median of actual wage emp. claimed prev. wg.}$$

By law, must have $$WR \geq 1.$$ But, denominator too small by factor of 1.15 to 1.33 (see above). So, only (median) values higher than, say 1.25, indicate a firm is hiring mainly the "best and brightest."
I calculated the median wage ratio:

$$WR = \text{median of } \frac{\text{actual wage}}{\text{emp. claimed prev. wg.}}$$
PERM Analysis

- I calculated the median wage ratio:

\[WR = \text{median of} \quad \frac{\text{actual wage}}{\text{emp. claimed prev. wg.}} \]

- By law, must have \(WR \geq 1 \).
I calculated the median wage ratio:

$$WR = \text{median of } \frac{\text{actual wage}}{\text{emp. claimed prev. wg.}}$$

By law, must have $WR \geq 1$.

But, denominator too small by factor of 1.15 to 1.33 (see above).
I calculated the median wage ratio:

\[WR = \text{median of} \quad \frac{\text{actual wage}}{\text{emp. claimed prev. wg.}} \]

- By law, must have \(WR \geq 1 \).
- But, denominator too small by factor of 1.15 to 1.33 (see above).
- So, only (median) values higher than, say 1.25, indicate a firm is hiring mainly the “best and brightest.”
PERM Results

<table>
<thead>
<tr>
<th>Firm</th>
<th>WR</th>
<th>s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>1.18</td>
<td>1.15</td>
</tr>
<tr>
<td>Intel</td>
<td>1.13</td>
<td>1.08</td>
</tr>
<tr>
<td>Google</td>
<td>1.12</td>
<td>1.15</td>
</tr>
<tr>
<td>Cisco</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>Oracle</td>
<td>1.13</td>
<td>1.15</td>
</tr>
<tr>
<td>HP</td>
<td>1.20</td>
<td>1.08</td>
</tr>
<tr>
<td>Motorola</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Qualcomm</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>eBay</td>
<td>1.05</td>
<td>1.02</td>
</tr>
<tr>
<td>PayPal</td>
<td>1.15</td>
<td>1.09</td>
</tr>
</tbody>
</table>
PERM Results

Median WR for some prominent firms, in general and for software engineers:
Median WR for some prominent firms, in general and for software engineers:

<table>
<thead>
<tr>
<th>firm</th>
<th>WR</th>
<th>WR, s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>1.18</td>
<td>1.15</td>
</tr>
<tr>
<td>Intel</td>
<td>1.13</td>
<td>1.08</td>
</tr>
<tr>
<td>Google</td>
<td>1.12</td>
<td>1.15</td>
</tr>
<tr>
<td>Cisco</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>Oracle</td>
<td>1.13</td>
<td>1.15</td>
</tr>
<tr>
<td>HP</td>
<td>1.20</td>
<td>1.08</td>
</tr>
<tr>
<td>Motorola</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Qualcomm</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>eBay</td>
<td>1.05</td>
<td>1.02</td>
</tr>
<tr>
<td>PayPal</td>
<td>1.15</td>
<td>1.09</td>
</tr>
</tbody>
</table>
Conclusions from PERM Data

A few firms pay a 10-15% premium. Not enough to cover the 15-33% deficiency in prevailing wage. In any case, not "genius" level. (Some workers have WR > 2.)
Conclusions from PERM Data

A few firms pay a 10-15% premium.
Conclusions from PERM Data

A few firms pay a 10-15% premium.
Not enough to cover the 15-33% deficiency in prevailing wage.
A few firms pay a 10-15% premium. Not enough to cover the 15-33% deficiency in prevailing wage. In any case, not “genius” level. (Some workers have $WR > 2$.)
Second Wage Analysis: 2000 Census Data

Looked at all programmers, software engineers and electrical engineers in California (not managers).

Proxy for employer sponsorship: Entered country after age 17.

Proxy for green card, cit.: Count those over 32, by which time most good (EB-1, EB-2) sponsored workers should have green cards.

No public data on employer name.
Second Wage Analysis: 2000 Census Data

- 5% PUMS sample
5% PUMS sample

Looked at all programmers, software engineers and electrical engineers in California (not managers).
Second Wage Analysis: 2000 Census Data

- 5% PUMS sample
- Looked at all programmers, software engineers and electrical engineers in California (not managers).
- Proxy for employer sponsorship: Entered country after age 17.
5% PUMS sample

Looked at all programmers, software engineers and electrical engineers in California (not managers).

