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Attitudes and worries:

• “With Big Data, you don’t need inference methods.”

• “With Machine Learning, you don’t need statistics.”

• Stat community left out of the Big Data revolution (e.g.
Amstat News, June 2013).
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Yes, stat is still needed!

Actually, stat is needed more than ever, e.g.:

• Inference is an issue even for big n, once one considers
subsets, where n becomes smaller. Same if do not have
p << n.

• Almost all machine learning techniques are revivals of old
stat methods. And if you don’t understand stat, you won’t
be able to use ML methods effectively.

• An old stat technique—nonparametric curve
estimation—now more useful than ever, for Big Data
Graphics.

• The Curse of Dimensionality hasn’t gone away. Impossible
to understand without stat.
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Setting

Consider the classical (though not universal) data format:

• n observations/cases/instances/...

• p variables/features/attributes/...

• Assumed i.i.d.

(Here I’m trying to include terminology from the nonstat
communities.)
Does “Big” Data mean big n or big p or both?
This talk will contain one “big n” section and two “big p”
section.
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Big-n can be handled

Big n can generally be handled:

• Many (though certainly not all) computations “additive,”
thus “embarrassingly parallel.”

• Thus amenable to parallel computation, especially
distributed data, MapReduce etc.

• “Chunks averaging method” (CAM) (Fan et al, 2007;
Matloff, 2010; etc.) can turn most statistical computations
into embarrassingly parallel. (“Software alchemy.”)
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Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.

• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.

• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup.

E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads.

Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Chunk Averaging Method

• Key point: CAM converts non-embaarrassingly parallel
algs to additive ones that are statistically equivalent
(same standard errors).

• Example: Regression.

• Break observations into chunks.
• Fit regression equation to each chunk.
• Average the results.

• Produces statistically equivalent results for large n.

• Essentially and i.i.d.-based method, e.g. quantile
regression, hazard function estimation, tree methods, etc.

• Superlinear speedup. E.g. quantile regression, 5.31X for 4
threads. Can be faster even for just one core.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Part II

Part II: A New Graphical
Approach to Big-p

Problem



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Part II

Part II: A New Graphical
Approach to Big-p

Problem



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Graphing Lots of Variables

Issues:

• Can deal (a little bit) better with big-p if we can display
lots of variables on the same graph.

• Can’t display all at once, but try to get at least several.

• Problems:

• Displaying > 2 variables on a 2-dimensional device.
• “Black screen problem”—with big n, at least parts of the

screen become solid black.
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Graphing Lots of Variables

Some existing methods:

• Grand tours: Show sequence of rotations and projections,
e.g. tourr in R.
Nice, visually appealing. But hard to discern exact
relations, and suffers from black-screen problem.

• Parallel coordinates: Draw one vertical axis for each
variable. Draw a set of connecting lines for each data
point.
Hard to understand noncontiguous axes, black screen
problem.
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Statistics to the rescue!

An obvious solution to the black-screen problem:
nonparametric curve estimation.
Example: Scatter plots.

• Ordinary plot would fill the screen.

• Solution: Draw the nonpar. 2-dim. density estimate
instead.

• That makes 3 dimensions, but code third dimension
(density height) via color.

• E.g. scatterSmooth() in R.
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Displaying 3 Vars. in 2 Dims.

The scatterSmooth() example actually shows how to display
3 variables in 2 dimensions:
Say have variables X, Y, Z.

• Plot regression function of Z, color coded, against X and
Y.

• Regression function: m(s,t) = E(Z | X = s, Y = t) (i.e.
general, not assuming param. model).

• Use nonpar. estimation, e.g. nearest-neighbor.

• 3 vars. in 2 dims.! (No perspective plotting.)
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Proposed Boundary Method

I introduce here a new approach to plotting multiple variables
in 2 dims., based on “boundary curves.”
First, again consider 3 variables, X, Y and Z.

• For user-chosen b, boundary is the set

{(s, t) : E (Z |X = s,Y = t) = b} (1)

• User might set b = E(Z) (overall, unconditional mean).

• Plot estimate of the boundary curve.

• Displaying 3 vars. in 2 dims.
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Boundary Plot Example

• Bank account data, UCI repository.

• X = age of customer, Y = current bank account, Z = say
Yes to open new type of account

• b = EZ = P(Z = 1)
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Bank Example

• Above line
means,
above-avg.
prob. sign up
for new
account.

• Near retire ⇒
“hardest sell”!

