Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

Parallel Coordinates-REVISITED

Norm Matloff
University of California at Davis (new collaborator: Yingkang Xie)

Bay Area R Users Group
November 12, 2013

Outline

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Outline

Norm Matloff
University of California at Davis
(new
collaborator: Yingkang Xie)

- What IS parallel coordinates, anyway?

Outline

Norm Matloff
University of California at Davis
(new
collaborator:
Yingkang Xie)

- What IS parallel coordinates, anyway?
- SEEMS to be a great tool.

Outline

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

- What IS parallel coordinates, anyway?
- SEEMS to be a great tool. But has MAJOR problems.

Outline

Norm Matloff University of California at Davis (new
collaborator: Yingkang Xie)

- What IS parallel coordinates, anyway?
- SEEMS to be a great tool. But has MAJOR problems.
- I will present a novel way to make parallel coordinates usable.

What IS Parallel Coordinates?

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

What IS Parallel Coordinates?

Norm Matloff University of California at Davis
(new collaborator: Yingkang Xie)

- Attempt to view multidimensional data on 2-dimensiohal screen.

What IS Parallel Coordinates?

Norm Matloff University of California at Davis
(new collaborator: Yingkang Xie)

- Attempt to view multidimensional data on 2-dimensiohal screen.
- Simple idea:

What IS Parallel Coordinates?

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

- Attempt to view multidimensional data on 2-dimensiohal screen.
- Simple idea:
- Draw a vertical line for each variable ("parallel coords.").

What IS Parallel Coordinates?

- Attempt to view multidimensional data on 2-dimensiohal screen.
- Simple idea:
- Draw a vertical line for each variable ("parallel coords.").
- For each data point, mark a dot on each vertical line, at the value of that variable for that data point.

What IS Parallel Coordinates?

- Attempt to view multidimensional data on 2-dimensiohal screen.
- Simple idea:
- Draw a vertical line for each variable ("parallel coords.").
- For each data point, mark a dot on each vertical line, at the value of that variable for that data point.
- For each data point, "connect the dots."

What IS Parallel Coordinates?

- Attempt to view multidimensional data on 2-dimensiohal screen.
- Simple idea:
- Draw a vertical line for each variable ("parallel coords.").
- For each data point, mark a dot on each vertical line, at the value of that variable for that data point.
- For each data point, "connect the dots."
- Resulting graph: a jagged line for each of your original data point.

What IS Parallel Coordinates?

- Attempt to view multidimensional data on 2-dimensiohal screen.
- Simple idea:
- Draw a vertical line for each variable ("parallel coords.").
- For each data point, mark a dot on each vertical line, at the value of that variable for that data point.
- For each data point, "connect the dots."
- Resulting graph: a jagged line for each of your original data point.
- Can then try to find relations between variables by looking at line patterns.

What IS Parallel Coordinates?

- Attempt to view multidimensional data on 2-dimensiohal screen.
- Simple idea:
- Draw a vertical line for each variable ("parallel coords.").
- For each data point, mark a dot on each vertical line, at the value of that variable for that data point.
- For each data point, "connect the dots."
- Resulting graph: a jagged line for each of your original data point.
- Can then try to find relations between variables by looking at line patterns.
- The operative word is "try."

Example: R cars data

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

REVISITED

Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

Example: R cars data

Parallel CoordinatesREVISITED

Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

Example: R cars data

- Each jagged line is one car.

Norm Matloff

 University of California at Davis (new collaborator: Yingkang Xie)
Example: R cars data

- Each jagged line is one car.
- Vertical axes are the variables, Cyl, Disp, Hp, etc.

Example: R cars data

- Each jagged line is one car.
- Vertical axes are the variables, Cyl, Disp, Hp, etc.
- ALREADY hard to interpret!

Example: R cars data

- Each jagged line is one car.
- Vertical axes are the variables, Cyl, Disp, Hp, etc.
- ALREADY hard to interpret!
- Note: Variables are typically centered and scaled.

Problems

Problems

Norm Matloff
University of California at

Davis
(new
collaborator: Yingkang Xie)

Hard to interpret, except in "small n, small p" data.

Problems

Norm Matloff
University of California at Davis
(new
collaborator: Yingkang Xie)

Hard to interpret, except in "small n, small p" data. ($\mathrm{p}=$ number of variables)

Problems

Norm Matloff University of California at

Davis
(new
collaborator: Yingkang Xie)

Hard to interpret, except in "small n, small p" data.
($\mathrm{p}=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Problems

Norm Matloff University of California at

Davis
(new
collaborator: Yingkang Xie)

Hard to interpret, except in "small n, small p" data.
($\mathrm{p}=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Typical solution:

Problems

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Hard to interpret, except in "small n, small p" data.
($\mathrm{p}=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Typical solution:
Allow user to interactively do various permutations of the axes.

Problems

Hard to interpret, except in "small n, small p" data.
($p=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Typical solution:
Allow user to interactively do various permutations of the axes.

