
Tutorial on Python Curses Programming

Norman Matloff
University of California, Davis

c©2005-2007, N. Matloff

April 5, 2007

Contents

1 Overview 2

1.1 Function . 2

1.2 History . 2

1.3 Relevance Today . 3

2 Examples of Python Curses Programs 3

2.1 Useless Example . 3

2.2 Useful Example . 5

2.3 A Few Other Short Examples . 7

3 What Else Can Curses Do? 7

3.1 Curses by Itself . 7

4 Libraries Built on Top of Curses 7

5 If Your Terminal Window Gets Messed Up 7

6 Debugging 8

1

1 Overview

1.1 Function

Many widely-used programs need to make use of a terminal’s cursor-movement capabilities. A familiar
example is vi; most of its commands make use of such capabilities. For example, hitting the j key while
in vi will make the cursor move down line. Typing dd will result in the current line being erased, the lines
below it moving up one line each, and the lines above it remaining unchanged. There are similar issues in
the programming of emacs, etc.

The curses library gives the programmer functions (APIs, Application Program Interfaces) to call to take
such actions.

Since the operations available under curses are rather primitive—cursor movement, text insertion, etc.—
libraries have been developed on top of curses to do more advanced operations such as pull-down menus,
radio buttons and so on. More on this in the Python context later.

1.2 History

Historically, a problem with all this was that different terminals had different ways in which to specify a
given type of cursor motion. For example, if a program needed to make the cursor move up one line on a
VT100 terminal, the program would need to send the characters Escape, [, and A:

printf("%c%c%c",27,’[’,’A’);

(the character code for the Escape key is 27). But for a Televideo 920C terminal, the program would have
to send the ctrl-K character, which has code 11:

printf("%c",11);

Clearly, the authors of programs like vi would go crazy trying to write different versions for every terminal,
and worse yet, anyone else writing a program which needed cursor movement would have to “re-invent the
wheel,” i.e. do the same work that the vi-writers did, a big waste of time.

That is why the curses library was developed. The goal was to alleviate authors of cursor-oriented pro-
grams like vi of the need to write different code for different terminals. The programs would make calls to
the API library, and the library would sort out what to do for the given terminal type.

The library would know which type of terminal you were using, via the environment variable TERM. The
library would look up your terminal type in its terminal database (the file /etc/termcap). When you, the
programmer, would call the curses API to, say, move the cursor up one line, the API would determine
which character sequence was needed to make this happen.

For example, if your program wanted to clear the screen, it would not directly use any character sequences
like those above. Instead, it would simply make the call

clear();

and curses would do the work on the program’s behalf.

2

1.3 Relevance Today

Many dazzling GUI programs are popular today. But although the GUI programs may provide more “eye
candy,” they can take a long time to load into memory, and they occupy large amounts of territory on your
screen. So, curses programs such as vi and emacs are still in wide usage.

Interestingly, even some of those classical curses programs have also become somewhat GUI-ish. For
instance vim, the most popular version of vi (it’s the version which comes with most Linux distributions, for
example), can be run in gvim mode. There, in addition to having the standard keyboard-based operations,
one can also use the mouse. One can move the cursor to another location by clicking the mouse at that point;
one can use the mouse to select blocks of text for deletion or movement; etc. There are icons at the top of
the editing window, for operations like Find, Make, etc.

2 Examples of Python Curses Programs

2.1 Useless Example

The program below, crs.py, does not do anything useful. Its sole purpose is to introduce some of the
curses APIs.

There are lots of comments in the code. Read them carefully, first by reading the introduction at the top
of the file, and then going to the bottom of the file to read main(). After reading the latter, read the other
functions.

1 # crs.py; simple illustration of curses library, consisting of a very
2 # unexciting "game"; keeps drawing the user’s input characters into a
3 # box, filling one column at a time, from top to bottom, left to right,
4 # returning to top left square when reach bottom right square
5

6 # the bottom row of the box is displayed in another color
7

8 # usage: python crs.py boxsize
9

10 # how to play the "game": keep typing characters, until wish to stop,
11 # which you do by hitting the q key
12

13 import curses, sys, traceback
14

15 # global variables
16 class gb:
17 boxrows = int(sys.argv[1]) # number of rows in the box
18 boxcols = boxrows # number of columns in the box
19 scrn = None # will point to window object
20 row = None # current row position
21 col = None # current column position
22

23 def draw(chr):
24 # paint chr at current position, overwriting what was there; if it’s
25 # the last row, also change colors; if instead of color we had
26 # wanted, say, reverse video, we would specify curses.A_REVERSE instead of
27 # curses.color_pair(1)
28 if gb.row == gb.boxrows-1:
29 gb.scrn.addch(gb.row,gb.col,chr,curses.color_pair(1))
30 else:
31 gb.scrn.addch(gb.row,gb.col,chr)
32 # implement the change
33 gb.scrn.refresh()