Proxy for employer sponsorship:Entered country after age 17.

Proxy for green card, cit.: Count those over 32, by which time most good (EB-1, EB-2) sponsored workers should have green cards.
5% PUMS sample

Looked at all programmers, software engineers and electrical engineers in California (not managers).

Proxy for employer sponsorship: Entered country after age 17.

Proxy for green card, cit.: Count those over 32, by which time most good (EB-1, EB-2) sponsored workers should have green cards.

No public data on employer name.
5% PUMS sample

Looked at all programmers, software engineers and electrical engineers in California (not managers).

Proxy for employer sponsorship: Entered country after age 17.

Proxy for green card, cit.: Count those over 32, by which time most good (EB-1, EB-2) sponsored workers should have green cards.

No public data on employer name.

/A
Logistic regression: probability of Salary > $150K = \text{logit}(\beta_0 + \beta_1 \text{Age} + \beta_2 \text{MS} + \beta_3 \text{PhD} + \beta_4 \text{TmpVisa} + \beta_5 \text{China} + \beta_6 \text{India})
PUMS Analysis/Results

Logistic regression:

probability of $\text{Salary} > 150K = \logit(\beta_0 + \beta_1 \text{Age} + \beta_2 \text{MS} + \beta_3 \text{PhD} + \beta_4 \text{TmpVisa} + \beta_5 \text{China} + \beta_6 \text{India})$
Factor Impacts on Probability of Earning $> \$150K$

<table>
<thead>
<tr>
<th>coeff.</th>
<th>conf. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0 (const.)</td>
<td>-3.85 ± 0.28</td>
</tr>
<tr>
<td>β_1 (Age)</td>
<td>0.005 ± 0.006</td>
</tr>
<tr>
<td>β_2 (MS)</td>
<td>0.71 ± 0.12</td>
</tr>
<tr>
<td>β_3 (PhD)</td>
<td>1.42 ± 0.18</td>
</tr>
<tr>
<td>β_4 (spons.)</td>
<td>0.06 ± 0.13</td>
</tr>
<tr>
<td>β_5 (China)</td>
<td>-1.45 ± 0.43</td>
</tr>
<tr>
<td>β_6 (India)</td>
<td>0.16 ± 0.23</td>
</tr>
</tbody>
</table>

MS, PhD: large positive impact
China: large negative impact
India: small positive or neutral (larger in linear regression of total wage)
other foreign: small positive or neutral
no evidence of overall “foreign genius”
Factor Impacts on Probability of Earning > $150K

<table>
<thead>
<tr>
<th>coef.</th>
<th>conf. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0 (const.)</td>
<td>-3.85 ± 0.28</td>
</tr>
<tr>
<td>β_1 (Age)</td>
<td>0.005 ± 0.006</td>
</tr>
<tr>
<td>β_2 (MS)</td>
<td>0.71 ± 0.12</td>
</tr>
<tr>
<td>β_3 (PhD)</td>
<td>1.42 ± 0.18</td>
</tr>
<tr>
<td>β_4 (spons.)</td>
<td>0.06 ± 0.13</td>
</tr>
<tr>
<td>β_5 (China)</td>
<td>-1.45 ± 0.43</td>
</tr>
<tr>
<td>β_6 (India)</td>
<td>0.16 ± 0.23</td>
</tr>
</tbody>
</table>

- MS, PhD: large pos. impact
- China: large neg. impact
- India: small pos. or neutral (larger in lin. regress of tot. wage)
- other foreign: small pos. or neutral
- no evidence of overall "foreign genius"
Factor Impacts on Probability of Earning $> 150K$