Problem 2: Screen clutter!!!!

Problems

Hard to interpret, except in "small n, small p" data.
($p=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Typical solution:
Allow user to interactively do various permutations of the axes.

Problem 2: Screen clutter!!!!
Typical solutions:

Problems

Hard to interpret, except in "small n, small p" data.
($p=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Typical solution:
Allow user to interactively do various permutations of the axes.

Problem 2: Screen clutter!!!!
Typical solutions:

1. α blending (making pixels less dark).

Problems

Hard to interpret, except in "small n, small p" data.
($p=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Typical solution:
Allow user to interactively do various permutations of the axes.

Problem 2: Screen clutter!!!!
Typical solutions:

1. α blending (making pixels less dark).
2. Plotting line density instead of lines (equiv. to tonal, like α).

Problems

Hard to interpret, except in "small n, small p" data.
($p=$ number of variables)
Problem 1: Hard to see relation between "far apart" variables

Typical solution:
Allow user to interactively do various permutations of the axes.

Problem 2: Screen clutter!!!!
Typical solutions:

1. α blending (making pixels less dark).
2. Plotting line density instead of lines (equiv. to tonal, like α).
3. Look at random subset of the data.

Example of Clutter

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Example of Clutter

Norm Matloff University of California at

Davis
(new
collaborator: Yingkang Xie)

Example: Baseball Player data-height, weight, age (courtesy of UCLA Stat. Dept.)

Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

Example of Clutter

Example: Baseball Player data-height, weight, age (courtesy of UCLA Stat. Dept.)

Another Example of Clutter

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Another Example of Clutter

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Example: Wine Quality data-various chemical measures (UCI Repository)

Another Example of Clutter

Example: Wine Quality data—various chemical measures (UCI Repository)

Alpha Blending May Not Help
 Much

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Alpha Blending May Not Help

Much

α blending may not help much:

Norm Matloff

University of California at

Davis

(new
collaborator: Yingkang Xie)

Alpha Blending May Not Help Much

α blending may not help much:

Yikes!

Norm Matloff University of California at
 Davis
 (new
 collaborator:
 Yingkang Xie)

Yikes!

Norm Matloff University of California at
 Davis
 (new
 collaborator:
 Yingkang Xie)

Comments:

Yikes!

Norm Matloff University of California at

Davis
(new
collaborator:
Yingkang Xie)

Comments:

- Yikes!

Yikes!

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Comments:

- Yikes!
- "Don't let the picture intimidate you!"-A. Inselberg, one of the pioneers of parallel coordinates, speaking in general of cluttered p.c. plots

Yikes!

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Comments:

- Yikes!
- "Don't let the picture intimidate you!"-A. Inselberg, one of the pioneers of parallel coordinates, speaking in general of cluttered p.c. plots
- But it IS intimidating!

Yikes!

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Comments:

- Yikes!
- "Don't let the picture intimidate you!"-A. Inselberg, one of the pioneers of parallel coordinates, speaking in general of cluttered p.c. plots
- But it IS intimidating!
- Can TRY to exploit geometric properties:

Yikes!

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Comments:

- Yikes!
- "Don't let the picture intimidate you!"-A. Inselberg, one of the pioneers of parallel coordinates, speaking in general of cluttered p.c. plots
- But it IS intimidating!
- Can TRY to exploit geometric properties:
- X shape \Rightarrow negative ρ

Yikes!

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Comments:

- Yikes!
- "Don't let the picture intimidate you!"-A. Inselberg, one of the pioneers of parallel coordinates, speaking in general of cluttered p.c. plots
- But it IS intimidating!
- Can TRY to exploit geometric properties:
- X shape \Rightarrow negative ρ
- $<$ shape \Rightarrow positive ρ

Yikes!

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

Comments:

- Yikes!
- "Don't let the picture intimidate you!"-A. Inselberg, one of the pioneers of parallel coordinates, speaking in general of cluttered p.c. plots
- But it IS intimidating!
- Can TRY to exploit geometric properties:
- X shape \Rightarrow negative ρ
- $<$ shape \Rightarrow positive ρ
- Nice theory, form projective geometry, etc.

Example of Clutter, cont'd.

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Example of Clutter, cont'd.

Norm Matloff
University of California at Davis
(new
collaborator: Yingkang Xie)

Grouping by player position doesn't help much:

Example of Clutter, cont'd.

Grouping by player position doesn't help much:

Norm Matloff
University of California at

Davis
(new
collaborator: Yingkang Xie)

My approach:

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

My approach: Plot only a few "typical" lines.

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

My approach: Plot only a few "typical" lines.

- "Typical" means highest estimated multivariate density.

My Way

Norm Matloff University of California at Davis (new
collaborator: Yingkang Xie)

My approach: Plot only a few "typical" lines.

- "Typical" means highest estimated multivariate density.
- No clutter.

My Way

Norm Matloff University of California at Davis (new
collaborator: Yingkang Xie)

My approach: Plot only a few "typical" lines.

