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Overview

• Classification problem, multiple classes.

• ni = number of training data points in class i

• Termed unbalanced if some ni is highly dominant, say
100X larger than the others.

• “Problem”: Standard modeling techniques will tend to
predict all, or almost all, new cases to be the dominant
class.

• Standard “solution”: Artificially balance the training data
classes via resampling.

• BUT NOT A GOOD IDEA. Distortionary and harmful.

• One can do much better.
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Preparation

“Read directions before use”

• Data Science is NOT Computer Science.

• DS is NOT just a matter of knowing a bunch of packages
and functions.

• Good DS means:

• Careful thought about one’s goals.
• Careful selection of functions (or writing new code

altogether) to fit those goals.
• Thoughtful interpretation of one’s results, possibly

modifying and re-running.

• Beware of complicated solutions to simple problems.
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Provenance of This Talk

• N. Matloff, Statistical Regression and Classification: from
Linear Models to Machine Learning, CRC, 2017 (recipient
of the Ziegal Award), 193-202

• John Mount, Learning from Imbalanced Classes,
https://win-vector.com/2020/08/07/dont-use-
classification-rules-for-classification-problems/,
2020

• More recent joint work with John Mount and Nina Zumel.
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Motivating Example: Missed
Appointments Data

• Want to predict no-shows for medical appointments.

• About 20% of training data is no-shows.

• Try, say, k-NN (from regtools package).

> p r ed s ←
kNN(ma2[ , −89] ,ma2 [ , 8 9 ] , ma2 [ i d x s ,−89] ,50)

> tab l e ( p r ed s $ yp r ed s )
0 1

53 9947

j

• Almost all predictions are for Class 1, not very useful.
(There is also a question of quality of fit. A local-linear
model might be better, not pursued here.)
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The “Follow the Crowd” Approach

• Source of the problem: Unbalanced data.

• Assumed solution: Force the data to be balanced, by
resampling.

• Downsample: Throw out data from dominant class.
• Upsample: Make up extra data for minority class.
• Resample: Essentially a bootstrap sampling, but weighted

toward the minority class.
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No Justification for Such
Approaches

• None of those approaches makes sense.

• Throw OUT data? Really?

• Distort the data? Has anyone thought about the
consequences?

• And anyway, what’s wrong with the simple, obvious
“person on the street” solution?
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Person-on-the-Street Approach

• Those with no background may have more common sense.

• Person-on-street would say, “Well, just identify which
patients are at substantial risk of being no-shows.”
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Person-on-Street, cont’d.

Fitted values, training data:

> tab l e ( p r ed s $ r e g e s t s )
0 .34 0 .4 0 .42 0 .44 0 .46 0 .48 0 .5 0 .52 0 .54 0 .56

5 6 2 7 10 9 14 26 39 47
0 .58 0 .6 0 .62 0 .64 0 .66 0 .68 0 .7 0 .72 0 .74 0 .76

89 143 156 205 273 343 340 480 585 631
0 .78 0 .8 0 .82 0 .84 0 .86 0 .88 0 .9 0 .92 0 .94 0 .96
757 840 861 901 847 778 621 437 285 153

0 .98 1
62 48

E.g. 2779 have risk ≥ 0.25 of no-show.
So, just flag future cases with risk over 0.25, and give them
extra reminders about the appointment etc.
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Comments

• The fit, without balancing, is not “wrong.” The use to
which it was put was not useful, true, but not wrong.

• But in predicting the class of new case, this assumed goal
is min overall misclassification rate, again not useful here.

• Could do a formal utility analysis, different costs for
different types of misclassification. Good if we want to
impress people with our math prowess.

• But the person-on-the-street approach is simpler and
fulfills our goals.

• And, analysis with artificially balanced data IS wrong.
(Next slide.)
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impress people with our math prowess.

• But the person-on-the-street approach is simpler and
fulfills our goals.

• And, analysis with artificially balanced data IS wrong.
(Next slide.)
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Harmful Distortions

• Let πi denote the true population proportion for class i .
E.g. in the Missed Appointments example, π1 is the
population proportion of patients who are no-shows.

• The algorithm you use, doesn’t matter which, implicitly
assumes that the class sizes ni reflect the πi , i.e.
π̂i = ni/n.

• So, if you artificially balance your data, your algorithm will
think all the πi are equal.

• Thus, in predicting a new case, your algorithm will
OVERestimate the (conditional) probability of a class for
which πi is smaller than average, and UNDERestimate in
the case of a class for which πi is larger than average,

• So, YES, it MATTERS.
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What If Data Are Already
Artificially Balanced?

• We may have data, given to us by others, in which the
actual data collection was done in a balanced manner.

• Ah, so no problem, right? The data is already balanced.
Wrong!

• Same problem as above, wrong estimates of the πi .

• SOLUTION: If you have estimates of the true class
probabilities, I have an update formula to convert the
estimated conditional class probabilities to the proper
values. Derivation in
github.com/matloff/regtools/UnbalancedClasses.md.

• Example: UCI Letters data. All ni/n ≈ 1/26, but true
values at http://www.math.cornell.edu/ mec/2003-
2004/cryptography/subs/frequencies.html.
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What If Class Probabilities Vary by
Site?

• Interesting example (Efron JASA → Scientific American).

• Machine diagnosis of pneumonia from X-ray images, Mt.
Sinai Hospital.

• Predicted new cases at Mt. Sinai well, but not at other
facilities.

• The researchers found cause: The πi vary from hospital to
hospital.

• This can be solved using my update formula.
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R Software

Given a new case, how do we get those (conditional) estimated
probabilities of the different classes?
E.g. glm(), in the Missed Appointments data, on a set of new
cases ccf:

> g l o u t ← glm ( C l a s s ∼ . , data=ccf , f am i l y=b inomia l )
> condprobs ← p red i c t ( g l ou t , cc f , t ype=’ r e s pon s e ’ )
> tocheck ← which ( condprobs > 0 . 25 )
> names ( tocheck ) ← NULL
> head ( tocheck )
[ 1 ] 542 6109 6332 6335 6337 6339

So we’d check cases 542, 6109 etc. by hand.
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R Software, cont’d.

E.g. randomForests().
More work to do here, but a wrapper could be written:

> c c f $C l a s s ← as . f a c to r ( c c f $C l a s s )
> r f o u t ← randomForest ( C l a s s ∼ . , data=cc f )
> predout ← p red i c t ( r f ou t , cc f , t ype=’ r e s pon s e ’ )
> t r e e g u e s s e s ←

predout$ i n d i v i d u a l # c l a s s g u e s s e s , each t r e e

> t g s ← as . matr ix ( t r e e g u e s s e s )
> probs ← apply ( tgs , 1 ,

f unct ion ( rw ) mean( as . numeric ( rw ) ) )
> tocheck ← which ( p robs > 0 . 25 )
> head ( tocheck )
[ 1 ] 70 542 624 1747 4921 6109
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R Software, cont’d.

Also, the formula mentioned earlier for updating from incorrect
to correct unconditional class probabilities is implemented in
the regtools:

c l a s s a d j u s t ( econdprobs , wrongprob1 , t r u ep rob1 )

By the way:
The regtools package has been greatly expanded since its last
upload to CRAN.
Now more than 80 functions for regression, classification and
machine learning.
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