3

34 # move down one row
35 gb.row += 1
36 # if at bottom, go to top of next column
37 if gb.row == gb.boxrows:
38 gb.row = 0
39 gb.col += 1
40 # if in last column, go back to first column
41 if gb.col == gb.boxcols: gb.col = 0
42

43 # this code is vital; without this code, your terminal would be unusable
44 # after the program exits
45 def restorescreen():
46 # restore "normal"--i.e. wait until hit Enter--keyboard mode
47 curses.nocbreak()
48 # restore keystroke echoing
49 curses.echo()
50 # required cleanup call
51 curses.endwin()
52

53 def main():
54 # first we must create a window object; it will fill the whole screen
55 gb.scrn = curses.initscr()
56 # turn off keystroke echo
57 curses.noecho()
58 # keystrokes are honored immediately, rather than waiting for the
59 # user to hit Enter
60 curses.cbreak()
61 # start color display (if it exists; could check with has_colors())
62 curses.start_color()
63 # set up a foreground/background color pair (can do many)
64 curses.init_pair(1,curses.COLOR_RED,curses.COLOR_WHITE)
65 # clear screen
66 gb.scrn.clear()
67 # set current position to upper-left corner; note that these are our
68 # own records of position, not Curses’
69 gb.row = 0
70 gb.col = 0
71 # implement the actions done so far (just the clear())
72 gb.scrn.refresh()
73 # now play the "game"
74 while True:
75 # read character from keyboard
76 c = gb.scrn.getch()
77 # was returned as an integer (ASCII); make it a character
78 c = chr(c)
79 # quit?
80 if c == ’q’: break
81 # draw the character
82 draw(c)
83 # restore original settings
84 restorescreen()
85

86 if __name__ ==’__main__’:
87 # in case of execution error, have a smooth recovery and clear
88 # display of error message (nice example of Python exception
89 # handling); it is recommended that you use this format for all of
90 # your Python curses programs; you can automate all this (and more)
91 # by using the built-in function curses.wrapper(), but we’ve shown
92 # it done "by hand" here to illustrate the issues involved
93 try:
94 main()
95 except:
96 restorescreen()
97 # print error message re exception
98 traceback.print_exc()

4

2.2 Useful Example

The following program allows the user to continuously monitor processes on a Unix system. Although some
more features could be added to make it more useful, it is a real working utility.

1 # psax.py; illustration of curses library
2

3 # runs the shell command ’ps ax’ and saves the last lines of its output,
4 # as many as the window will fit; allows the user to move up and down
5 # within the window, killing those processes
6

7 # run line: python psax.py
8

9 # user commands:
10

11 # ’u’: move highlight up a line
12 # ’d’: move highlight down a line
13 # ’k’: kill process in currently highlighted line
14 # ’r’: re-run ’ps ax’ for update
15 # ’q’: quit
16

17

18 # possible extensions: allowing scrolling, so that the user could go
19 # through all the ’ps ax’ output; allow wraparound for long lines; ask
20 # user to confirm before killing a process
21

22 import curses, os, sys, traceback
23

24 # global variables
25 class gb:
26 scrn = None # will point to Curses window object
27 cmdoutlines = [] # output of ’ps ax’ (including the lines we don’t
28 # use, for possible future extension)
29 winrow = None # current row position in screen
30 startrow = None # index of first row in cmdoutlines to be displayed
31

32 def runpsax():
33 p = os.popen(’ps ax’,’r’)
34 gb.cmdoutlines = []
35 row = 0
36 for ln in p:
37 # don’t allow line wraparound, so truncate long lines
38 ln = ln[:curses.COLS]
39 # remove EOLN if it is still there
40 if ln[-1] == ’\n’: ln = ln[:-1]
41 gb.cmdoutlines.append(ln)
42 p.close()
43

44 # display last part of command output (as much as fits in screen)
45 def showlastpart():
46 # clear screen
47 gb.scrn.clear()
48 # prepare to paint the (last part of the) ’ps ax’ output on the screen
49 gb.winrow = 0
50 ncmdlines = len(gb.cmdoutlines)
51 # two cases, depending on whether there is more output than screen rows
52 if ncmdlines <= curses.LINES:
53 gb.startrow = 0
54 nwinlines = ncmdlines
55 else:
56 gb.startrow = ncmdlines - curses.LINES - 1
57 nwinlines = curses.LINES
58 lastrow = gb.startrow + nwinlines - 1
59 # now paint the rows
60 for ln in gb.cmdoutlines[gb.startrow:lastrow]:
61 gb.scrn.addstr(gb.winrow,0,ln)

5

62 gb.winrow += 1
63 # last line highlighted
64 gb.scrn.addstr(gb.winrow,0,gb.cmdoutlines[lastrow],curses.A_BOLD)
65 gb.scrn.refresh()
66