- "Typical" means highest estimated multivariate density.
- No clutter.
- Far-apart variables problem ameliorated.

My Way

Norm Matloff University of California at Davis (new

My approach: Plot only a few "typical" lines.

- "Typical" means highest estimated multivariate density.
- No clutter.
- Far-apart variables problem ameliorated.
- (Not related to parallel coordinate density plots.)

My Way

Norm Matloff University of California at Davis (new

My approach: Plot only a few "typical" lines.

- "Typical" means highest estimated multivariate density.
- No clutter.
- Far-apart variables problem ameliorated.
- (Not related to parallel coordinate density plots.)

Baseball Data, My Way

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Parallel CoordinatesREVISITED

Norm Matloff University of California at

Davis

(new
collaborator: Yingkang Xie)

Baseball Data, My Way

Baseball Data, My Way

Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

- "The monkeys stand for honesty, giraffes are insincere, elephants are kindly but they're dumb"-Simon \& Garfunkel song

Baseball Data, My Way

Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

- "The monkeys stand for honesty, giraffes are insincere, elephants are kindly but they're dumb"-Simon \& Garfunkel song
- Pitchers are typically tall, thin, young.

Baseball Data, My Way

- "The monkeys stand for honesty, giraffes are insincere, elephants are kindly but they're dumb"-Simon \& Garfunkel song
- Pitchers are typically tall, thin, young.
- Catchers typically are much heavier, older.

Baseball Data, My Way

- "The monkeys stand for honesty, giraffes are insincere, elephants are kindly but they're dumb"-Simon \& Garfunkel song
- Pitchers are typically tall, thin, young.
- Catchers typically are much heavier, older.
- Infielders typically shorter, thinner, younger.

Example: UCI Wine Quality Data

Norm Matloff University of California at

Davis

(new
collaborator: Yingkang Xie)

Example: UCI Wine Quality Data

Variables are chemical measures, plus a quality variable.

Example: UCI Wine Quality Data

Variables are chemical measures, plus a quality variable. I broke quality into 3 broad ranges.

Example: UCI Wine Quality Data

Variables are chemical measures, plus a quality variable. I broke quality into 3 broad ranges.

Example: UCI Wine Quality Data

Variables are chemical measures, plus a quality variable. I broke quality into 3 broad ranges.

Need domain expert to intrepret, but distinction between quality groups is clear.

How Many to Plot?

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Norm Matloff University of California at Davis
(new
collaborator: Yingkang Xie)

How Many to Plot?

We plot "a few of the most typical lines."

How Many to Plot?

We plot "a few of the most typical lines."

- My software asks the user to define "a few," in an argument m .

Norm Matloff University of California at Davis
(new
collaborator:

How Many to Plot?

We plot "a few of the most typical lines."

- My software asks the user to define "a few," in an argument m.
- Above plots had $\mathrm{m}=1$.

How Many to Plot?

Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

We plot "a few of the most typical lines."

- My software asks the user to define "a few," in an argument m .
- Above plots had $m=1$.
- m smaller \Rightarrow higher "typicalness"

How Many to Plot?

Norm Matloff University of California at Davis (new collaborator: Yingkang Xie)

More Features

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

More Features

Norm Matloff
University of California at Davis (new
collaborator: Yingkang Xie)

More features of the software (currently experimental):

More Features

Norm Matloff
University of California at Davis (new
collaborator: Yingkang Xie)

More features of the software (currently experimental):

- Cluster hunting.

More Features

Norm Matloff
University of California at Davis (new

More features of the software (currently experimental):

- Cluster hunting. Instead of finding global max of density, plot jagged line at each local maximum

More Features

Norm Matloff University of California at Davis (new

More features of the software (currently experimental):

- Cluster hunting. Instead of finding global max of density, plot jagged line at each local maximum
- Outlier hunting.

More Features

Norm Matloff University of California at Davis (new
collaborator: Yingkang Xie)

More features of the software (currently experimental):

- Cluster hunting. Instead of finding global max of density, plot jagged line at each local maximum
- Outlier hunting. Plot the least typical lines.

Computation

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Computation

Norm Matloff
University of California at Davis
(new
collaborator:
Yingkang Xie)

- R package available at http://heather.cs.ucdavis.edu/bdgraphs.html

Norm Matloff
University of California at

Davis
(new
collaborator:
Yingkang Xie)

Computation

- R package available at http://heather.cs.ucdavis.edu/bdgraphs.html
- Use k-NN density estimation.

Computation

Norm Matloff University of California at Davis (new
collaborator: Yingkang Xie)

- R package available at http://heather.cs.ucdavis.edu/bdgraphs.html
- Use k-NN density estimation.
- Use R's FNN ("fast nearest neighbor") library for some speed.

Computation

- R package available at http://heather.cs.ucdavis.edu/bdgraphs.html
- Use k-NN density estimation.
- Use R's FNN ("fast nearest neighbor") library for some speed.
- Use parallel computing for a lot more speed.