<table>
<thead>
<tr>
<th>coef.</th>
<th>conf. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0 (const.)</td>
<td>-3.85 ± 0.28</td>
</tr>
<tr>
<td>β_1 (Age)</td>
<td>0.005 ± 0.006</td>
</tr>
<tr>
<td>β_2 (MS)</td>
<td>0.71 ± 0.12</td>
</tr>
<tr>
<td>β_3 (PhD)</td>
<td>1.42 ± 0.18</td>
</tr>
<tr>
<td>β_4 (spons.)</td>
<td>0.06 ± 0.13</td>
</tr>
<tr>
<td>β_5 (China)</td>
<td>-1.45 ± 0.43</td>
</tr>
<tr>
<td>β_6 (India)</td>
<td>0.16 ± 0.23</td>
</tr>
</tbody>
</table>

- MS, PhD: large pos. impact
- China: large neg. impact
Factor Impacts on Probability of Earning > $150K

<table>
<thead>
<tr>
<th>coef.</th>
<th>conf. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0 (const.)</td>
<td>-3.85 ± 0.28</td>
</tr>
<tr>
<td>β_1 (Age)</td>
<td>0.005 ± 0.006</td>
</tr>
<tr>
<td>β_2 (MS)</td>
<td>0.71 ± 0.12</td>
</tr>
<tr>
<td>β_3 (PhD)</td>
<td>1.42 ± 0.18</td>
</tr>
<tr>
<td>β_4 (spons.)</td>
<td>0.06 ± 0.13</td>
</tr>
<tr>
<td>β_5 (China)</td>
<td>-1.45 ± 0.43</td>
</tr>
<tr>
<td>β_6 (India)</td>
<td>0.16 ± 0.23</td>
</tr>
</tbody>
</table>

- MS, PhD: large pos. impact
- China: large neg. impact
- India: small pos. or neutral (larger in lin. regress of tot. wage)
Factor Impacts on Probability of Earning > $150K

<table>
<thead>
<tr>
<th>coef.</th>
<th>conf. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0 (const.)</td>
<td>-3.85 ± 0.28</td>
</tr>
<tr>
<td>β_1 (Age)</td>
<td>0.005 ± 0.006</td>
</tr>
<tr>
<td>β_2 (MS)</td>
<td>0.71 ± 0.12</td>
</tr>
<tr>
<td>β_3 (PhD)</td>
<td>1.42 ± 0.18</td>
</tr>
<tr>
<td>β_4 (spons.)</td>
<td>0.06 ± 0.13</td>
</tr>
<tr>
<td>β_5 (China)</td>
<td>-1.45 ± 0.43</td>
</tr>
<tr>
<td>β_6 (India)</td>
<td>0.16 ± 0.23</td>
</tr>
</tbody>
</table>

- MS, PhD: large pos. impact
- China: large neg. impact
- India: small pos. or neutral (larger in lin. regress of tot. wage)
- other foreign: small pos. or neutral
Factor Impacts on Probability of Earning > $150K

<table>
<thead>
<tr>
<th>coef.</th>
<th>conf. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0 (const.)</td>
<td>-3.85 ± 0.28</td>
</tr>
<tr>
<td>β_1 (Age)</td>
<td>0.005 ± 0.006</td>
</tr>
<tr>
<td>β_2 (MS)</td>
<td>0.71 ± 0.12</td>
</tr>
<tr>
<td>β_3 (PhD)</td>
<td>1.42 ± 0.18</td>
</tr>
<tr>
<td>β_4 (spons.)</td>
<td>0.06 ± 0.13</td>
</tr>
<tr>
<td>β_5 (China)</td>
<td>-1.45 ± 0.43</td>
</tr>
<tr>
<td>β_6 (India)</td>
<td>0.16 ± 0.23</td>
</tr>
</tbody>
</table>

- MS, PhD: large pos. impact
- China: large neg. impact
- India: small pos. or neutral (larger in lin. regress of tot. wage)
- other foreign: small pos. or neutral
- no evidence of overall “foreign genius”
Why Negative Impact in China Case?

- Possibly reflects 填鸭 子—“tian yazi,” Chinese term for rote-memory learning.
Why Negative Impact in China Case?