• Those around
60 need a
large balance
before willing
to try new
account.
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More Than 3 Vars. in 2 Dims.

• Plotting boundaries has been done before.

• But the idea here is to display several boundaries at once,
so as to display more variables in one 2-dim. graph.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

More Than 3 Vars. in 2 Dims.

• Plotting boundaries has been done before.

• But the idea here is to display several boundaries at once,
so as to display more variables in one 2-dim. graph.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

More Than 3 Vars. in 2 Dims.

• Plotting boundaries has been done before.

• But the idea here is to display several boundaries at once,
so as to display more variables in one 2-dim. graph.



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Example: Adult Data

• UCI Adult data

• X = age, Y = education, Z = high income

• But now add a 4th variable: W = gender

• Plot 2 boundary curves, one male and one female.

• Thus display 4 variables in 2 dims.
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Adult Example

• Above line
means,
higher-than-
avg. prob. of
high income.

• Before age
35, not much
difference.

• After age 35,
women need
much more
education
than men to
likely have
high income.
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Example: Flight Lateness

• Airline lateness data.

• X = departure delay, Y = distance, Z = arrival lateness,
W = originating airport (here, SFO, IAD, IAH), so again,
displaying 4 variables in 2 dims.

• 3 curves, one for each airport

• Could add V = daytime vs. evening, for 6 curves, thus
displaying 5 variables in 2 dims.

• Could plot straight regressions too, but boundaries always
enable us to plot “one more variable.”
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Airline Example

• Above line
means,
higher-than-
avg. mean
delay.

• SFO seems to
be doing
better. Need
a very long
flight to have
above-avg.
delay, relative
to the others.
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Computation

• R’s (contour() not used (don’t want “islands”).

• Estimate regression (via fast kNN, FNN library).

• Find “boundary band,” all points near the estimate
boundary.

• Smooth the band.
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Parallel Computation

Computation can be voluminous.

• Parallel processing.

• Take advantage of superlinearity from CAM.

• Break into chunks, but only find near nghbrs. within
chunks, not across chunks.

• The“A” part of CAM comes in the smoothing of the band.
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Part III

Part III: Big p and the
Curse of Dimensionality
Exorcizing the Curse of Dimensionality

Some small steps in that direction.
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Big p

• Theoretical considerations imply that should have p <
√
n

in regression case (Portnoy, 1968).

• Yet today p >> n is commonplace.

• This causes “multiple inference” problems (e.g. familywise
error rates).

• So, e.g., CI radii 1.96 std.err.(θ̂) might NOT be
“essentially 0.” I.e., Big n not big after all.

• And the ever-present Curse of Dimensionality.
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Principle Components Analysis

• What sizes of p relative to n might be problematic for
PCA?

• Sample covariance matrix V has p(p-1)/2 distinct entries.
• Data matrix has np entries.
• So V is completely determined (except roundoff error) if np

= p(p-1)/2.
• So, have problem if p > 2n, roughly.
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PCA Experiment

Simulation experiment:

• Y1, Y2 indep. N(0,1); X1 = Y1 + Y2, X2 = Y1 − Y2,
X3, ...,Xp iid N(0,1), indep. of X1, X2.

• First PC should be (1,0,0,...) or (0,1,0,...).

> s im
funct ion ( n , p ) {

y1 <− rnorm ( n ) ; y2 <− rnorm ( n ) ;
x1 <− y1+y2 ; x2 <− y1−y2 ; p2 <− p − 2
x <−

cbind ( x1 , x2 , matrix ( rnorm ( n∗p2 ) , ncol=p2 ) )
c v r <− cov ( x )
which .max(

abs ( eigen ( cvr , symmetr ic=T)$ v e c t o r s [ , 1 ] ) )
}



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

PCA Experiment

Simulation experiment:

• Y1, Y2 indep. N(0,1); X1 = Y1 + Y2, X2 = Y1 − Y2,
X3, ...,Xp iid N(0,1), indep. of X1, X2.

• First PC should be (1,0,0,...) or (0,1,0,...).

> s im
funct ion ( n , p ) {

y1 <− rnorm ( n ) ; y2 <− rnorm ( n ) ;
x1 <− y1+y2 ; x2 <− y1−y2 ; p2 <− p − 2
x <−

cbind ( x1 , x2 , matrix ( rnorm ( n∗p2 ) , ncol=p2 ) )
c v r <− cov ( x )
which .max(

abs ( eigen ( cvr , symmetr ic=T)$ v e c t o r s [ , 1 ] ) )
}



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

PCA Experiment

Simulation experiment:

• Y1, Y2 indep. N(0,1); X1 = Y1 + Y2, X2 = Y1 − Y2,
X3, ...,Xp iid N(0,1), indep. of X1, X2.