67 # move highlight up/down one line
68 def updown(inc):
69 tmp = gb.winrow + inc
70 # ignore attempts to go off the edge of the screen
71 if tmp >= 0 and tmp < curses.LINES:
72 # unhighlight the current line by rewriting it in default attributes
73 gb.scrn.addstr(gb.winrow,0,gb.cmdoutlines[gb.startrow+gb.winrow])
74 # highlight the previous/next line
75 gb.winrow = tmp
76 ln = gb.cmdoutlines[gb.startrow+gb.winrow]
77 gb.scrn.addstr(gb.winrow,0,ln,curses.A_BOLD)
78 gb.scrn.refresh()
79

80 # kill the highlighted process
81 def kill():
82 ln = gb.cmdoutlines[gb.startrow+gb.winrow]
83 pid = int(ln.split()[0])
84 os.kill(pid,9)
85

86 # run/re-run ’ps ax’
87 def rerun():
88 runpsax()
89 showlastpart()
90

91 def main():
92 # window setup
93 gb.scrn = curses.initscr()
94 curses.noecho()
95 curses.cbreak()
96 # rpdb.set_trace() (I used RPDB for debugging)
97 # run ’ps ax’ and process the output
98 gb.psax = runpsax()
99 # display in the window

100 showlastpart()
101 # user command loop
102 while True:
103 # get user command
104 c = gb.scrn.getch()
105 c = chr(c)
106 if c == ’u’: updown(-1)
107 elif c == ’d’: updown(1)
108 elif c == ’r’: rerun()
109 elif c == ’k’: kill()
110 else: break
111 restorescreen()
112

113 def restorescreen():
114 curses.nocbreak()
115 curses.echo()
116 curses.endwin()
117

118 if __name__ ==’__main__’:
119 try:
120 main()
121 except:
122 restorescreen()
123 # print error message re exception
124 traceback.print_exc()

Try running it yourself!

6

2.3 A Few Other Short Examples

See the directory Demo/curses in the Python source code distribution

3 What Else Can Curses Do?

3.1 Curses by Itself

The examples above just barely scratch the surface. We won’t show further examples here, but to illus-
trate other operations, think about what vi, a curses-based program, must do in response to various user
commands, such as the following (suppose our window object is scrn):

• k command, to move the cursor up one line: might call scrn.mov(r,c), which moves the curses
cursor to the specified row and column1

• dd command, to delete a line: might call scrn.deleteln(), which causes the current row to be deleted
and makes the rows below move up2

• ∼ command, to change case of the character currently under the cursor: might call scrn.inch(), which
returns the character currently under the cursor, and then call scrn.addch() to put in the character of
opposite case

• :sp command (vim), to split the current vi window into two subwindows: might call curses.newwin()

• mouse operations in gvim: call functions such as curses.mousemask(), curses.getmouse(), etc.

You can imagine similar calls in the source code for emacs, etc.

4 Libraries Built on Top of Curses

The operations provided by curses are rather primitive. Say for example you wish to have a menu sub-
window in your application. You could do this directly with curses, using its primitive operations, but it
would be nice to have high-level libraries for this.

A number of such libraries have been developed. One you may wish to consider is urwid, http://
excess.org/urwid/.

5 If Your Terminal Window Gets Messed Up

Curses programs by nature disable the “normal” behavior you expect of a terminal window. If your program
has a bug that makes it exit prematurely, that behavior will not automatically be re-enabled.

1But if the movement causes a scrolling operation, other curses functions will need to be called too.
2But again, things would be more complicated if that caused scrolling.

7

http://excess.org/urwid/
http://excess.org/urwid/

In our first example above, you saw how we could include to do the re-enabling even if the program crashes.
This of course is what is recommended. Butif you don’t do it, you can re-enable your window capabilities
by hitting ctrl-j then typing “reset”, then hitting ctrl-j again.

6 Debugging

The open source debugging tools I usually use for Python—PDB, DDD—but neither can be used for debug-
ging Python curses application. For the PDB, the problem is that one’s PDB commands and their outputs
are on the same screen as the application program’s display, a hopeless mess. This ought not be a problem
in using DDD as an interface to PDB, since DDD does allow one to have a separate execution window. That
works fine for curses programming in C/C++, but for some reason this can’t be invoked for Python. Even
the Eclipse IDE seems to have a problem in this regard.

However, a very usable tools is RPDB, http://RPDBdb.digitalpeers.com/, a very usable pro-
gram which was adapted from PDB. RPDB does indeed set up a separate execution window, which solves the
problem. I’ve got a quick introduction to RPDB at http://heather.cs.ucdavis.edu/˜matloff/
rpdb.html

8

http://RPDBdb.digitalpeers.com/
http://heather.cs.ucdavis.edu/~matloff/rpdb.html
http://heather.cs.ucdavis.edu/~matloff/rpdb.html

	Overview
	Function
	History
	Relevance Today

	Examples of Python Curses Programs
	Useless Example
	Useful Example
	A Few Other Short Examples

	What Else Can Curses Do?
	Curses by Itself

	Libraries Built on Top of Curses
	If Your Terminal Window Gets Messed Up
	Debugging