- Possibly reflects 填鸭 子—“tian yazi,” Chinese term for rote-memory learning.
- Governments of China, Japan, S. Korea and Taiwan have all tried to remedy this.
- Language effects?
ACM Dissertation Awards

\[\text{names used as proxy}\]
ACM Dissertation Awards

- Assoc. for Computing Machinery, the main professional CS body

\[2^{\text{names used as proxy}}\]
ACM Dissertation Awards

- Assoc. for Computing Machinery, the main professional CS body
- 58 awards since 1982

\footnote{2names used as proxy}
ACM Dissertation Awards

- Assoc. for Computing Machinery, the main professional CS body
- 58 awards since 1982
- 2 from China, 8 from India

\(^2\)names used as proxy
ACM Dissertation Awards

- Assoc. for Computing Machinery, the main professional CS body
- 58 awards since 1982
- 2 from China, 8 from India
- 25 of the 58 foreign, slightly underrepresented.

\[2\text{ names used as proxy}\]
ACM Dissertation Awards

- Assoc. for Computing Machinery, the main professional CS body
- 58 awards since 1982
- 2 from China, 8 from India\(^2\)
- 25 of the 58 foreign, slightly underrepresented.
- Again, no evidence that the foreign students are outperforming the domestic ones.

\(^2\)names used as proxy
Several recent papers on foreign-nationals in patent apps. in the U.S., e.g. (Wadhwa et al., 2007), (Kerr and Lincoln, 2010). But those merely find that immigrants participate in a lot of patents—hardly surprising, given their prevalence in the tech industry. But only one has calculated per capita patents by immigrants, (Hunt, 2010). She finds after controlling for field and education level: ...both main work visa groups and student/trainee visa holders have statistically significantly lower patenting probabilities than natives... This is especially interesting in that the second group is the one the industry lobbyists highlight.
Several recent papers on foreign-nationals in patent apps. in the U.S., e.g. (Wadhwa et al, 2007), (Kerr and Lincoln, 2010).
Several recent papers on foreign-nationals in patent apps. in the U.S., e.g. (Wadhwa et al, 2007), (Kerr and Lincoln, 2010).

But those merely find that immigrants participate in a lot of patents—hardly surprising, given their prevalence in the tech industry.

But only one has calculated per capita patents by immigrants, (Hunt, 2010). She finds after controlling for field and education level:

- both main work visa groups and student/trainee visa holders have statistically significantly lower patenting probabilities than natives...

This is especially interesting in that the second group is the one the industry lobbyists highlight.
Several recent papers on foreign-nationals in patent apps. in the U.S., e.g. (Wadhwa et al, 2007), (Kerr and Lincoln, 2010).

But those merely find that immigrants participate in a lot of patents—hardly surprising, given their prevalence in the tech industry.

But only one has calculated *per capita* patents by immigrants, (Hunt, 2010). She finds after controlling for field and education level:

...both main work visa groups and student/trainee visa holders have statistically significantly lower patenting probabilities than natives...
Several recent papers on foreign-nationals in patent apps. in the U.S., e.g. (Wadhwa et al, 2007), (Kerr and Lincoln, 2010).

But those merely find that immigrants participate in a lot of patents—hardly surprising, given their prevalence in the tech industry.

But only one has calculated per capita patents by immigrants, (Hunt, 2010). She finds after controlling for field and education level:

...both main work visa groups and student/trainee visa holders have statistically significantly lower patenting probabilities than natives...

This is especially interesting in that the second group is the one the industry lobbyists highlight.
Final Remarks

Most of the sponsored foreign workers appear to be of ordinary talent. But again, some are indeed truly outstanding talents. We should facilitate the immigration of such talents.

Recently there has been some concern about long green card waits for employer-sponsored workers. However, for PhDs, who have their own category, the wait continues to be short.
Final Remarks

- Most of the sponsored foreign workers appear to be of ordinary talent.
Final Remarks

- Most of the sponsored foreign workers appear to be of ordinary talent.
- But again, some are indeed truly outstanding talents.
Final Remarks

- Most of the sponsored foreign workers appear to be of ordinary talent.
- But again, some are indeed truly outstanding talents.
- We should facilitate the immigration of such talents.
Most of the sponsored foreign workers appear to be of ordinary talent.

But again, some are indeed truly outstanding talents.

We should facilitate the immigration of such talents.

Recently there has been some concern about long green card waits for employer-sponsored workers. However, for PhDs, who have their own category, the wait continues to be short.
These slides, and the R programming code used to compile the statistics, are available at http://heather.cs.ucdavis.edu/BGIT.html