• First PC should be (1,0,0,...) or (0,1,0,...).

> s im
funct ion ( n , p ) {

y1 <− rnorm ( n ) ; y2 <− rnorm ( n ) ;
x1 <− y1+y2 ; x2 <− y1−y2 ; p2 <− p − 2
x <−

cbind ( x1 , x2 , matrix ( rnorm ( n∗p2 ) , ncol=p2 ) )
c v r <− cov ( x )
which .max(

abs ( eigen ( cvr , symmetr ic=T)$ v e c t o r s [ , 1 ] ) )
}



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

PCA Experiment

Simulation experiment:

• Y1, Y2 indep. N(0,1); X1 = Y1 + Y2, X2 = Y1 − Y2,
X3, ...,Xp iid N(0,1), indep. of X1, X2.

• First PC should be (1,0,0,...) or (0,1,0,...).

> s im
funct ion ( n , p ) {

y1 <− rnorm ( n ) ; y2 <− rnorm ( n ) ;
x1 <− y1+y2 ; x2 <− y1−y2 ; p2 <− p − 2
x <−

cbind ( x1 , x2 , matrix ( rnorm ( n∗p2 ) , ncol=p2 ) )
c v r <− cov ( x )
which .max(

abs ( eigen ( cvr , symmetr ic=T)$ v e c t o r s [ , 1 ] ) )
}



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

PCA Experiment

Simulation experiment:

• Y1, Y2 indep. N(0,1); X1 = Y1 + Y2, X2 = Y1 − Y2,
X3, ...,Xp iid N(0,1), indep. of X1, X2.

• First PC should be (1,0,0,...) or (0,1,0,...).

> s im
funct ion ( n , p ) {

y1 <− rnorm ( n ) ; y2 <− rnorm ( n ) ;
x1 <− y1+y2 ; x2 <− y1−y2 ; p2 <− p − 2
x <−

cbind ( x1 , x2 , matrix ( rnorm ( n∗p2 ) , ncol=p2 ) )
c v r <− cov ( x )
which .max(

abs ( eigen ( cvr , symmetr ic=T)$ v e c t o r s [ , 1 ] ) )
}



Long Live
(Big

Data-Fied)
Statistics!

Norm Matloff
University of
California at

Davis

Simulation, cont’d.

Return value from sim() should be 1 or 2. Let’s see:

> s im ( 5 0 0 , 4 0 0 )
[ 1 ] 1
> s im ( 5 0 0 , 8 0 0 )
[ 1 ] 1
> s im ( 5 0 0 , 8 0 0 )
[ 1 ] 2
> s im ( 5 0 0 , 1 2 0 0 )
[ 1 ] 439
> s im ( 5 0 0 , 1 2 0 0 )
[ 1 ] 2
> s im ( 5 0 0 , 1 2 0 0 )
[ 1 ] 1
> s im ( 5 0 0 , 1 2 0 0 )
[ 1 ] 905
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Simulation, cont’d.

• When n < p/2—very common in practice!—sometimes
right but sometimes get phantom PCs.

• On the other hand, results of Johnstone (2000) suggest
that as long as n > p/2 we might be OK.

• Moreover, in practice the variables are correlated, often
very highly so, in regular patterns. I suspect this makes it
“more OK.”
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Exorcizing the Curse?

• The term curse of dimensionality goes back 50 years.

• In last 10-15 years, it has gotten scarier: Berry(1999)
proved that any 2 points are approximately the same
distance from each other!

• So, e.g., nearest-neighbor methods look iffy.

• My own rough derivation:

• Suppose the p distance components are iid.
•

√
Var(distance)/E (distance)→ 0 as p− >∞

• So, distances are approximately constant.
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Some Hope

Some Hope:

• But all that involves equally-weighted components in
distance.

• Yet, arguably we should have weights, according to
importance of the variables.

• Then the above problem goes away. (Coef. of var. does
not go to 0.)

• But how set the weights?

• Stay tuned...
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Misc.

Online materiasl:
The visualization code is available for your use and
comments/suggestions:
http://heather.cs.ucdavis.edu/BigDataVis.html

These slides are there too.
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